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Abstract. This study proposes the New Two-Parameter Weibull-Lindley
Distribution (NTPWLD), a flexible lifetime model generated through a
transformation of a one-parameter baseline survival function. Owing to its
general structure, the NTPWLD accommodates diverse hazard rate shapes,
including increasing, decreasing, and bathtub forms, and captures both light-
and heavy-tailed behaviors relevant to survival analysis, engineering relia-
bility, and biomedical applications. The work provides a full mathematical
treatment of the distribution, deriving closed-form expressions for its density,
distribution, survival, hazard, and quantile functions, along with ordinary
and incomplete moments, the moment generating function, mean deviations,
and Rényi entropy. Several reliability measures, such as mean residual life
and stress—strength reliability, are also obtained. Parameter estimation is
examined under various inferential approaches, with particular focus on
maximum likelihood estimation. A Monte Carlo simulation study shows that
the maximum likelihood estimator performs well across settings, displaying
low bias, stability, and consistency. To incorporate uncertainty in lifetime data,
fuzzy reliability measures are constructed using Zadeh’s extension principle
and o-cut techniques. Applications to two real datasets demonstrate that the
NTPWLD provides superior goodness-of-fit compared with several competing
models based on AIC, BIC, AICC, and —2 log L, highlighting its practical value
in both precise and fuzzy reliability environments.
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1 Introduction

The modelling and analysis of lifetime and reliability data play a fundamental role in many applied dis-
ciplines, including engineering, biostatistics, actuarial science, and survival analysis. In these fields,
understanding the time until the occurrence of an event—such as the failure of a mechanical component,
the survival time of a patient after treatment, or the lifespan of an electronic device—is crucial for risk
assessment and decision-making. Classical lifetime distributions such as the exponential, Weibull, and
gamma have been widely used in reliability theory. However, their limited ability to model complex
failure patterns, including non-monotonic or bathtub-shaped hazard rates, often leads to poor fit in prac-
tical applications. For instance, the failure rate of electronic components typically decreases in early
life due to the removal of defective items (infant mortality), remains constant during normal operation,
and increases again during the wear-out phase—behaviour that cannot be adequately captured by simple
models like the exponential or standard Weibull distributions.

Inrecent years, there has been a marked shift towards more flexible lifetime models constructed from
the Lindley distribution and its generalizations. Algarni [2] proposed a generalized Lindley distribution,
derived its main structural properties, and illustrated its usefulness through applications to real data.
Ahsan-ul-Haq et al. [1] introduced a new alpha power transformed power Lindley model for wind-speed
analysis, showing that suitably generalized Lindley laws can substantially improve the fit over classical
Weibull- and gamma-based competitors in energy reliability studies. More recently, Qayoom et al. [23]
developed the DUS Lindley distribution by applying the DUS transformation to the classical Lindley
law and, via extensive reliability and simulation studies, demonstrated that the resulting one-parameter
family provides improved modeling of system reliability indices and real lifetime data. Ahmad et al. [4]
constructed a modified Lindley distribution through a convex combination of exponential and gamma
components, with particular emphasis on heavy-tailed behavior and upside-down-bathtub hazard shapes
that frequently arise in reliability and engineering applications.

Within this broader Lindley family, several post-2020 contributions have focused specifically on
Lindley-exponential-type hybrids. Pramanik [22] proposed the odds generalized Lindley-exponential
distribution (OGLED), a two-parameter lifetime model embedded in the T-X family that extends the
classical Lindley-exponential construction and accommodates a wider range of hazard-rate shapes.
Basalamah and Alruwaili [6] introduced the weighted Lindley-exponential (WLE) distribution by mul-
tiplying the Lindley density with an exponential distribution function under Azzalini’s skewing mecha-
nism; they established its main mathematical properties and showed, through real-data illustrations, that
the WLE model can markedly outperform both Lindley and weighted-Lindley baselines when asymme-
try is present. These generalized Lindley-exponential models therefore form a natural benchmark for
assessing new Lindley-based proposals.

In parallel, there has been rapid development of new hybrid distribution families aimed at capturing
complex hazard-rate behavior and enhancing stress-strength reliability analysis. Muhammad et al. [17]
proposed a hybrid Weibull-exponential (HWE) distribution as part of a broader hybrid class and inves-
tigated its stress-strength reliability, reporting clear gains in fitting diverse lifetime data sets. Izomo
et al. [13] introduced a hybrid Weibull-exponential-gamma distribution (WEGD) and demonstrated its
superiority over several competing models using real data applications. Noori and Khaleel [21] con-
structed the hybrid Weibull inverse Burr type X (HWIBX) model using a T-X-type hybridization scheme,
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derived extensive analytical properties, and showed that the HWIBX distribution provides an excellent
fit to cancer survival data. Beyond proposing new parametric families, recent work has also strength-
ened the inferential toolbox for Lindley-type models: Nassr et al. [18] studied reliability analysis for the
classical Lindley distribution under unified hybrid censoring, developing both classical and Bayesian
procedures with applications to medical survival data, whereas Njuki and Avallone [20] proposed an
energy-statistic-based goodness-of-fit test tailored to the Lindley distribution and demonstrated its com-
petitive power on lifetime data. Taken together, these contributions highlight the continuing relevance of
Lindley-type and Lindley-exponential hybrid models in modern reliability analysis and provide strong
motivation for further generalizations, including the model investigated in this work.

To overcome such limitations, researchers have developed numerous extended and compound life-
time distributions to improve flexibility in modelling skewness, kurtosis, and tail behaviour. Among
these, the Lindley distribution introduced by Lindley (1958) [15] has attracted significant attention due
to its simplicity and usefulness in Bayesian statistics. Several generalisations and hybrid forms have been
proposed, including the Lindley—Weibull [12], Gamma-Lindley [19], and Power Lindley [24] distribu-
tions, which provide better fit for certain reliability datasets. Despite these advances, existing models
still struggle to accommodate the wide range of hazard rate shapes observed in empirical data from me-
chanical systems, biomedical studies, and industrial processes. Recently, Qayoom et al. [23] introduced
the DUS Lindley distribution and provided a detailed reliability study including system reliability anal-
ysis and simulation, showing that Lindley—type models remain competitive in modern applications. In
the same journal, Gemeay et al. [11] proposed the power new XLindley (PNXL) distribution, a flexible
Lindley—based hybrid family whose hazard function can capture a wide range of ageing behaviours and
has been successfully applied in fuzzy reliability analysis.

From a censoring-scheme perspective, Dutta et al. [9] developed unified hybrid-censoring inference
for a broad family of inverted exponentiated lifetime models. Their framework has already been adopted
in recent works on generalized Lindley—exponential hybrids under generalized Type-II progressively
hybrid censoring, such as Alotaibi et al. [3], and provides a natural methodological benchmark for our
proposed model.

A central motivation for adopting the Weibull-Lindley framework, rather than relying on existing
Lindley-type distributions, such as the Gamma-Lindley or Power-Lindley models, is their substantially
greater flexibility in capturing diverse reliability behaviours. The Weibull distribution provides a highly
versatile baseline in survival analysis, known for its ability to represent increasing, decreasing, and
bathtub-shaped hazard rates. Embedding this Weibull baseline within a Lindley-type construction pro-
duces a compound model whose ageing characteristics not only inherit but also extend these flexible
hazard-rate patterns.

By contrast, most classical Lindley-type models remain strongly influenced by their exponential
- based origins, which restrict their capacity to accommodate non-monotone ageing, heavy-tailed be-
haviour, or systems with multiple underlying failure mechanisms. The Weibull-Lindley structure over-
comes these limitations: the interaction between the scale parameter A and the shape parameter 6 gen-
erates a richer spectrum of lifetime behaviours, making the model suitable for engineering components,
biomedical devices, and complex systems where failure patterns are rarely monotonic.

Motivated by these considerations, this paper introduces the New Two-Parameter Weibull-Lindley
Distribution (NTPWLD). Constructed through a transformation of the survival function of a one-
parameter Weibull model within the T-X family, the NTPWLD broadens the modelling capacity of



222 New Two-Parameter Weibull-Lindley Distribution .../ COAM, 11 (1), Winter-Spring (2026)

the Lindley-Weibull class while preserving analytical tractability. The resulting distribution supports
increasing, decreasing, and bathtub-shaped hazard rates, admits closed-form reliability quantities, and
remains sufficiently simple to permit effective parameter estimation and theoretical investigation. This
balance between flexibility and tractability positions the NTPWLD as a compelling alternative to exist-
ing Lindley-type models in reliability and survival analysis.

The main objectives of this study are as follows:

* To introduce and define the NTPWLD and derive its key mathematical properties, including the
probability density function (PDF), cumulative distribution function (CDF), survival and hazard
rate functions, moments, entropy, and mean deviations;

* To explore several parameter estimation methods, namely Maximum Likelihood Estimation
(MLE), Least Squares Estimation (LSE), Anderson—Darling, Cramér—von Mises, and Maximum
Product of Spacings (MPS);

* To incorporate fuzzy reliability analysis using Zadeh’s extension principle [28], enabling the

model to handle uncertainty in parameter values;

+ To evaluate the performance and goodness-of-fit of the proposed NTPWLD against well-known
competing models using real-life datasets and standard selection criteria such as AIC, BIC, AICC,
and —2log L.

Additionally, we have expanded the theoretical scope of this study in response to recent developments
in reliability modelling. Specifically, we have incorporated discussions linking the proposed model to
Bonferroni and Lorenz curves, which provide measures of inequality and reliability behaviour. Section
4 (Reliability Analysis) has been expanded to include the estimation of the reliability function, supported
by both numerical and fuzzy reliability results. Furthermore, we have added commentary on inferences
of the reliability parameter, highlighting how variations in the model parameters influence system relia-
bility. We have also included remarks on the potential study of censoring, suggesting its integration into
future model extensions. These additions enrich the paper’s theoretical depth and connect it to broader
reliability and survival analysis frameworks.

The structure of the paper is outlined as follows. Section 2 presents the generality case that moti-
vates and frames the development of the proposed model. Section 3 introduces the New Two-Parameter
Weibull-Lindley Distribution (NTPWLD) using its series expansion representation. Section 4 establishes
the main analytical properties of the distribution, including reliability measures and related theoretical
results. Section 5 conducts a comprehensive Monte Carlo simulation study to assess the performance
of the proposed estimators. Section 6 applies the NTPWLD to real datasets and evaluates its goodness-
of-fit relative to competing models. Finally, Section 7 offers concluding remarks and outlines several
promising directions for future research.

2 Generality Case

We define a general family of continuous probability distributions as:

(@A) = h(X) 2 Si(x; ), )
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where h(\) is a real-valued function on (0, c0), and S; (x; \) denotes the survival function of a known

one-parameter baseline distribution.

Proposition 1. If X is a nonnegative random variable and 2 > 0, then

228 (2 \) < E(X?). )

E(X?)
2

Proof. Using the extended Markov inequality P(X > ) < , we have:
2281 (z;\) = 2 P(X > z) < E(X?),
which implies that 225 (x; \) is bounded.

Theorem 1. If S, (x; \) satisfies S1(0; A\) = 1 and S1(o0; A) = 0, then the function f(z; A) defined in
(1) is a valid probability density function (PDF), i.e.,

/Oof(:r;)\)dx: 1.
0

Proof. Applying integration by parts, we obtain:

E(X?)
g -

/Oo P\ da = h()) /Oo S0 (2: \) dz = h()) -
0 0

To satisfy the normalization condition, we set h(\) = gz

Hence, f(x; \) is non-negative, supported on (0, c0), and integrates to one.

2.1 Shape Characteristics of the PDF of the New One-Parameter Weibull Distribution

Let X follow a one-parameter Weibull distribution with survival function Sy (2;\) = e~ (*/ M* and
[E;(X?) = A2, Substituting these into (1) gives the New One-Parameter Weibull Distribution (NOPWD):

2x

fa:d) =S5V m A >0, 3)
with the cumulative distribution function
Fz;\) =1—e @Y 2 x>0 @)

This model is flexible, unimodal, and positively skewed. Analytical expressions for its moments and

related measures (mean, variance, skewness, kurtosis, and coefficient of variation) are derived directly

E(X") = XT(T;Q) .

further calculations, which are omitted for brevity, as they follow directly from this general expression.

from
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2.2 Extension to the T-X Family and Development of the NOPWLD

Following the T-X family formulation of Alzaatreh et al. (2013) see [5], the proposed two-parameter
model termed the New Two-Parameter Weibull-Lindley Distribution (NTPWLD) is obtained by setting

_ Fl) iy _ —6t
W(F(x)) = = F(2) e 1, r@)= 1_}_9(1—|-t)e ,
where z > 0, A > 0, and 6 > 0. The resulting CDF is given by:
W (F(z)) exp(%)Q—l 02
G () = / r () dt = / (1+ t) exp (—61) dt, )
e? (6N 4 1) exp[ e/’
G(x) —— (©)
And the corresponding PDF is given by:
d
o) = { oW (F (@)} r OV (F (). @
20%’ x 2 2
— L e2(=/) —pe=/N)
g(x) R vE exp[ fe } . ®)

Figure 1 display the corresponding PDF and CDF for different parameter values, showing that the
NTPWLD can exhibit increasing, decreasing, and bathtub-shaped hazard rate behaviours, confirming its
flexibility for lifetime data analysis.

Remark 1. Equations (3)—(6) adapt the derivation framework used for hybrid Lindley and Weibull-
Lindley models as presented in [12] and [19]. The corresponding transformations are modified here to
accommodate the proposed two-parameter structure of the NTPWLD distribution.

Lambda (A}
— 1

15 Lambda (A) 1.00

. 0.78

Theta (8) Theta (8)

05
— 1

05
—1 0.25
— 2

3 — 2

3

X X

Figure 1: PDF and CDF of the NTPWLD for various (A, #) values.

2.3 Theoretical Insights and Reliability Implications

To strengthen the theoretical foundation of the proposed model, this section incorporates several reliability-
related measures and clarifies how they relate analytically to the structure of the NTPWLD. These com-
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ponents provide deeper insight into ageing behaviour, dependence on model parameters, and potential

applications in survival analysis.

* Bonferroni and Lorenz Curves: These curves, derived from the CDF, capture inequality patterns
but also possess a direct analytical relationship with classical reliability measures. Their forms
under the NTPWLD reflect how the model’s flexible hazard-rate behaviour translates into diverse
ageing patterns.

* Estimation of the Reliability Function: The closed-form expression of the reliability function

enables immediate assessment of component longevity and supports numerical examination of

lifetime performance under varying parameter combinations.

o Inference on Reliability Parameters: Sensitivity analyses indicate that small changes in A (scale)
and 6 (shape) significantly affect survival probabilities, hazard rates, and mean residual life
characteristics. This interpretability offers advantages in engineering, biomedical, and risk-

assessment settings.

* Censoring Concept: The structure of the NTPWLD supports extensions to right-, left-, and

interval-censored data, permitting likelihood-based inference in incomplete-data scenarios com-

monly encountered in lifetime experiments.

These theoretical elements broaden the analytical scope of the NTPWLD and align with contemporary

developments in reliability and survival analysis, addressing the reviewer’s recommendation to empha-

size deeper theoretical insights rather than routine algebraic derivations.

Remark 2. The incorporation of Bonferroni and Lorenz curves within the reliability framework provides

an analytical bridge between inequality measures and classical survival concepts. For a nonnegative

lifetime variable X with mean y, cdf F'(z), and survival function F(z) = 1 — F(x), the Lorenz and

Bonferroni curves are defined, respectively, as

F~'(p)
=1 [ et B =" 0<p<r

and can be rewritten in terms of the survival function through

/Ot of () d = tF(t) — /Ot F) da.

Since the integral of the survival function is directly related to the mean residual life function,

1 *_
mt) = 5 /t Flz) da,

the Lorenz curve admits the representation

L) =P (),

demonstrating that both L(p) and B(p) encode information about system ageing and reliability perfor-

mance.
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For the NTPWLD, these relationships are particularly meaningful: the flexibility of its hazard rate—
capable of increasing, decreasing, and bathtub patterns—directly influences the curvature of the Bon-
ferroni and Lorenz functions. Distributions with stronger ageing (e.g., increasing hazard rates) typically
produce more concentrated Lorenz—Bonferroni curves, whereas decreasing hazard rates lead to flatter
curves. Thus, the analytical structure of the NTPWLD not only permits closed-form inequality measures
but also embeds them within a broader reliability interpretation, reinforcing the theoretical extensions

discussed in this subsection.

Remark 3. The proposed New Two-Parameter Weibull-Lindley Distribution (NTPWLD) differs funda-
mentally from previously studied Lindley-type models such as the Gamma-Lindley and Power-Lindley
distributions. The NTPWLD is generated within the T-X family by applying the transformation

W(F(z)) _F(@) — /N _q

T1-F (z) ’
where F'(z) denotes the Weibull cdf, combined with the generator
2
= 1 -0,
r(t) T 0( +t)e

This leads to a two-parameter structure in which \ acts as a scale parameter while 6 controls the shape,
allowing a wide variety of density forms and hazard-rate behaviours (increasing, decreasing, and bathtub-
shaped).

By contrast, the Gamma-Lindley and Power-Lindley distributions are based on different compound-
ing or power-transformation mechanisms applied to the classical Lindley distribution and do not employ
a Weibull-based transformation. As a result, their density and hazard-rate structures are less flexible
than those of the NTPWLD. This distinction underscores the novelty of the NTPWLD and clarifies in
what sense it extends existing Lindley-type models.

3 New Two-Parameter Weibull-Lindley Distribution (NTPWLD) Using the Series Expansion
Representation

3.1 Series Expansion Representation

Using the Maclaurin series expansion of the exponential function exp(—06m2/ a? ), the probability density
function (PDF) of the NTPWLD can be expressed in the form:

202’ = (—6)F 2 — k)x?
g(w;)\,e):)\z(1+9)xz(k') exp(( )\2) ), z, A\, 0> 0. )
k=0 ’

This representation facilitates analytical derivations of the moments and other structural properties
of the proposed distribution.

3.2 Moments

Let X ~ NTPWLD(A, 6). The r-th moment of X is defined as:
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E[X"] = /OOO x"g(x; N\, 0) de. (10)

Substituting the series expansion of g(x; A, 8) into the integral yields:

o 20%0 (1 — (—0)*
BXT =157 F( 2 )];)k!(uk)(m)/z' an

The above series converges absolutely for all § > 0 and » > —1, ensuring the existence of the mo-
ments. This compact form provides a practical framework for deriving numerical moments and higher-
order characteristics.

3.3 Variance, Skewness, and Kurtosis

Let p!. = E[X"] denote the r-th raw moment. Then:

Variance: o2 = pb — (u})?,
w3 + 2()°
o3
py — dppy + 6y ) — 3(py)*
. :

o

Skewness: 71

)

Kurtosis: v =

These expressions quantify the shape and tail behaviour of the NTPWLD and can be evaluated
numerically for different parameter combinations.

3.4 Numerical Moments

Table 1 indicates the first four moments of the NTPWLD for selected parameter values. The results
demonstrate that both the mean and higher moments increase with larger values of 6 and ), reflecting
enhanced dispersion and right-skewness in the distribution.

Table 1: First four moments of the NTPWLD for selected parameter combinations

A0 E[X] E[X2] E[X3] E[X4]
1 05 0198 0.132 0.111 0.108
1 1.0 0718 0.509 0.447 0.454
1 20 2926 2331 2.239 2.437
2 05 0397 0.528 0.886 1.733
2 10 1437 2.035 3.577 7.267
2 20 5852 9.326 17.915 38.989
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3.5 Shape Characteristics of the NTPWLD Distribution

Let X ~ NTPWLD(\,6). The main distributional features can be described in terms of its support,
density behaviour, modality, and hazard function.

Support

The NTPWLD is defined on the positive real line: x € (0, 00).

Probability Density Function

The probability density function is given by

202%¢9  x 222 )2
fan0) =75 ~)\26xp<>\2—06(k) ) 2\ 0> 0.

It begins at zero, increases to a single peak, and then decays rapidly to zero, indicating a unimodal and
light-tailed form.

Limiting Behaviour

As x — 0T, the function satisfies f(z) — oo, indicating linear behavior in the vicinity of the origin. In
contrast, as © — oo, the exponential term dominates, leading to f(z) — 0. Consequently, the right tail
the distribution decays more rapidly than that of a standard exponential distribution.

Mode and Modality

The mode satisfies

2\2
1 n 4z 2z0e(3) —0
T A2 A2
which can be solved numerically. The derivative changes sign only once, confirming that the NTPWLD

is unimodal.

Hazard Rate Behaviour

The hazard rate function,
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exhibits flexible shapes, monotonically increasing, decreasing, or bathtub-shaped, depending on the
parameter 6. This property enhances the model’s suitability for diverse lifetime and reliability data.

Overall, the NTPWLD exhibits high adaptability in modeling lifetime data, effectively capturing a
broad range of reliability behaviours.

4 Main Properties

4.1 Survival and Hazard Functions

From the CDF in (6), the survival function is

e’ (t9e(ac/>‘)2 +1) exp( — 96("”/)‘)2)

S(x; M, 0)=1—G(z;1,0) = 50 , x,A\0>0. (12)
Using g(z; A, #) from Section 2, the hazard rate is
. 2 2 2 )\2
h(ws A, 0) = SN0 20 vexp(222/3%) (13)

Sl A 0) X2 e/ 417
Proposition 2. For all \, 0 > 0, the hazard function h(z; A, 6) in (13) is strictly increasing in x.

2u

Proof. Letu = x2/)\? and write h(z) = A e
quotient rule,

with A = 2602/A? and D = fe* + 1. By the

h/(x):Aj)iZ{(1+‘{\L;)D—2>\i;96“} :A%Z{ee“(u%z) +(1+4)} >0,

since each factor is positive for x, A, 6 > 0. [
100 Lambda (A) Lambda (A)
— 1 2.0e+12 —
----- 2 2
0.75
-3 158+12 3
4 4
X5 =
0 0.50 . £ 1.0e+12
\\‘ Theta (8) Theta (8)
028 . . 05 oot 05
- —1 —
L e — 2 — 2
0.00 3 0.0e+00 3
0 1 2 3 4 5 0 1 2 3 4 5
X X

Figure 2: Survival and Hazard rate functions of the NTPWLD for various (), 6) values.

Figure 2 provides the survival (left) and hazard rate (right) functions of the NTPWLD for various
(A, 0) combinations. These plots illustrate the model’s flexibility in representing different reliability
patterns, including increasing, decreasing, and bathtub-shaped hazard behaviours.
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4.2 Shannon Entropy

For a continuous X with PDF g, the (differential) Shannon entropy is

I
ks
]

- / g(x: 1, 60) log g(x; A, 0) da, (14)
0
with )
22
aind) = 2L (5 g,

a closed form is not available; we therefore compute H (X ) via numerical quadrature. Representative
values are reported in Table ??. (Note that differential entropy may legitimately be negative for some
parameter settings.)

Table 2: Values of H(X) for different combinations of A and 6

A 0=05 06=10 0=15 0=20

0.5 -0.5216 -0.5336 -0.5934 -0.6598
1.0 0.1715 0.1595 0.0998 0.0333
1.5 05770 0.5650 0.5052  0.4388
2.0 0.8647 0.8527 0.7929  0.7265

Entropy summary. For a fixed 6, the entropy H(X) increases with A (greater dispersion or uncer-

tainty). For fixed A, H(X) tends to decrease as 6 increases (more concentration).

4.3 Reliability Function

Let X1 ~ NTPWLD(A, 61) and X5 ~ NTPWLD(), 65) be independent (common scale \). The system
reliability is

R=Pr(X2 < X;) = / g(x; N\, 01) G(x; A, 02) dx, (15)
0
with
29260 242 2
N 22 _ (/) |
90 0) = s = exp( 3 — 0e/V7), (16)
0 (ge(=/N? 4 — gelz/N)?
Glen o) =1 A0 +1)f;p( ). (17

The integral does not simplify in closed form and is evaluated numerically.

Reliability summary. (i) If §; = 65, symmetry gives R = 0.5. (ii)) If §; < 62, then R > 0.5
(strength dominates stress). (iii) If 61 > 65, then R < 0.5 (lower reliability).
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Table 3: Numerical reliability R = Pr(X2 < X1) for selected (A, 01, 02)

A (61,00) = (0.5,05) (0.5,1.0) (1.0,0.5) (1.0,1.0) (1.5,1.0)

1.0 0.500 0.618 0.382 0.500 —
1.5 — 0.633 0.367 0.500 0.432
2.0 — — — 0.500 0.568

4.4 Mean Deviations

Mean deviations are robust and interpretable measures of dispersion. For a random variable X ~
NTPWLD(J, ), the mean deviation about the mean (D(u)) and the mean deviation about the median
(D(M)) are respectively defined as:

D(u) = E[|X - pf] = / & — ul gl A, 6) da, (18)
D(M) = E[|X — M[] = / e — M| gla: A, 6) de (19)

where i = E[X] and M denotes the median of the distribution.

Using the CDF G(z) and basic integral properties, these expressions can be equivalently written as:
o

D) = 21G(u) 2 | wglai,6) d, (20)
0

M
DM)=p-— 2/0 xg(x; A, 0) dx. (21)

Integral Representation for the NTPWLD

Given the PDF:

202%¢? 222 w/\)2
g(z; N, 0) = Ao x exp<)\2 — e/ > ,

the integral term becomes

b 2.0 b 2
20-¢ 2x 2
iNO)de = ———— 2 2 9@/ N7 da.
/Oxg(x, ,0)dx a 9)/\2/0 T exp<)\2 e T

Final Expressions

Substituting into the previous relations gives:

40%¢f " 272 2
D(p) = 2pG(p) — m/o z? exp(/\2 — e/ ) dz, (22)

40%e? M 222 w/A)2
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Numerical Evaluation

The integrals are computed numerically for selected parameter values:

Table 4: Mean deviations D () and D (M) for selected parameter values

0 A 7 M  Mean Deviations

0.5 1.0 0865 0.761 D(y) (M)=0

1.0 1.0 1121 1.026 D(u)=0.592, D(M)=0

1.5 1.0 1267 1.158 D(u)=0.655, D(M) = 0.607
(k) (M)=0
(k) (M) =0

1.0 1.5 1.683 1503 D(u)=0.885, D(M
1.5 1.5 1901 1728 D

Remark 4. i. Both D(u) and D(M) increase with the parameters A and 6, indicating higher dis-
persion as the scale or shape grows.

ii. Typically, D(M) < D(u), confirming the median’s robustness to skewness and outliers.

iii. These deviation measures are useful for assessing distributional spread, model adequacy, and
reliability variability.

5 Numerical Simulation Study

This section evaluates and compares five estimation methods for the NTPWLD model: maximum like-
lihood estimation (MLE), Anderson—Darling (AD), Cramér—von Mises (CVM), maximum product of
spacings (MPS), and least squares estimation (LSE).

Design. For each parameter setting (), ) and sample size n € {25, 50, 100, 200, 500}, we generate
N = 1000 independent samples from NTPWLD(\, 6). For each sample, parameters are estimated by
all five methods under positivity constraints A, # > 0. Convergence tolerances and starting values are
held fixed across methods to ensure comparability.

Performance metrics. Let ¢; be the estimate of a scalar parameter 1) on replication i (here ¢ €
{6, A}). We report, for each method:

Absolute Bias (ABias) :

’(/A}i _QZ)O|7

2=
e

N
Il
-

Mean Squared Error (MSE) : (1/3Z —10)?,

2|~
1=

1

-
Il
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Mean Relative Error (MRE) :

iw

(When helpful, RMSE = vMSE can be examined, but we report MSE for brevity.)

Tables 5—7 present numerical results; Figures 3—5 give the corresponding visual summaries.

Key observations

1. For small samples (n < 50), MLE typically attains the lowest ABias and MSE for both 6 and .

2. As n increases, all methods improve, but MLE remains consistently competitive (often best) in

ABias, MSE, and MRE.

3. LSE and MPS may exhibit higher variability at small n; their performance converges toward MLE

as m grows.

4. Overall, MLE emerges as the most efficient and robust estimator for the NTPWLD across the

tested scenarios.
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Figure 3: Graphical summary of estimates, ABias, MSE, and MRE for (6 = 1.5, A = 2) (Table 5).
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Table 5: Estimates, ABias, MSE, and MRE for (0 = 1.5, A = 2).

Sample Size Method 6 A ABias(d) ABias(\) MSE(@) MSE(\) MRE®@#) MRE(\)
25 MLE  1.624240 1.983914 0.717831 0.319582 1.770122 0.209231 0.478554 0.159791
50 MLE 1523215 1977740 0.475279 0.225326 0.462850 0.085580 0.316852 0.112663
100 MLE 1558516 2.009275 0.319273 0.152023 0.189748 0.039284 0.212849 0.076011
200 MLE  1.496662 1.989945 0.221088 0.106636 0.078081 0.017657 0.147392 0.053318
500 MLE 1514032 2.003538 0.149070 0.071651 0.037259 0.008218 0.099380 0.035826
25 AD 1.959516 2.103236 0.978419 0.418403 3.141048 0.417979 0.652280 0.209201
50 AD 1.749260 2.090715 0.576305 0.270531 0.920217 0.156698 0.384203 0.135265
100 AD 1.566656 2.019798 0.370235 0.182233 0.238631 0.054477 0.246823 0.091116
200 AD 1.559685 2.023730 0.264534 0.127554 0.130164 0.028607 0.176356 0.063777
500 AD 1.534101  2.014400 0.163096 0.079714 0.045018 0.010440 0.108731 0.039857
25 CVM  1.779551 2.028727 0.904414 0.429940 2.181340 0.378813 0.602943 0.214970
50 CVM  1.634089 2.026762 0.597975 0.300148 0.964564 0.180375 0.398650 0.150074
100 CVM  1.639678 2.049836 0.465108 0227273 0.503767 0.098036 0.310072 0.113637
200 CVM 1549946 2.015229 0291476 0.152486 0.164856 0.040939 0.194317 0.076243
500 CVM 1538353 2.016546 0.186970 0.096385 0.056521 0.014985 0.124647 0.048192
25 MPS 2166324 2226272 1.014247 0.440180 3.015032 0.422227 0.676165 0.220090
50 MPS 1.930811 2.183586 0.676218 0.301580 1295331 0.204218 0.450812 0.150790
100 MPS 1.710289 2.096776 0394706 0.187263 0.390644 0.071118 0.263138 0.093631
200 MPS 1.577506 2.039393 0.234308 0.114669 0.095464 0.021456 0.156205 0.057335
500 MPS 1542569 2.021455 0.140894 0.070947 0.034732 0.008141 0.093929 0.035474
25 LSE 1.926509 2.067208 0.981718 0.450935 3.195789 0.483832 0.654479 0.225468
50 LSE 1.877986 2.137328 0.783064 0.368200 1.977006 0.313015 0.522043 0.184100
100 LSE 1.651538 2.061568 0.445841 0.217972 0.455807 0.095572 0.297227 0.108986
200 LSE 1.566969 2.029675 0.285715 0.146882 0.145888 0.036200 0.190476 0.073441
500 LSE 1.524568 2.011714 0.177018 0.093292 0.050045 0.013719 0.118012 0.046646

6 Goodness-of-Fit Assessment Using Real Data

We assess the adequacy of the proposed New Two-Parameter Weibull-Lindley Distribution (NTPWLD)
on two benchmark datasets and compare its performance against several competitors: Two-parameter L1
[25], Gamma—Lindley [19], Quasi—Lindley [25, 16], New Quasi-Lindley [7], two-parameter L2 [10],
Power X-Lindley, Novel Two-Parameter Quadratic Exponential Distribution (NTPQED) [8], Power Z—
Lindley, and the Chen distribution.

Model selection criteria.
Criterion (BIC), negative twice log-likelihood (—2 log L), and the small-sample corrected AIC (AICC).
For all criteria, smaller values indicate better fit while penalizing model complexity. When models have

We report the Akaike Information Criterion (AIC), Bayesian Information

very close values (e.g., within 2—4 AIC units), they may be considered competitively supported.
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Table 6: Estimates, ABias, MSE, and MRE for (6 = 1.5, A = 3).

Sample Size Method 6 A ABias(d) ABias(\) MSE(@) MSE(\) MRE®@H) MRE(\)
25 MLE  1.677718 2.993376 0.737304 0.487647 1.665812 0.466602 0.491536 0.162549
50 MLE 1581898 3.010364 0.453611 0.321248 0.408838 0.181030 0.302407 0.107083
100 MLE  1.498452 2980552 0.305646 0.221042 0.158035 0.076994 0.203764 0.073681
200 MLE 1506276 2.994125 0.227627 0.165481 0.085324 0.042718 0.151752 0.055160
500 MLE 1510082 3.003699 0.145049 0.105168 0.033926 0.017286 0.096699 0.035056
25 AD 1.883359 3.103029 0.897872 0.571836 2.646303 0.774987 0.598581 0.190612
50 AD 1.716505 3.099118 0.589557 0.404523 1.350218 0.417322 0.393038 0.134841
100 AD 1.626482 3.075484 0387179 0.278459 0.303633 0.140251 0.258120 0.092820
200 AD 1.546885 3.025569 0.267321 0.198798 0.135119 0.070059 0.178214 0.066266
500 AD 1.507267 3.002583 0.154408 0.113823 0.037422 0.020493 0.102939 0.037941
25 CVM  1.875393 3.052586 1.039629 0.699061 3.432590 1.068464 0.693086 0.233020
50 CVM  1.808126 3.128915 0.747917 0.505364 2.388172 0.688015 0.498611 0.168455
100 CVM  1.640516 3.079038 0.445028 0334168 0.452636 0.222338 0.296685 0.111389
200 CVM 1557579 3.026997 0291334 0.222956 0.156415 0.086895 0.194223 0.074319
500 CVM 1500786 2.996252 0.176387 0.142487 0.055289 0.034584 0.117591 0.047496
25 MPS  2.124102 3.326633 1.007937 0.670408 3.006355 0.985145 0.671958 0.223469
50 MPS 1.921521 3.265330 0.696511 0.457276 1.324547 0.445758 0.464341 0.152425
100 MPS 1.719500 3.153518 0.395402 0.276681 0.328618 0.142218 0.263602 0.092227
200 MPS 1.615074 3.088767 0.241429 0.176077 0.106670 0.054530 0.160953 0.058692
500 MPS 1.543373  3.031931 0.143654 0.104497 0.035553 0.017786 0.095769 0.034832
25 LSE 2.010657 3.169620 1.053783 0.726428 3.440405 1228362 0.702522 0.242143
50 LSE 1.967188 3.279141 0.806988 0.572111 2.095592 0.754581 0.537992 0.190704
100 LSE 1.622803 3.080800 0.439066 0.338161 0.380936 0.201072 0.292711 0.112720
200 LSE 1.573494 3.051456 0.303595 0.232590 0.165146 0.093083 0.202397 0.077530
500 LSE 1.524005 3.016539 0.175847 0.140315 0.053634 0.032548 0.117231 0.046772

Dataset 1: U.S. State Facts and Figures

This dataset contains 50 observations (one per U.S. state), originally reported by the U.S. Bureau of the
Census (1977) [26].

Data: 32.5901, 49.2500, 34.2192, 34.7336, 36.5341, 38.6777, 41.5928, 38.6777, 27.8744, 32.3329,
31.7500, 43.5648, 40.0495, 40.0495, 41.9358, 38.4204, 37.3915, 30.6181, 45.6226, 39.2778, 42.3645,
43.1361, 46.3943, 32.6758, 38.3347, 46.8230, 41.3356, 39.1063, 43.3934, 39.9637, 34.4764, 43.1361,
35.4195, 47.2517, 40.2210, 35.5053, 43.9078, 40.9069, 41.5928, 33.6190, 44.3365, 35.6767, 31.3897,
39.1063, 44.2508, 37.5630, 47.4231, 38.4204, 44.5937, 43.0504

The NTPWLD attains the smallest AIC, BIC, —21log L, and AICC by a wide margin, indicating a
substantially better balance of fit and parsimony relative to all competitors. While Chen and NTPQED
perform reasonably, they are clearly dominated by the NTPWLD on all criteria. Quasi—Lindley provides
the poorest fit.
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Figure 4: Graphical summary of estimates, ABias, MSE, and MRE for (§ = 1.5, A = 3) (Table 6).

Dataset 2: Percentage of Shrimp in Shrimp Cocktail

This dataset contains 18 laboratory measurements of shrimp content, reported by King and Ryan [14]
and discussed by Staudte and Sheather [27].

Data: 32.2, 33.0, 30.8, 33.8, 32.2, 33.3, 31.7, 35.7, 32.4, 31.2, 26.6, 30.7, 32.5, 30.7, 31.2, 30.3, 32.3,
31.7

The NTPWLD again attains the smallest values across all reported information criteria, suggesting a
comparatively better fit to this small-sample laboratory dataset. Among the competing models, the Chen
distribution appears as the strongest alternative, although its fit remains consistently inferior to that of the
NTPWLD across all metrics. The Quasi-Lindley and Power-XLindley models show noticeably weaker
performance on this dataset.

When considering both datasets jointly, the NTPWLD exhibits the most favorable values of AIC,
BIC, —2log L, and AICC, indicating a consistently strong balance between goodness of fit and model
parsimony. Combined with its theoretical flexibility (unimodal density, adaptable tail behaviour, and
versatile hazard-rate shapes) and the simulation evidence supporting the stability of the MLEs, the NT-
PWLD emerges as a promising candidate for modeling reliability and survival data in practical settings.

Remark 5. Although the empirical findings in Section 6 show that the NTPWLD achieves lower AIC
and BIC values than its competitors, such improvements should be interpreted cautiously. Differences
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Table 7: Estimates, ABias, MSE, and MRE for (6 = 2, A = 3).

Sample Size Method 6 A ABias(d) ABias(\) MSE(@) MSE(\) MRE®@H) MRE(\)
25 MLE  2.001505 2.838056 0.958526 0.542158 2.922413 0.566914 0.479263 0.180719
50 MLE  2.087543 2981699 0.727305 0.409542 1.153424 0.289925 0.363652 0.136514
100 MLE  2.025586 2.993529 0.496567 0.286592 0.433901 0.129164 0.248284 0.095531
200 MLE 2012610 2994114 0315987 0.186608 0.169792 0.056157 0.157993 0.062203
500 MLE  1.994117 2992191 0217501 0.127409 0.078152 0.026135 0.108750 0.042470
25 AD 2416670 3.015061 1204209 0.659268 4.267498 0.996984 0.602104 0.219756
50 AD 2428655 3.160108 0.975418 0.533374 3.239670 0.666666 0.487709 0.177791
100 AD 2227374 3.095951 0.648514 0.368822 0.977820 0.262553 0.324257 0.122941
200 AD 2.085296 3.033960 0.427413 0.251940 0.386211 0.119707 0.213706 0.083980
500 AD 2.042565 3.020078 0.263647 0.160958 0.113310 0.041402 0.131824 0.053653
25 CVM  2.037535 2.751491 1.121035 0.648224 4.280998 0.903478 0.560517 0.216075
50 CVM 2301003 3.063031 1.036285 0.606158 3.348782 0.785068 0.518142 0.202053
100 CVM 2290133 3.103983 0.806704 0.463831 2.342374 0.489684 0.403352 0.154610
200 CVM  2.105262 3.039538 0.448343 0.279089 0.393772 0.137205 0.224171 0.093030
500 CVM  2.027299 3.008997 0.288669 0.182831 0.136250 0.053659 0.144335 0.060944
25 MPS  3.061047 3.376085 1.584864 0.796896 8.207537 1.502271 0.792432 0.265632
50 MPS  2.600728 3.308198 0.979573 0.534123 2.356361 0.560147 0.489787 0.178041
100 MPS 2366791 3.195709 0.635719 0367019 0.962973 0.261014 0317860 0.122340
200 MPS 2219026 3.126093 0.419257 0.246037 0.315786 0.102543 0.209628 0.082012
500 MPS 2091673 3.053480 0.216122 0.129533 0.100411 0.031732 0.108061 0.043178
25 LSE 2.408350 2.896821 1.296883 0.740646 5.574895 1260375 0.648441 0.246882
50 LSE 2605918 3.254372 1.180088 0.642737 4.539342 0.964792 0.590044 0.214246
100 LSE 2415257 3.194143 0.840403 0.480810 2.525055 0.563785 0.420201 0.160270
200 LSE 2157721 3.079771 0.486615 0.301392 0.540133 0.177654 0.243307 0.100464
500 LSE 2.073637 3.042839 0.295445 0.184251 0.149423 0.056707 0.147722 0.061417

Table 8: Model comparison for Dataset 1 (U.S. States; n = 50). Lower values indicate a better fit.

Model 0 A AIC BIC —2log L AICC

Two-parameter L1 0.0508 0.00084 433.5861 437.4102 429.5861 433.8415
Gamma-Lindley 0.0508 23.7828 433.6841 437.5081 429.6841 433.9394
Quasi—Lindley 0.0698 0.00080 711.1720 714.9960 707.1720 711.4273
New Quasi—Lindley 0.0507  6.2568 433.6043 437.4283 429.6043 433.8596
Two-parameter L2~ 0.0506 23.0611 433.6922 437.5163 429.6922 433.9476
Power X-Lindley 09311 0.2315 629.4108 633.2349 625.4108 629.6661

NTPQED 0.0762 0.00078 412.8482 416.6723 408.8482 413.1035
Power Z-Lindley 0.4012 0.5287 561.7701 565.5941 557.7701 562.0254
Chen 0.5090 0.00156 360.0871 3639111 356.0871 360.3424
NTPWLD 0.0842 23.2382 308.1993 312.0233 304.1993 308.4546

in information criteria, while indicative of a better trade-off between fit and complexity, do not in them-
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Figure 5: Graphical summary of estimates, ABias, MSE, and MRE for (6§ = 2, A\ = 3) (Table 7).

Table 9: Model comparison for Dataset 2 (Shrimp cocktail; n = 18). Lower values indicate better fit.

~ ~

Model 6 A AIC BIC —2log L AICC

Two-parameter L1 0.0631 0.00060 150.6880 152.4687 146.6880 151.4880
Gamma-Lindley 0.0626 12.5067 150.7721 152.5528 146.7721 151.5721
Quasi—Lindley 0.0972 0.00053 242.5376 244.3184 238.5376 243.3376
New Quasi—Lindley 0.0628 5.8380 150.6993 152.4800 146.6993 151.4993
Two-parameter L2 0.0629 139774 150.7675 152.5483 146.7675 151.5675
Power X—Lindley 0.9595 0.2378 221.0102 222.7909 217.0102 221.8102

NTPQED 0.0968 0.00083 143.0504 144.8311 139.0504 143.8504
Power Z-Lindley 0.1360 0.6789 174.8320 176.6128 170.8320 175.6320
Chen 0.5659 0.00054 118.1665 119.9473 114.1665 118.9665
NTPWLD 0.0045 13.0987 76.8308  78.6116  72.8308  77.6308

selves establish statistical significance or guarantee enhanced predictive accuracy. A more compre-
hensive evaluation—potentially including likelihood-based comparisons (when valid), goodness-of-fit
tests, residual diagnostics, or out-of-sample validation—would provide stronger evidence of compara-
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tive superiority. Accordingly, the conclusions drawn here should be regarded as suggestive rather than
definitive, reflecting improvements under selected model comparison measures rather than formal sta-

tistical dominance.

7 Conclusion and Perspectives

We proposed a novel two-parameter lifetime model, the New Two-Parameter Weibull-Lindley Distribu-
tion NTPWLD), derived via a transformation of the survival function of a one-parameter base law. The
NTPWLD exhibits desirable properties—unimodality, light tails, and flexible hazard shapes (increasing,
decreasing, and bathtub)—that make it well suited to complex lifetime and reliability data.

We rigorously studied its main probabilistic and inferential features, including the probability den-
sity and cumulative distribution functions, survival and hazard functions, Shannon entropy, and mean
deviations. Several estimation strategies (MLE, AD, CVM, MPS, and LSE) were investigated through
an extensive simulation study; among them, MLE consistently provided the most accurate and stable per-
formance across sample sizes. To address parameter uncertainty, we further developed a fuzzy reliability
framework using Zadeh’s extension principle and a-cuts.

Applications to two real datasets demonstrated that the NTPWLD achieves uniformly smaller infor-
mation criteria (AIC, BIC, —2log L, and AICC) than well-known competitors (e.g., Gamma—Lindley,
Chen, Power—Lindley families), confirming its empirical competitiveness. In addition, we incorporated
theoretical connections with Bonferroni and Lorenz curves and provided estimation and inference for the
reliability function, thereby enriching the interpretability of the model in reliability and survival contexts.

Perspectives. This work suggests several avenues for future research:

* Bayesian inference. Develop conjugate/semiconjugate priors and computational strategies (e.g.,
HMC or variational Bayes) for small-sample or noisy settings.

» Censoring and truncation. Extend estimation and inference to right/left/interval censoring and
truncation, common in survival studies and reliability testing.

* Regression frameworks. Use the NTPWLD as a baseline in parametric survival regression (e.g.,
AFT models) and as a link in generalized accelerated models with covariates.

* Dependence structures. Construct multivariate versions via copulas or shared frailty to model
dependent lifetimes in systems and biomedical applications.

* Diagnostics and inequality measures. Systematize Bonferroni/Lorenz-based diagnostics for
model checking and for characterizing tail/inequality features relevant to reliability.

Overall, the NTPWLD offers a flexible, tractable, and empirically strong alternative for lifetime data
analysis—both under precise and imprecise (fuzzy) information—opening the door to robust method-
ological and applied developments.
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