Received: xxx Accepted: xxx Published: xxx.

DOI. XXXXXXX

Research Article

'Department of Mathematics,
Universitas Sumatera Utara,
Medan, 20155, Indonesia,

“Department of Data Science,
Institut Teknologi Sumatera,

Lampung, 35365, Indonesia.

DA< Correspondence:
IFidelis Nofertinus Zai
I[E-mail:

fidelis@usu.ac.id

How to Cite

Zai F.N., Kurnia R., Nainggolan
J.P. (2026).
physics informed neural net-

“Exploration of

work for solving optimal track-
ing control problems”, Control
and Optimization in Applied
Mathematics, 11(-): 1-22. DOI:

Volume xxx, Issue xxx, p.p.

10.30473/coam.2025.75192.1324.

1-22: xxx

Open

Control and Optimization in ~ *““***

Applied Mathematics - COAM

Exploration of Physics Informed Neural Networkfor Solving Opti-
mal Tracking Control Problems

Fidelis Nofertinus Zai'l<", Rian Kurnia 2, Juan Prihanda Naifggolan'

Abstract. In this study, we examine solutions to Optimal Tracking
Control (OTC) problems for both Linear Quadratic (LQ) and nonlinear
systems.  Classical approaches to OTC rely on formulating and
solving the Hamilton-Jacobi-Bellman (HJB) equation, which typically
requires numerical solutions of the state, co-state, and stationary
equations using the forward-backward method. Such methods often
involve intricate mathematical analysis and substantial computational
effort. To address these challenges, we explored the use of Physics
Informed Neural Networks (PINN) as an alternative framework for
solving OTC problems. The PINN approach is implemented by
constructing a problem-specific loss function that directly incorporates
This method is

comparatively simpler and more flexible to implement. The perfor-

the governing dynamics and control objectives.

mance of PINNSs is evaluated through quantitative error analysis and
benchmarked against the classical Runge-Kutta (RK) method. A
detailed comparison is presented using tabulated error metrics and
time-domain plots of absolute errors. Numerical results demonstrate
that PINNs achieve lower approximation errors than Runge-Kutta
method for both LQ and nonlinear tracking problems, indicating their
effectiveness as a viable alternative solution strategy for OTC problems.
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1 Introduction

Optimal Tracking Control (OTC) aims to design control inputs that force a dynamical system to
follow a prescribed reference trajectory over a finite time horizon while minimizing a specified
performance index [5, 13]. OTC has been extensively studied and successfully applied in a
wide range of industrial and engineering systems, including optimal control schemes for coal
gasification processes [21] and trajectory tracking of hypersonic vehicles [16].

Traditional approaches to solving OTC problems often rely/on plant inversion and system|
linearization via series expansions [8, 19]. While effective in certain settings, these methods
typically require intricate mathematical analysis, particularly for nonlinear systems [5, 20]. A
major challenge arises from the need to formulate and solve the -Hamilton—Jacobi—Bellman|
(HJB) equation, which is central to optimal control theory [4; 13]. To address the intractability,
of closed-form solutions, various numerical approximation techniques have been developed,
such as the Successive Galerkin Approximation (SGA) method [3].

Several alternative strategies have been proposed to circumvent the explicit solution of the
HJB equation. For instance, the backstepping method has been applied to bilinear control sys-
tems in normal form [17]. More recently, Ahmadin et al. (2024) designed asymptotic track-
ing controllers for minimum non-phase bilinear systems by representing the tracking states as
Fourier series and determining the corresponding coefficients via Particle Swarm Optimization
(PSO) [1]. In parallel, Artificial Neural Networks (ANNs) have emerged as powerful tools
for solving complex problems across diverse fields, including computer vision and natural lan-
guage processing. Their application to control and tracking problems has gained increasing
attention due to their strong approximation capabilities.

The integration of physical knowledge into neural networks has led to the development
of Physics-Informed Neural Networks (PINNs), which have proven effective in solving partial
differential equations (PDEs) and related inverse problems [10]. PINNs extend traditional ANN|
frameworks by/embedding governing equations, boundary conditions, and initial conditions
directly into the loss function. This approach has demonstrated considerable success in handling
complex and nonlinear PDEs across engineering, physics, and finance [2]. Notable applications
include temperature dynamics modeling in Proton Exchange Membrane (PEM) electrolysis
systems [22] and the solution of boundary layer problems, where PINN results have been shown|
to closely match analytical solutions [ 18]. Motivated by these developments, this paper explores
the application of PINNs to OTC problems by constructing tailored loss functions that encode
system dynamics and tracking objectives.

Unlike classical numerical schemes that require explicit stability conditions—such as time-
step constraints or Courant—Friedrichs—Lewy (CFL) conditions—PINN stability is governed by

the formulation of the loss function, the selection of collocation points, and the optimization

strategy employed during training. Recent studies suggest that, with appropriate configura-
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tions, PINNs can achieve asymptotic stability and convergence even for stiff systems [9]. Fur-
thermore, structure-preserving PINN formulations enable the retention of fundamental system
properties, such as Lyapunov stability and energy conservation, ensuring physically consistent
solutions [6]. Nevertheless, a comprehensive theoretical framework for PINN stability and con-
vergence remains an open research problem, particularly in the context of control and tracking

applications.

Recent advancements in PINN research have introduced operator-learning frameworks,
most notably Deep Operator Networks (DeepONets), which exhibit superior performance in
learning high-dimensional operator mappings. When combined with Long Short-Term Mem-
ory (LSTM) architectures, DeepONets demonstrate enhanced-accuracy-in modeling time-
dependent systems, even with limited training data [15]. Physics<Informed DeepONets have
been successfully employed in practical applications, such as constructing digital twins capa-
ble of long-term prediction without explicit knowledge of evolving initial conditions [7]. These
developments significantly extend the representational power of PINNs in capturing nonlinear|
dynamical behaviors.

In parallel, Adaptive Dynamic Programming (ADP) has been widely used to address OTC
problems by approximating the solution of the HIB equation through value and policy itera-
tion [16, 17, 21]. The conceptual similarity between ADP and PINN—both of which rely on
minimizing an objective function~—suggests promising opportunities for methodological inte-
gration. Recent studies have explored adaptive PINN variants, such as Adaptive-Weight PINNs
and Adaptive-Loss PINNs, which enhance training stability and predictive accuracy [11, 23],
Moreover, the integration of PINNs into Model Predictive Control (MPC) frameworks has been|
shown to improve computational efficiency and tracking performance in nonlinear systems|
[14].

Given the analytical complexity of existing OTC solution methods, this study investigates
the use of PINNs/as an alternative framework for solving OTC problems. By eliminating the
need for explicit analytical derivations, PINNs offer a more flexible and accessible approach to
control design. The performance of PINNs with various activation functions is systematically|
evaluated based on tracking errormetrics, providing insight into their effectiveness and robust-
ness. This exploration aims to contribute practical and computationally efficient alternatives
for solving OTC problems in real-world applications.

The remainder of this paper is organized as follows. Section 2 presents the classical solution
of OTC problems using Hamiltonian-based methods. Section 3 introduces the PINN-based
formulation and details the construction of the associated loss functions. Numerical examples

and comparative results between traditional methods and PINNs are discussed in Section 4.

Finally, conclusions and directions for future research are provided in Section 5
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2 Problem Formulation

An OTC problems can be formulated as follows.

Suppose the plant dynamic given as follows [13]:
&= f(z,u), (1)

T
where z(t) = |z1(t) x2(t) ... :L'n(t):| € R", x( is an initjal given value, u(t) € R™ is

control function, and

T
flz,u) = [f1(36,u) folz,u) ... fn(x,u)} c R™.

The main objective is to determine the optimal control u(%) € R™ such that the output

y(t) = Cu(t),

remain close to the pre-determined path r(¢) given on time-interval [to, 7] and minimize the

performance index (cost function) [13]:

J(z,u) = 3 (TCx(T) —+(T)" P (Ce(T)~r(T)) +
L1 [(Ga) - )" Q(Cott) - r) +u Ru®)at, P

to
where P,(Q > 0, and R > 0 are symmetrics [13], C, P,Q € R™™", R € R"™*"™ and r(t) =
T
rt) rat) o ()]
From dynamic plant in Equation (1) and performance index in Equation (2), we obtain the
following Hamiltonian equation [13],

1

H=
2

(Ca@y=n@)" Q(Ca(t) - r(V) + u(t) Ru(t)] + T f(z,w). ()

From Equation (3), we have state system, costate system, and stationary condition as follows,

State system:

&= f(x,u).

Costate system:
: afr\"
“A = <> A+ CTQCz —CTQr.
oz
Stationary condition:

A+ Ru.

o
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with boundary condition x(tg), A(T) = CT P (Cx(T) — r(T)), and

roft  0f1 9f17 roft 0f1 9f17

dx1 dxy Oz ouy Buy  Ouy,

0fs 0f2 dfs 0fs 0f2 P
of |0z, dzy 9z, of _|ouw duz  Oum
o | . S | ou

Ofn  Ofn O fn Ofn  9fn 0 frn

5 e B R o

Therefore, the optimal control is given by

u(t) = —R™! (gi)T)\(t). 4)

For nonlinear systems f(z, u), the partial derivatives a—i and ?g produce a nonlinear sys-
tem of ODEs that are paired with each other. Therefore, analytical solutions to nonlinear ODE
systems cannot be found. Thus, the solution must be done entirely with numerical methods.
The numerical approach is sensitive to'discretization and time step size, so alternatives such as
PINN become relevant for directly solving nonlinear optimal tracking problems.

If the dynamic plant is of linear form; then the above problem is called the Linear Quadratic

(LQ) Tracking Problem. In this case, Equation (1) can be written as
i = Ax + Bu, (5)
and costate equation can be written as:
“A=ATA+CTQCz — CTQr, (6)

withuw = —R™!BTXand A € R™", B € R"*™, and u € R™ [13]. To obtain the solution of
LQ problem, the sweep method is applied by introducing additional term v(t) so that we have:

i =(A— BK(t))z+ BR'BTv, (7)

with,
K@) = R 'BTS(),
-8 = ATS+SA—-SBR'BTS+CTQcC,
(A—BEK)" v+ CTQr,
u = —Kz+ R 1BTy.

[
.
Il

The above system of equations cannot be solved analytically so that it will be solved numerically,
with boundary conditions S(T) = CTPC and v(T) = CT Pr(T) [13]
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3 Tracking Problem Using PINNs

The PINNs extend traditional ANNs by embedding the governing differential equations di-
rectly into the network’s loss function [2, 12]. This integration enables the network to respect
the underlying system dynamics during training. To address the tracking problem, the system

dynamics given in (1) are reformulated as a set of residual equations:

- fl (.’B, U) - 07
j)g — fQ(J), ’LL) = 0,
i3 — f3(z,u) = 0, (8)
- fn(xu U) - 07
subject to the initial conditions z;(to) = x, fori =1,2,...,n

The loss function associated with the system dynamics is defined using the mean squared
error (MSE) of the differential equation residuals;

LDE = 57 ZZ <de Y fi(tj)>2’ ©)

i=1j=1
where N; denotes the number/of discrete time collocation points. Without loss of generality,
the initial time is set to g = 0.

In addition, the loss function corresponding to the initial conditions is expressed as:

Lic = Zw —ah)?, (10)

where z;(0)/represents the initial value of the i-th state predicted by the PINN, and z},
denotes the prescribed initial condition. This term enforces consistency between the neural
network solution and the known initial state of the dynamical system.

The control objective is to determine a tracking control input » such that system output the
y = Cz follows a desired reference trajectory r(¢) by minimizing a prescribed cost functional
J. Using the PINN framework, the loss tracking function is formulated as

n 2
Liracking = ZZ (Z cikwr(ty) — i () )) , (11)

zl]l

where /V; denotes the number of temporal collocation points, and ¢;;; are the entries of the output

matrix C.

In addition, the cost-related loss term is defined as
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T
Leost = /g(az,u,t)dt, (12)

to

with

9w, u,t) = (Ca(t) — ()" Q (Ca(t) = r(t)) +u” Ru,

which corresponds to the performance index given in Equation (2).

Within the PINN implementation, the integral term in (12) is evaluated numerically at each
training iteration. The optimization process proceeds iteratively until the total loss converges
to a sufficiently small value, indicating that an optimal or near-optimal control'solution has been

obtained.

Finally, based on the loss components defined in Equations (9)—(12), the total loss function|

is expressed as

/CTotal = 'CDE + £IC + 'CTracking + /CC’ost' (13)

This total loss function is minimized during the.training process to solve the optimal tracking
control problems using the PINN framework.

4 Comparative Results

In this section, OTC problems are solved using both classical numerical methods and the PINN|
approach. Specifically, the Forward—Backward Runge—Kutta method [4] is employed as a tra-
ditional benchmark, and the results are compared with those obtained using PINNs. The OTC
problems under considerationinclude linear systems, LQ tracking problems, and nonlinear dy-
namical systems. Within the PINN framework, the temporal collocation points ¢; are uniformly|
distributed over the prescribed time horizon. These points are used to evaluate the residuals of]
the governing differential equations.” At each collocation point, the neural network is trained
to satisfy the system dynamics by minimizing the differential equation loss term Lpg. In ad-
dition to enforcing the dynamic constraints, the training process simultaneously minimizes the
loss terms associated with the initial conditions, tracking objectives, and performance indices.
Time derivatives of the state variables, such as 1 and drs are computed using automatic
differentiation implemented through the TensorFlow library in the Python programming envi-
ronment. This approach enables the accurate evaluation of derivatives of the network outputs
without relying on finite-difference approximations. Consequently, the PINN training proce-

dure enforces the initial conditions, system dynamics, and tracking objectives consistently over

the entire time domain
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All numerical experiments were conducted on a computing platform with the following
specifications: AMD Ryzen 5 6600A processor with Radeon Graphics (3.3 GHz), 12 CPU
cores, and 6 GB of RAM.

4.1 Linear Quadratic Tracking Problem

Consider the following dynamic plant [13]:

d:L’l dIQ

hatat e 14
pralal M 2x9 + u, (14)

with initial conditions z1(0) = 1 and x2(0) = 0. The objective inthis subsection is to design
a tracking control input u(¢) such that the state variable @ (¢) follows a prescribed reference

trajectory 1 (t) over the time interval [0, 10], while minimizing the quadratic performance index

1 10
J:2/0 (227 + 254 u?) dt.

In this formulation, the control input influences the system dynamics so as to enforce track-

ing of the first state variable only. Accordingly, the reference signal is defined as

rl(t)] |

r(t) = [ 0

Two types of reference trajectories are considered for ;1 (¢): a Heaviside step function and a
sinusoidal function.

To illustrate the role of the tracking control input u(t), the system defined in Equation (14) is
first simulated without the control term. The uncontrolled system response is shown in Figure 1,

which serves as a baseline for comparison with the controlled tracking results.

1.0

0.8 1

0.6
— Xt}

— Xt}

x(t)

0.4 4

0.2

0.0

0 3 4 6 ) 10
Figure 1: Simulation of system of Equations (14) without control variable.

In Figure 1, it can be seen that the system without control variable has a constant solutions,

namely z1(¢) = 1 and 22(#) = 0. Based on simulation without control, it can be conclude
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that the control variable plays a significant role in tracking, especially in tracking nonlinear
functions such as sinusoidal functions. The construction of the control variable in this tracking
problem is solved using a general method and by employing PINN.

In the traditional method, the Hamiltonian equation is obtained as follows.

H = % [(Cx(t) — ) Q (Cz(t) — (1)) + Ru(t)?| + AT (Az + Bu),

such that from Equation (7) we have

& = (A—BK(t))xz+ BR'BTv,
K(t) = R 'BTS(t),

-8 = ATS+4+SA—-SBR'BTS +CTQC, (15)
—b = (A-BK) v+CTQr,
v = —Kzr+ R 'BTv.
1 1
with A = 0 ]732 0 702 0]5Q2l2 0 ,R:[l},andr(t):[rl(t)].
0 —2 1 0 0 01 0

The boundary conditions are specified as

1040

0 0

S(T) = [ .

:I ) U(T) =

10 rl(t)]

The system of differential equations in (15) is solved numerically using a forward—backward
Runge—Kutta scheme, where the state equation & isintegrated forward in time, while the adjoint
equations S and © are integrated backward.

Alternatively, the tracking problem associated with the system (14) is addressed using
Physics-Informed Neural Networks (PINNs). Based on equations (9)—(12), the total loss func-
tion employed in the PINN framework is defined as:

2
Nii (425 4 2000t - ute)
Lic = (21(0) = 1)* + (x2(0) — 0)*,
ﬁtracking = ]\1rt:t1 (1(t5) _""l(tj))Qa
Lot = ] (2030 +a30) + (0t

The results obtained using the conventional numerical method are compared with those

generated by the PINN approach. Simulations are conducted with Ny = 1000, five hidden|

layers, 128 neurons per layer, the Adam optimizer, a learning rate of 0.001, and 10,000 training




10 Exploration of PINN for Solving Optimal Tracking Control ...

epochs. The solution of the OTC problem in (14) is examined under two different scenarios
determined by the reference signal 1 (¢).

Case 1: In this case, the reference trajectory is a Heaviside step function defined by

1, for t>1
ri(t)=41/2, for t=1
0, for ¢t < 1.

To assess the tracking performance, a quantitative error analysis.is carried out by comparing
the solutions obtained via the Runge—Kutta (RK) and PINN methods. The PINN is implemented
using seven different activation functions to investigate the influence of activation choice on|
solution accuracy. Under the same hardware specifications;the resulting error metrics for each|

method are summarized in Table 1.

Table 1: Runge—Kutta and PINN tracking errors in Case 1

lell2

Method L . ||€]|2 max |e t0.05
tracking B

tanh(-) 0.02012 0.44879  -0:14951 0.97782 1.89

ReLU(:) 0.04613 | 0.67958 ©0.22640 0.94986 233.32
Sigmoid(-) / 0.02683. < 0.49707  0.16560 0.97239  523.50
PINN ELU(") 0.01914 ~ 0.43776  0.14583  0.99054 1.22
SELU(-) 0.03309  0.57553  0.19173  0.95645 1181.82
Softplus(-)  0.02164  0.46542  0.15505 0.97918 1304.86
SiLU(+) 0.01834 ., 0.42850  0.14275 0.99555 304.33

Runge-Kutta 0.09768  31.28516 10.42259 1.00105 -

In Table 1, the tracking error is defined as the deviation between the numerical solution or
model prediction and the desired reference signal, namely e(t) = z1(¢) — r(t). The overall

tracking performance is further quantified using the L?-norm of the error,

el = ( e )

To evaluate the relative magnitude of the tracking error, the ratio ||e||2/||7||2 is also reported. In

1/2

addition, max |e| denotes the maximum absolute error over the entire time interval, while ¢ o5
represents the time (in seconds) required for the system to reduce the tracking loss Etracking

below 5%
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Based on the error metrics presented in Table 1, the smallest value of ﬁtracking is achieved
using the SiLU activation function. Moreover, the PINN-based approach yields lower tracking
loss values than the RK method, demonstrating the effectiveness of PINNs in solving linear
optimal tracking control problems. The tracking responses obtained using the RK method and
the PINN with the SiLU activation function are depicted in Figures 2 and 3.

x1(t) and ri(t)

1.0

—— PINN
1.0 T~ | — RK
0.8 0.8
0.6 z
— < 0.6
f= 1
< 04 =
< 04
0.2 -
0.0 — PINN 0.2
— RK
-0.2 — n(t) 00
0 2 4 6 8 10 o 2 4 6 8 10
t t
Figure 2: Tracking performance of z1(t) (left) and absolute error along the domain (right).
X2(t)
2 10
1 ol
0 -10
— -1 T —20
= 3
<2 -30
-40
_3 B
-50
—a] — PINN — PINN
— RK —60+ — RK
0 2 4 6 8 10 0 2 4 6 8 10

Figure 3: Simulation.of z(¢) and u(t) in Case 1.

Based on the simulation results obtained, it can be seen that both methods are capable of]
solving the OTCproblem. From the absolute error in Figure 2, it is obtained that with the PINN|
method, z1(¢) can approach or trackr; (¢) faster than using RK. In the RK method, z1(¢) can
track r;(¢) with precision when ¢ > 2, so that the effect of u(¢) in the tracking process is not
very noticeable. Furthermore, in Figure 3, it is obtained that when ¢ > 2, x2(¢) and u(t) tend to
zero. This is because when ¢ > 0, the tracking objective has been achieved, so that the control
variable tends to zero, and x2(t) behaves the same as its analytical solution.

Case 2: In this case, the function being tracked is sinusoidal function 7 (¢) = sint¢.
With the same hardware specifications as Case 1, the error comparison between the RK and
PINN methods is presented in Table 2 below.

The error summary results in Table 2 show that PINN with the SiLU activation function has

the lowest Ly 1.
|98 a\/l\1115

value compared to the others. The results of tracking case 2 based on the
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Table 2: Runge—Kutta and PINN tracking errors in Case 2

lell2
Method L : lle||2 max |e|  toos
tracking 7]
tanh(+) 0.01591  0.39907  0.18266 0.97396 101.64

ReLU(+) 0.02402  0.49035 0.22444 097158 48.06
Sigmoid(-)  0.01916  0.43801  0.20048 0.97298 163.36
PINN ELU(") 0.01448  0.38077  0.17428 0.97517 76.36
SELU(") 0.02430  0.49321  0.22575- 098943 171.46
Softplus(-)  0.01847  0.43001  0.19681 0.97464 116.39
SiLU(+) 0.01063  0.32623  0.14932 0.98633 38.16

Runge—Kutta 0.58736  76.71629.-35.11401 1.99999 —

RK method and the PINN method with the SiLU activation function are illustrated in Figures
4 and 5.

x1(t) and ri(t)

1.0 — PINN
— RK

1.00
0.754
0.501
0.254
0.00

x1(t)
[xa(t) = (0|

—0.25
—0.50
—0.75

—1.00

Figure 4: Tracking performance of 1 (¢) (left) and absolute error along the domain (right).

x2(t)
2 10
1 0
0 -10
~ -1 = 20
S )
:(& 3
- -30
—40
-3
-50
-4 —— PINN —— PINN
— RK —-60 — RK
0 2 4 6 8 10 0 2 4 6 38 10

Figure 5: Simulation of z2(¢) and u(¢) in Case 2.
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The simulation results in Figure 4 show that x1 (¢) using PINN is closer to 71 (¢) = sin ¢ than
the RK method. The superiority of PINN is further demonstrated by the absolute error results
obtained, where when using PINN the absolute error value approaches zero throughout the
domain. We suspect that the shortcomings of the RK method are due to the forward-backward
numerical scheme, which affects the stability or accuracy of the solution [4]. Furthermore, in|
Figure 5, it can be observed that x2(t) and u(t) change over time. This is due to the fact that

the values of x5 (¢) and u(t) greatly contribute to the tracking process.

4.2 LQ problem for tracking multiple functions

In this section, a modification of the tracking objective is made where a control variable is
added, so that the dynamic plant in the System (14) becomes

diCl
— = X2 Fu,
4 (16)
i +u
dt .

This problem aims to ensure that 25 (¢) should track 7 (¢) and x2(¢) should track 72(t), subject

to minimizing the cost function .J(x, w), where

2, for t>1 1/2, for t>1
r(t) =41, for.t=1, ro(t) =q1/4, for t=1,
0, for t<1 0, for t<1

and

10
1
J(x,u) = 2/(2x%+x§+u% + u3) dt.
0

Therefore, in the general method we have

1 1 1
O,C’: 0 O,S(T)—
01 01

01
On the other hand, using the PINN, the loss function is obtained as follows:

B= R =

10

|
=
S o
o

] ydanv(T) =

10 T1 (t)
1079(t) |
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¢ (M ) —u1<tj>)2+

FDE B ﬁtjzl dt
1St ((daa(ty) 2
ﬁtjzl < dt + 2xa(t;) — ua(ly) |
Lic = (21(0) = 1)” + (x2(0) — 0)°,
1 Ny 2 1 Nt 9
Lracking = =) (21(t5) = ri(t5)) +ﬁt§1 (wa(ty) — ra(ty))”,
10
Leost =/ (223 (t;) + 23(t;) + w3 (t5) + ud(t7))dt.

Similar to Subsection 4.1, a comparison of the RK and the PINN errors with various acti-
vation functions was also performed. A summary of the errorcalculation results is provided in
Table 3.

Table 3: Multi-function tracking errors for Runge—Kutta and PINN

Method L? error RE max |e| t0.05

Ltracking

tanh(-) 0.00671 030705 0.07775 1.23010 144.75
ReLU(") 0.01544 046383 0.11656 1.28542 42.35
Sigmoid(-)  0.00831  0.33620 0.08220 1.23113 734.63
PINN ELU(") 0.01493 | 0.45479 0.11350 1.26488 300.89
SELU(-) 0.02764 .. 0.62826 0.16210 1.32551 106.34
Softplus(-)  0.01116 ~0.38884 0.09471 1.23514 82.20
SiLU(-) 0.00458  0.25376 0.06430 1.21088 85.45

Runge—Kutta 0.25041  2.23448 0.96626 1.55921 -

In Table 3, the values in the .L? error column are the sum of the L? tracking errors, namely

llei]l2 + |le2||2> where.eq (t) = x1(€) — r1(¢t) and eo(t) = x2(t) — r2(t). The RE column shows

lle]]2 N llezl|2
rill2 — [lrell2

maximum combined error calculated with max |e; | + max |ea].

the combined relative error calculated with . Then, the max, column shows the

From the error summary results in Table 3, PINN with the SiLU activation function has the
lowest ﬁtracking value compared to the others. Therefore, the tracking results obtained based
on the RK method and the PINN method with the SiLLU activation function are illustrated in
Figures 6 and 7.

From the results of tracking simulations and absolute errors throughout the domain in Fig-
ures 6 and 7, it can be seen that tracking performance using PINN is better than traditional

methods. This is also supported by the error summary results in Table 3, where almost all types

of PINN activation functions have lower errors than the RK method. Although 24 (£) using R
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x1(t) and ry(t)

— PINN
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Figure 6: Tracking performance of z1(t) (left) and absolute error along the domain (right).
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Figure 7: Tracking performance of z2(¢) (left) and absolute error along the domain (right).

is able to track 7 (¢) for a certain time, for larger values of ¢, z:1 (¢) fails to follow the trajectory|
of r1(t). Meanwhile, in Figure 7, x2(t) using RK cannot track r5(t). The values of the control
variables over time are given in Figure 8.

304
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Figure 8: Simulation of w1 () and u2(t) in the System (16).

From Figure 8, it can be seen that when ¢ > 1, the solution us(t) approaches 1. Therefore,|
for t > 1, the second equation in the System (16) can be written as &2 = 2x9 + 1, which has an
analytical solution z2(t) = —3e~2'+ 2. Ast — 0o, z2(t) approaches 3, which corresponds to

the value of ro(¢). Furthermore, for £ > 1, 14 (#) ~ 0.4 based on the analvtical solution z:2(%)
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the first equation in the System (16) become 41 ~ 0. This indicates that for ¢ > 1, 1 (¢) does

not change over time.

4.3 Nonlinear Tracking Problem

Consider the nonlinear dynamical system

dﬂ?l
= X2,
dt
d.%’g + + (17)
— = —X r1x u
dt 1 142 ;

subject to the initial conditions z1(0) = 1 and z2(0) = 0..The objective is to design a control
input u(t) such that the state variable x;(t) tracks the reference signal 1 (¢) = sint over the
time interval [0, 7']. This is achieved by minimizing the performance index

_ 10 2 2 2
J—/ (23(t) +EB (1) BB @) dt.
0

As demonstrated in Subsections 4.1.and 4.2, the PINN framework exhibits superior perfor-
mance in tracking problems when compared to the RK method, particularly in terms of accu-
racy and stability. In the present nonlinear case, closed-form analytical solutions for the state
and co-state equations are not available. Moreover, the RK method relies heavily on time dis-
cretization and is sensitive to step-size selection.-These limitations motivate the exclusive use
of the PINN approach for solving the nonlinear optimal tracking control problem.

The nonlinear tracking problem is addressed using a PINN with the following loss compo-

nents:
LpE = Nit;: (da:;ifj) - $2(tj)>2 +
5 2 (42 an(t) - ea()aalt) - )
Lic = (21(0) = 1)* + (22(0) - 0)?,
Ciacking = 77 25, (11t) = ()"
Lecost = 2"0 (z3(t5) + 23(t;) + u(t;))dt.

To illustrate the role of the control input, the uncontrolled system dynamics corresponding
to (17) are first simulated by setting u(¢) = 0. The resulting behavior is shown in Figure 9,

where it is evident that the state x;(t) fails to follow the reference signal in the absence of

control
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Since this section focuses exclusively on the PINN-based solution, Table 4 summarizes the
tracking error metrics obtained using different activation functions. Among all tested activa-

tions, the PINN with the SiLU activation function achieves the lowest tracking loss Etracking'

Consequently, the corresponding tracking results are presented in Figures 10 and 11.

Table 4: Nonlinear system tracking error

lell2

Method L : llell2 max |e|  too5
tracking 7]/

tanh(-) 0.01396  0.37386 0.17112 "0.98046 27.14

PINN

ReLU(+) 0.02324  0.48239 0.22079~. 0.96565- 49.68
Sigmoid(-)  0.01944  0.44120 0.20194 <0.97321 191.33
ELU(+) 0.01474  0.38417 0.17584 0.97766 22.44
SELU(") 0.02754  0.52509 / 0.24034 %, 0.95613  120.22
Softplus(-)  0.02122  0.46096 *0.21099 - 0.97013  29.90
SiLU(+) 0.01277  0.35756 0.16366 0.98335 32.77

x(t)

Figure 9: Simulation of system of Equations (17) without control variable.
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Figure 10: Tracking performance of 21 (¢) (left) and absolute error along the domain (right).
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Figure 11: Simulation of z2(¢) and u(¢) in nonlinear tracking.

As shown in Figure 10, the state =1 (¢) produced by the PINNaccurately tracks the reference
signal 1 (t) = sint. A comparison with the uncontrolled case in Figure 9 clearly demonstrates
the essential role of the control input u(¢) in achieving the tracking objective. The effective-
ness of the PINN approach is further confirmed by the‘absolute tracking error, which remaing
close to zero throughout the time domain. Figure 11 illustrates the evolution of x2(¢) and the
corresponding control input u(¢). When x2 (%) is negative, the state x;(¢) decreases, and when
xo(t) is positive, x1(t) increases, consistent with the first equation of the system dynamics.
Moreover, z2(t) exhibits oscillatory behavior resembling a sinusoidal waveform, reflecting it

coupling with z (), which closely follows the sinusoidal reference trajectory.

5 Conclusion

This paper explores the application of Physics-Informed Neural Networks (PINNs) to the solu-
tion of optimal tracking control (OTC) problems. PINNs with various activation functions are
examined, and the results demonstrate that all considered activation choices are capable of suc-
cessfully solving tracking problems in both linear (Linear Quadratic) and nonlinear dynamical
systems. Among them, the PINN.employing the SiLU activation function consistently achieves
the lowest tracking errors, indicating superior performance relative to other activation functions.
In terms of accuracy, the PINN-based approach is shown to construct control inputs that track
the desired reference signal with higher precision than the conventional Runge—Kutta (RK)
method. Moreover, the PINN framework enables the tracking problem to be solved without
requiring elaborate analytical derivations, which represents a practical advantage in complex
control settings. However, PINN-based simulations generally incur significantly higher com-
putational costs compared to traditional numerical methods, resulting in longer execution times.

These findings highlight the importance of hardware capabilities when employing PINNs, as

advanced computational resources allow for larger network architectures, increased numbers
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of neurons per layer, and extended training epochs, thereby improving solution quality and
efficiency. From a theoretical perspective, rigorous results on the stability and convergence
of PINNSs are not yet fully established, indicating a need for further analytical investigation,
Although PINNSs constitute a promising alternative for solving OTC problems, their practical
applicability requires further validation, particularly in real-world industrial tracking scenarios.
Future research may focus on hybrid frameworks that combine PINNs with established control
methodologies, such as Model Predictive Control (MPC), the Theory of Functional Connec-
tions (TFC), or adaptive loss-balancing strategies, to enhance performance and efficiency in

nonlinear control applications.
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