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Abstract. This study develops a mathematically informed optimization
framework for decision-making in reverse supply chain management,
with an application to Apple’s MacBook product line. The proposed
framework integrates Failure Mode and Effects Analysis (FMEA)
with deep learning, based sentiment analysis in a multi-stage structure
designed to quantify risk factors and predict consumer-driven outcomes.
The dataset consists of 91 days of Twitter user feedback on Apple
notebooks, processed using supervised learning algorithms to extract
sentiment scores and thematic indicators of product performance.
The analysis identifies “power and battery” and “storage” as the most
critical components contributing to user dissatisfaction and elevated
risk severity. These data-driven insights are incorporated into an
optimization model that supports decisions on product recycling,
refurbishment, and reuse. The hybrid framework enhances decision
stability and accuracy compared with conventional reverse logistics
models, while improving operational efficiency and environmental
performance. The results demonstrate the model’s suitability as a
scalable, machine-learning-supported optimization tool for reverse
supply chain systems.
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1 Introduction

Over recent decades, increasing global competition and rapid fluctuations in market demand
have compelled organizations to adopt integrated management strategies across the entire sup-
ply chain, from raw material procurement to product delivery and post-sale services, to maintain|
and enhance their competitive position [14, 29, 32]. As a network of suppliers, manufacturers,
distributors, intermediaries, and customers, the supply chain plays a central role in value cre-
ation. Effective coordination within this network is widely recognized as a key mechanism for|
cost minimization, efficiency enhancement, and service quality improvement [38].

In contrast to forward logistics, Reverse Supply Chain (RSC) management governs the
movement of products in the opposite direction, beginning with-the consumer and extending
back to the manufacturer. Its primary objectives include reeycling, repairing, remanufacturing,
and managing returned or end-of-life products [9]. The-importance of RSC activities has in-
creased substantially, particularly in industrialized countries such as the United States, where
approximately 20% of purchased goods are returned to retailers in some form [15]. This high
return rate, combined with tightening environmental regulations obligating companies to re-
claim their own waste, has transformed RSC optimization into a strategic imperative. Effi-
cient reverse logistics can significantly reduce operational costs, prevent regulatory penalties,
enhance resource recovery, and improve profit margins [11, 15, 47]. Nevertheless, firms con-
tinue to struggle with substantial challenges, including escalating costs associated with returned
products, the need for flexible return policies to sustain customer loyalty, and the operational
complexity of managing diverse product recovery pathways.

Although integrated supply chain management has received substantial attention as a means
to deliver fast, reliable, and cost-effective services, a persistent gap remains in understanding
consumer-driven factors that lead to product returns. Conventional approaches, such as in-store
feedback, questionnaires, or interviews, remain limited in scope and often fail to provide action-
able insights into the underlying causes of customer dissatisfaction or the systemic weaknesses
that drive returns [14, 29, 32]. Consequently, manufacturers frequently lack a comprehensive
and systematic mechanism for diagnosing failure modes, identifying critical defects, and prior-
itizing corrective actions.

An emerging and highly informative data source for improving RSC decisions is user-
generated content in digital environments. Social media platforms, online reviews, and other
forms of consumer-generated data contain rich information on user experiences, perceived prod-
uct failures, and behavioral responses. When properly analyzed, these sources can reveal hid-
den patterns that are otherwise inaccessible through traditional data collection methods [22].
However, such data are typically high-volume, unstructured, and linguistically complex, neces-

sitating advanced analytical techniques for extracting meaningful insights. Advances in data

mining, natural language processing, and machine learning have made it possible to process
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these large-scale textual datasets and uncover latent consumer perceptions, emerging trends,
and fault indicators [30].

Traditional reverse logistics methodologies often address only isolated components of the
recovery process and are not designed to integrate consumer sentiment with risk assessment,
Similarly, conventional uncertainty analysis tools, such as probabilistic models or basic fuzzy|
methods, face limitations when applied to large, unstructured text data or when required to
combine risk evaluation with qualitative consumer insights. These methods typically fail to
capture the intensity, polarity, or underlying tone of user feedback; leading to incomplete or]
suboptimal decisions. Therefore, there is a need for hybrid analytical frameworks that integrate
deep learning—based sentiment analysis with structured reliability assessment tools.

To address these challenges, this study develops an analytical framework for reverse sup-
ply chain optimization grounded in consumer feedback, employing Failure Mode and Effects
Analysis (FMEA) in combination with deep learning techniques. .The proposed model incor-
porates Recurrent Neural Networks (RNNs) for sentiment analysis to quantify user satisfaction|
and identify critical product weaknesses. These sentiment-based indicators are subsequently,
fused with the risk prioritization metrics of FMEA to construct a data-driven decision-support
mechanism for selecting optimal recovery actions, repair, remanufacturing, resale, recycling,
or safe disposal. This integration enables the formulation.of a consumer-oriented optimization
model aimed at minimizing costs and waste while improving customer satisfaction and over-
all supply chain performance. The principal novelty of this study lies in unifying data-driven
consumer analytics with systematic reliability assessment to create a comprehensive decision-
optimization framework for reverse logistics.

The remainder of this paper is organized as follows. Section 2 reviews the theoretical back-
ground and the relevant literature on reverse supply chain optimization, deep learning methods,
and the FMEA approach. Section 3 presents the proposed hybrid methodology, including data
collection, sentiment analysis. procedures, and the integration of deep learning outputs with
FMEA. Section 4 provides an empirical case study and discusses the results of implementing
the model. Finally, Section 5 summarizes the key findings, implications, limitations, and di-

rections for future research.

2 Literature Review and Theoretical Background

2.1 Supply Chain Management (SCM)

Supply Chain Management (SCM) is a systematic and integrated approach for planning, coor-

dinating, and controlling the flow of materials, information, and financial resources across all

entities within a supply network, from upstream suppliers to end customers. Beyond internal
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operational management, SCM emphasizes inter-organizational coordination to achieve oper-
ational efficiency, rapid market responsiveness, and enhanced customer satisfaction [34]-[41].

A supply chain encompasses all activities and actors involved in transforming raw materials
into finished goods and delivering them to consumers. Effective SCM seeks to minimize costs
while maximizing value creation and service quality, thereby ensuring competitive advantage.

Driven by globalization, technological advances, and increasing market competition, SCM
has evolved into a critical discipline in both industrial and business management. Modern|
SCM extends beyond the physical flow of goods to the management of information and capital,
leveraging technologies such as Enterprise Resource Planning (ERP) systems, the Internet of
Things (IoT), and big data analytics to optimize performance and responsiveness [41].

While the configuration of a supply chain varies across industries and operational models,

it generally includes five fundamental stages [24]:

1. Sourcing: Selection and procurement of raw materials or components.

\®)

. Production: Transformation of raw materials into intermediate or finished products.
3. Assembly: Integration of manufactured components into a final product.

4. Sales and Distribution: Placementof products into markets through appropriate channels.

9,

. Delivery and After-Sales Service: Final handover to customers and provision of post-
purchase support.

These stages form an interconnected network; where the coordination of material, informa-
tion, and financial flows is essential. Mathematical modeling of these flows underpins perfor-
mance optimization and supports data-driven decision-making.

Cost management is a key dimension of SCM, focusing on identifying, analyzing, and con-
trolling costs associated with procurement, production, warehousing, transportation, and dis-
tribution. The total supply chain.cost (SCC) is typically represented as the sum of operational
and logistical expenditures [4, 5, 46, 27]:

SCC = PC +TC + IC + DC, (1)

where PC denotes production cost, TC is transportation cost, IC is inventory holding cost, and
DC indicates distribution and delivery cost.
For performance evaluation, the overall efficiency of a supply chain (SC¥) is commonly
modeled as the ratio of cumulative value added (V 49%¢4) to total chain cost SCF [4, 46]:
VAdded
SCF = : 2
SCC @

These formulations provide a theoretical and mathematical foundation for modeling supply,

chain operations. They also serve as a basis for RSC optimization, allowing integration of]
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consumer feedback, risk assessment, and recovery decision-making into a structured analytical
framework [9, 15, 29, 32, 35, 47].

2.2 Reverse Supply Chain Management (RSCM)

Reverse Supply Chain Management (RSCM) refers to the process of planning, implementing,
and controlling the efficient flow of materials, information, and relatedresources from the point
of consumption back to the point of origin, with the objective of recapturing value or ensuring
environmentally compliant disposal [9].

Unlike forward logistics, which governs the movement of raw materials to end consumers,
reverse logistics involves product returns, remanufacturing, reeycling, reuse, and repair. In
an era of heightened environmental awareness and intensified market competition, RSCM has
emerged as an essential component of modern operations strategy [10].

Formally, the reverse flow in a supply chain can be represented as:
RSC = {(X;,Y;,Z;) | X C,Y; € M, Z; € D}, 3)

where X; denotes the source of returned products (customers), Y; represents intermediate pro-
cessing or remanufacturing nodes,/and Z; indicates the final destination, such as suppliers or
recycling and disposal facilities. /This structured representation supports a closed-loop system,
promoting material recovery and regulatory compliance.

The primary objectives of RSCM include maximizing value recovery from returned prod-
ucts through repair, remanufacturing, or resale; minimizing waste generation and environmen-
tal impact; enhancing customer satisfaction through efficient return and service policies; and
ensuring compliance with environmental and safety regulations [11]-[15].

Empirical evidence indicates that approximately 20% of products sold in the United States
are returned via reverse channels, with variation across industries and product categories [15].
If not strategically managed, these returns can impose significant financial and operational bur-
dens. Conversely, an efficient RSCM system can reduce total operational costs, improve prof-
itability, and support sustainability initiatives [11, 13, 47]. The total profit function of reverse
logistics can be expressed as:

1% = RR — (CC + TC + PC + DC), (4)

where RR denotes revenue generated from recovered or resold products, C'C represents collec-
tion costs, T'C' transportation costs, PC' processing or remanufacturing costs, and DCdisposal

costs. Maximizing IT*°C sunder environmental and service-level constraints constitutes a cen-

tral challenge in reverse supply chain optimization
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A major difficulty in RSCM is the uncertainty inherent in the return stream. The quantity,
timing, quality, and type of returned products are often unpredictable, complicating capacity
planning for refurbishment and repair centers [35]. A classic approach to managing such un-
certainty is the Newsvendor Model, which determines the optimal recovery capacity Q* by,
balancing the expected cost of underage (insufficient capacity) against the cost of overage (ex-
cess capacity). The optimal service level is given by the critical fractile:

Cy
P(D<Q") = Coro (5)

where P(D < @Q*) denotes the probability that return demand does not exceed the selected
capacity Q*, C,, represents the marginal cost of underage (e.g., lostsprofit from a scrapped
return), and Cjy denotes the marginal cost of overage (e.g., idle refurbishing capacity).

This model provides a quantitative framework for strategic capacity planning under volatile
return flows typical of RSC [17]. Furthermore, companies face increasing financial pressure to
offer flexible return policies to maintain customer loyalty, which can lead to significant costs.
Properly designed RSCM frameworks that balance cost minimization with responsive service

provide a critical competitive advantage in modern supply chain management.

2.3 Reverse Logistics (RL)

Reverse Logistics (RL) constitutes a strategic component of supply chain management, address-
ing the flow of products, information, and resources from the point of consumption back to the
point of origin to recover value or ensure proper disposal [9, 19, 45]. The RL encompasses
returns management, remanufacturing, and recycling, aiming to minimize waste and maximize
asset utilization. Optimization of RL systems often targets maximizing the Net Recovery Value
(NRV), defined as the total revenue from recovered products minus the associated operational
costs:
n
Maz. NRV = (R; = Cei — Cri — Cpi — Cai) (6)
i=1
where R; denotes the revenue generated from product 7, and C.;, Cy;, Cp;, and Cg; repre-
sent the collection, transportation, processing, and disposal costs, respectively. Key decision
variables in RL models include the routing of returned products, the location and capacity of
recovery facilities, and the allocation of products among re-manufacturing, recycling, and dis-
posal options.
Historically, RL originated during World War II when military logistics emphasized reusing
spare parts and packaging due to supply limitations [19]. In the commercial sector, RL gained

importance in the late 1980s in response to environmental regulations and cost pressures. To-

day, sectors such as electronics and automotive integrate RL into core operations, often withi




Zeidyahyaee, et al. 7

a Closed-Loop Supply Chain (CLSC) framework that simultaneously optimizes forward and
reverse flows. A typical CLSC objective can be formulated as a bi-objective problem:

n n
Min Z=wY (Cri+Cri) —wa Y B (7)
i=1 i=1

where C'; and (). ; denote forward and reverse logistics costs, respectively, E; represents en-
vironmental benefits associated with recovery activities, and wy, wo. > Oare weighting coeffi-
cients reflecting managerial preferences.

The RL process typically involves collection, inspection, sorting, reprocessing, and redis-
tribution. Operational uncertainties, including variable product.quality and-return timing, are
often modeled probabilistically. A common optimization objective is minimizing expected total

cost:
n

Min E[Gi] =Y (piCri & (1= pi)Ca), (8)

i=1
where p; denotes the probability that product i is reusable, Cy; is the recovery cost, and Cy ;
represents the disposal cost. Solving these complex, often non-linear optimization problems
typically involves metaheuristic algorithms such as Genetic Algorithms or Particle Swarm Op-

timization [45].

2.4 Data Mining in Supply Chain Management

With digital transformation, SCM has become increasingly data-driven, requiring advanced an-
alytics to improve efficiency, reduce costs, and enhance decision-making in complex networks
[18, 22]. Data Mining (DM) provides systematic tools for extracting actionable insights from
large and unstructured datasets.

Formally, DM can be cast as an optimization problem to maximize Information Gain (IG),

which measures the reduction in uncertainty achieved by a predictive attribute [48]:

- S P(4; | Cy) ©)

Maxr IG = ZP(Ci)ZP<Aj ‘ Ci)logQ P(Aj) )

i=1 j=1

where P(C;) denotes the prior probability of class C;, and P(A; | C;) represents the conditional
probability of attribute A; given class C;. Maximization of IG reduces classification entropy|
and improves predictive performance.

Clustering is a common DM technique in SCM for grouping similar entities, such as sup-

pliers, customers, or shipments, based on defined similarity metrics, facilitating segmentation|

and targeted decision-making [40, 48]:
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K
Min J= Z Z | zj — i 1%, (10)

=1 Tj eC;

where J is the total within-cluster variance, x; denotes a data point, and ; is the centroid of

cluster C;. Centroids are updated iteratively according to:

; 1
ME +1) _ e Z x; (11)

T eC;

where |C;| denotes the number of observations assigned to cluster C;at iteration ¢.
Although computationally efficient, K-Means assumes spherical clusters and is sensitive
to initialization. Density-based approaches, such as DBSCAN, are preferred for non-linear or]
irregular supply network structures.
Integrating DM outputs into SCM models supports predictive and prescriptive analytics.
Predictive models, including linear regression and neural networks, forecast key performance

indicators such as demand, lead times, or return rates [20].

»
§=f(X)=Bo+ ) Bixi+e (12)

i=1
where g is the predicted outcome (e.g., defect rate or delivery time), x; are explanatory vari-
ables, 3; are coefficients, and e/s the error term. Incorporating DM-derived features, including
supplier reliability measures and customer sentiment profiles, enables the model to function as
a hybrid analytical layer that links predictive data exploration with optimization-based decision

[Processes.

2.5 Artificial Neural Networks (ANNSs)

Artificial Neural Networks (ANNs) are computational frameworks modeled after the structure
and functioning of biological neural systems. They consist of interconnected processing units,
or neurons, that transmit signals through weighted connections. Each neuron aggregates its
inputs, applies corresponding,weights and a bias term, and transforms the result through an
activation function to generate an output. A typical ANN architecture includes an input layer,
one or more hidden layers, responsible for capturing nonlinear patterns, and an output layer
[21].

The general structure of an artificial neural network is illustrated in Figure 1.

For a single neuron, the output can be expressed as:

b
y=f_ wiwi+b), (13)
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Figure 1: General structure of artificial neural networks

where x; denotes the input features, w; represents the synaptic weights, bis the bias term, and
f(+) is the activation function, such as the sigmoid or Rectified Linear Unit (ReLU) function|
[20].

Training an ANN involves adjusting the network weights to minimize a predefined loss
function over a training dataset. For regression problems, a commonly used loss function is the

mean squared error (MSE), defined as:

N
B = gy Dt =" (14)
where y; denotes the true target value for observation k, gy, is the corresponding network pre-
diction, and N is thenumber of training samples [ 16]. Minimization of F is typically performed
using gradient-based optimization methods through backpropagation.

For sequential or temporal data, Recurrent Neural Networks (RNNs) extend the standard
ANN architecture by incorporating feedback connections that enable information persistence

across time steps. In a simple recurrent cell, the hidden state update is given by:
ht = ¢(Whphi—1 + Waxt + 1), (15)

where h; represents the hidden state at time ¢, x; is the input vector, W}, and W, are weight
matrices associated with the recurrent and input connections, respectively, bdenotes the bias
vector, and ¢(+) is an activation function such as the hyperbolic tangent [28]. This formulation

enables RNNs to capture temporal dependencies and sequential patterns, making them well-

suited for applications involving time-series data and natural language processing
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2.6 Deep Learning

Deep learning, an advanced subfield of machine learning, utilizes multilayer neural architec-
tures to achieve superior performance in complex pattern-recognition tasks. It plays a central
role in applications such as text mining, image analysis, multimedia retrieval, and speech recog-
nition [3, 39]. By leveraging hierarchical feature extraction, deep learning models automati-
cally learn discriminative representations from raw data, reducing the need for manual feature
engineering. Progress in computing hardware and the availability of large-scale datasets have
accelerated the development of deep and distributed learning systems [1, 6]. Deep learning
models are commonly classified into four major categories, as illustrated in Figure 2.

Deep learning models are generally categorized into four major.groups:

1. Supervised Deep Models: These models are trained using labeled datasets and aim to
minimize a predefined loss function. The general training objective is formulated as:

N
1
mlnL :NZ (fo@i), ) (16)

where fp denotes the neural network parameterized by 6, (z;,y;) are the input—output
training pairs, and /(-) represents a sample-wise loss function. For classification tasks

with softmax outputs, the cross-entropy loss is commonly applied:
ter(py) Zyclogpc, (17)

where p. is the predicted probability of class cand y. is the corresponding ground-truth
label. Training is typically performed using gradient-based optimization algorithms such
as stochastic gradient descent (SGD) or Adam [23, 43].

2. Unsupervised Deep Models:
Unsupervised deep models aim to discover latent structures and hidden patterns from|
unlabeled data. Representative examples include Autoencoders (AEs) and Restricted
Boltzmann Machines (RBMs), which are widely used for dimensionality reduction and
feature learning [33, 36, 42]. An autoencoder minimizes the reconstruction error between|

inputs and outputs:

N
) 1 L2
min Lag = N; | @i — 2 |7, (18)

where hg(-) denotes the encoder, g4(-) the decoder, and Z; = g4(he(x;)). Alternative

loss functions may be employed depending on data characteristics and modeling objec-

tives
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3. Deep Reinforcement Learning (DRL): Deep Reinforcement Learning combines rein-
forcement learning with deep neural networks to enable agents to learn optimal decision
policies in environments modeled as Markov Decision Processes (MDPs) [31]. The op-

timal state-value function satisfies the Bellman optimality equation:
Vi(s) = rnaaxE [re + YV (s141) | 8¢ = s, a0 = a, (19)

where 7, denotes the immediate reward and v € (0, 1) is the.discount factor. In DRL,
deep neural networks are used to approximate value functions or action—value (@) func-
tions, and training proceeds by minimizing temporal-difference errors derived from this

formulation.

4. Hybrid Deep Models: Hybrid deep learning models integrate supervised, unsupervised,
and reinforcement-learning paradigms within a unified framework. Such models are par-
ticularly effective in complex decision-making problems involving heterogeneous, high-
dimensional, or multimodal data, as they exploit the complementary strengths of different
learning strategies.

| Deep MNeural NMetworks

—1 D"EPI Supervised : | Convelutional Neural Netweork

| Recwrent MNeural Network

| Auto-Encoder

De Loy Aased
| Peee et [

| Deep Belief Neurnl Network

|Gn1cl—.'|li\.'= Adversarial MNetworks

Deep Learning-Based Models

| Value-based

| Restricted Boltzrmann Machine I

| Policy-based

Hybrid Models

Figure 2: Types of models in deep learning

2.7 Failure Mode and Effects Analysis (FMEA)

Failure Mode and Effects Analysis (FMEA) is a structured and proactive risk-assessment

methodology designed to identify potential failure modes within a system or process, evaluate

their consequences, and prioritize associated risks. By systematically examining how compo-
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nents, subsystems, or operational activities may fail, FMEA enables organizations to prevent
failures before they occur and to enhance system reliability, safety, and performance.
The standard FMEA procedure typically consists of the following stages:

* Formation of an expert team comprising managers, engineers, and technical specialists

with detailed knowledge of the system under study;
* Identification of potential failure modes at the component, subsystem, or process level;
+ Assessment of the effects, causes, and consequences associated with each failure mode;

* Prioritization of risks through the calculation of the Risk Priority Number (RPN) [2].

The RPN is the central quantitative indicator in FMEAL It is calculated based on three risk
dimensions, Severity (S), Occurrence (O), and Detection (D), each rated on a scale from 1 to

10 according to expert evaluation and predefined criteria: The classical RPN is defined as [44]:
RPN =5 x O x/D, (20)
where:

S: denotes the severity of the potential effect,
O: represents the likelihood of failure occurrence, and

D: reflects the probability that the failure will not be detected prior to its impact.

This formulation enables ranking failure modes according to their combined risk profile.
However, in complex systems where the influence of each risk factor is not equal, traditional
RPN scoring may not accurately reflect actual risk levels. To address this limitation, weighted
FMEA models introduce coefficients w; that represent the relative importance of each factor,
The weighted RPN is expressed as [44]:

RPNyeighted = (wg - S) + (wo - O) + (wp - D), (21)

where

wg + wo +wp = 1.

Here, wg, wo, and wp denote the relative importance weights assigned to severity, occurrence,
and detection, respectively.

Incorporating weighting factors provides a more flexible and context-sensitive prioritization
mechanism, especially in scenarios where expert judgment indicates that certain aspects, such as
severity or detection capability, should be emphasized more heavily than occurrence probability.
Overall, the FMEA remains a foundational tool in risk-informed decision-making, supporting

preventive maintenance planning, process improvement and quality assurance across a wide

range of industrial and engineering applications
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2.7.1 Sentiment-Weighted FMEA Integration

While conventional FMEA relies primarily on expert judgment, it does not explicitly incorpo-
rate large-scale consumer feedback that reflects real-world product usage and perceived failures.
To address this gap, we extend the classical and weighted FMEA frameworks by integrating sen-
timent analysis outputs derived from social media data as quantitative modifiers of the FMEA
risk parameters.

Let f denote a product feature or component. Two sentiment-based indicators are defined:

- Py € [-1,1]: aggregated sentiment polarity associated with.feature f, where negative

values indicate dissatisfaction and positive values indicate satisfaction;
- Cy € [0, 1]: sentiment confidence score reflecting the reliability of the polarity estimate.

These indicators are extracted from the deep learning—based sentiment analysis model described
in Section 3 and represent consumer-perceived risk signals complementary to expert evalua-

tions.

1. Sentiment-Adjusted Risk Parameters: To incorporate consumer sentiment into risk

evaluation, the expert-assigned EMEA: parameters are-adjusted as follows.

i. Adjusted Severity: Consumer dissatisfaction often reflects perceived functional
degradation or performance loss: Accordingly, the severity score is modified as:

S}kc = Sf X (1 + o |Pf| Cf),

where ags > 0 is a calibration coefficient controlling the influence of sentiment on|
perceived severity.
ii. Adjusted Occurrence: Repeated negative feedback may indicate frequent or latent
failures. The occurrence score is therefore adjusted as:
O} = Oy x (1 + ao| Pf| Cy),
where o, > 0 regulates the contribution of sentiment intensity and confidence to
failure likelihood.
iii. Adjusted Detection: Failures that consumers report as unexpected or difficult to
diagnose suggest reduced detectability. The detection score is adjusted as:

D;kc =Dy x (1 +Oéd|Pf‘ Cf),

wherconsumer sentiment is integrated intoe a,g > 0 captures sentiment-derived un-

certainty in detection capability.
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The term | P¢|C/ jointly represents the strength and reliability of consumer senti-
ment. Features associated with strong, high-confidence negative sentiment result in
higher adjusted risk scores, while weak or uncertain sentiment produces marginal

adjustments.

2. Sentiment-Weighted Risk Priority Number: The sentiment-adjusted parameters are
integrated into a weighted FMEA formulation. The sentiment-weighted RPN for feature
fis computed as:

RPN;ent = (wg - S;;) + (wo - O;‘;) + (wp- D;Z) (22)

This formulation preserves the interpretability of classical FMEA while explicitly em-
bedding consumer-derived risk signals into the prioritization process. As a result, the
proposed sentiment-weighted FMEA provides a transparent and data-driven mechanism|
for aligning expert-based risk assessment with large-scale-.consumer perceptions, thereby
improving the robustness and relevance of reverse supply chain decision-making.
The calibration coefficients o, g, and g are determined based on expert judgment and

sensitivity analysis to ensure stability of the risk rankings.

3 Research Methodology

This applied research employs a mixed-methods design that integrates data-driven sentiment
analysis with a structured risk assessment framework to support decision-making in reverse
supply chain management. The methodological structure consists of two interconnected phases.
In the first phase, consumer sentiment is extracted from large-scale social media data and mod-
eled using deep learning techniques to generate quantitative polarity and confidence indicators,
In the second phase, risk factors within the reverse supply chain are evaluated using the Failure
Mode and Effects Analysis (FMEA) framework.

The outputs of the sentiment analysis phase are formally integrated into the FMEA-based
risk assessment through sentiment-adjusted Severity, Occurrence, and Detection parameters, as
explicitly modeled in Section 2.7.1. The resulting sentiment-weighted risk indicators are then|
incorporated into a unified optimization model designed to improve reverse logistics decision-

making.

3.1 Population and Data Collection

Data collection was conducted using two complementary sources: structured customer surveys

and unstructured social media data. A stratified sample of 100 respondents was selected from
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population of 1,000 customers to ensure proportional representation across relevant consumer|
segments.
The primary dataset for the analytical framework was obtained from Twitter. Using the Twitter
Streaming API and a curated set of product-specific keywords, data were collected continuously,
over a 91-day period. Twitter content was retrieved in standard JSON format in accordance with|
ISO/IEC 21778:2017. To reduce redundancy and noise, retweets, quoted tweets, and duplicate
tweet objects were identified and consolidated during preprocessing. To quantify the relative

influence of individual tweets, an engagement-based weighting index cr was defined as:
a=RT+Q+R+ L, (23)

where RT denotes the number of retweets, () represents the number of quote tweets, R in-
dicates the number of replies, and L corresponds to the number of likes. This index is used
as a weighting factor during sentiment aggregation, allowing highly engaged content to exert

greater influence on aggregated sentiment scores.

3.2 Proposed Framework

The proposed framework integrates social media analytics, text mining, and learning-based de-
cision support to evaluate consumer feedback and guide reverse supply chain decisions. Mul-
tilingual tweets were standardized through.a preprocessing pipeline that included tokenization,
part-of-speech (POS) tagging, stop-word removal, and n-gram extraction.

Sentiment polarity was analyzed using a recurrent neural network (RNN) architecture capa-
ble of capturing contextual dependencies in sequential textual data. For each tweet, the model
generated quantitative sentiment outputs that were subsequently aggregated at the product-
feature level. These aggregated sentiment indicators were incorporated into an FMEA-based
assessment module to identify dominant failure modes and compute weighted priority indices
for reverse supply chain decisions.

Figure 3 illustrates the first stage ‘©of the proposed framework, including keyword extrac-
tion from social media data, text preprocessing, and sentiment analysis using deep learning
techniques. Figure 4 presents the 'second stage of the proposed framework, demonstrating the
integration of sentiment analysis outputs into the FMEA-based risk assessment process and

their incorporation into reverse supply chain decision-making.

3.3 Content Analysis

Given the unstructured and heterogeneous nature of social media data, content analysis was

performed using text mining and Natural Language Processing (NLP) techniques. To improve
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Figure 3: First stage of proposed framework

classification robustness and reduce model-specific bias, a weighted ensemble approach was
adopted instead of relying on a single sentiment classifier. The ensemble integrates three in-
dependent sentiment analysis algorithms, and their outputs are combined through a weighted
voting mechanism to enhance overall accuracy.

For each tweet, two numericalindicators were computed:
* Polarity (P): the orientation and intensity of sentiment, defined over the interval [—1, +1];

* Confidence (C): the reliability of the sentiment classification, defined over the interval
[0, 1].

Tweets associated with higher absolute polarity values and higher confidence levels were
interpreted as strong indicators of consumer sentiment. This dual-indicator structure enables
consistent sentiment evaluation across multiple classifiers and provides stable, quantitative in-

puts for subsequent integration with the FMEA-based risk assessment framework.

3.4 Algorithmic Structure and Reverse Logistics Network Modeling
The reverse logistics network designed in this study integrates two NP-hard optimization com-
ponents:

1. Capacitated facility location, and

2. Bidirectional flow optimization.

The model incorporates all major nodes within a closed-loop supply chain, including sup-

pliers, manufacturers, collection and recovery centers, recycling units, distribution hubs, an
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disposal facilities. It accommodates multiple product categories and assigns tunable parame-
destined for disposal.

ters that represent the proportion of items that are repairable, remanufacturable, recyclable, or

The reverse logistics network is‘modeled as a multi-echelon, capacitated, closed-loop flow|
optimization problem, integrating facility location, routing, and multi-product recovery deci-
sions. The model includes the following node sets:

I: Customer zones (return sources),

J: Collection centers,

K: Repair and resmanufacturing centers,

L: Recycling facilities,

M: Disposal units.

Let x;j, Yk, 2k, and wy,, denote flow variables between consecutive nodes
Objective Function

The general objective is to minimize the total reverse logistics cost:

minZ =3 Y Cymij+Y > Ciyiet > > Crzmt+y . > Cimwim— > Ri(),
icl jeJ jeJ kek keK IeL IEL meM

keK

(24)
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where Cy;, denotes the unit transportation or processing cost between nodes a and b, and Ry(+)
represents the revenue generated from recovered products at center k. The revenue function is
assumed to be concave to reflect diminishing returns in recovery operations.

Flow Constraints

Demand satisfaction at customer zones is enforced as:

Y wy=di, i€l (25)

jed

and capacity limitations at collection centers are given by:

Z zij < Cap;, j & (26)

i€l
Multi-product flows are defined as non-negative variables:
®) B 0 @S 27)

Tij o Yk 2kl s Wym

Return-Type Probability Model

Each returned product belongs to one of four recovery classes:
* repairable with probability p;.,
» remanufacturable with probability p,,,
* recyclable with probability pg;
+ disposable with probability pg,

subject to:

Dr + Pm +pe+pa = 1. (28)

These parameters are estimated using sentiment-derived indicators from Section 3.3.

To solve this complex multi-product and multi-node optimization problem, a Genetic Al-
gorithm (GA) was applied (Algorithm 1). GA performance depends critically on its control pa-
rameters, particularly crossover and mutation rates. Therefore, an extensive parameter-tuning
experiment was conducted using MINITAB to determine the optimal combination of GA pa-
rameters.

This enhanced pseudo-code emphasizes constraint repair and elitism, both essential for hard

combinatorial logistics problems
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Algorithm 1 GA-ReverseLogistics
Input: Cost matrices, recovery probabilities, capacity constraints.

Output: Optimal or near-optimal solution Z*.

1. Initialize a population P with size N.
2. Evaluate the fitness of each chromosome using the objective function [23].
3. Repeat until the termination condition is satisfied:

3.1 Select parent chromosomes using tournament selection.

3.2 Apply crossover operator with probability P..

3.3 Apply mutation operator with probability F,,.

3.4 Repair infeasible solutions to satisfy capacity.and flow.constraints.
3.5 Evaluate the fitness of the offspring.

3.6 Form the new population using an elitism strategy.

4. Return the best chromosome Z*.

'[Enhanced RNN Module (Pseudo-Code)

The RNN architecture (See Algorithm 2) maps text sequences into sentiment polarity scores P

and confidence scores C.

3.5 Statistical and Analytical Techniques

The analytical workflow proceeded in two stages. First, descriptive statistics were used to ex-
plore the distributional characteristics'of the collected tweet corpus and survey responses. In the
second phase, the outputs of the sentiment analysis model, specifically polarity and confidence,
were mapped onto the FMEA risk matrix, enabling a systematic linkage between consumer per-
ception and failure mode prioritization.

All machine learning, sentiment analysis, and optimization procedures were implemented
using MATLAB, while statistical validation and parameter tuning were supported by MINITAB.

Table 1, presents the main symbols, parameters, and variables used throughout the proposed
sentiment-driven FMEA and reverse supply chain optimization framework. This nomenclature

is provided to enhance clarity, consistency, and reproducibility of the mathematical formulations

and analytical procedures employed in this study.
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Algorithm 2 RNN_SentimentAnalysis
Input: Preprocessed tweet sequence X;.

Output: Polarity P, Confidence C'.

1. Initialize network parameters W, Wp,, W, by, and b,.

2. For each time step ¢, compute the hidden state:
h; = tanh (Whht—l + W, X + bh) .
3. Compute the output layer using the softmax function:

y¢ = softmax (Wohy+ b,) .
4. Determine the sentiment polarity:
P = f(y).

5. Compute the confidence score:

C = max(y;).

6. Return polarity P and confidence C.

4 Results and Findings

This section presents the numerical and empirical results derived from the proposed mixed-
integer fuzzy optimization model for the integrated forward-reverse logistics network. The
evaluation encompasses three analytical layers:

i. A data-driven sentiment analytics pipeline, Twitter data — sentiment analysis — Recur-
rent Neural Network (RNN) classifier.

ii. the subsequent FMEA-based risk quantification, and

iii. the influence of consumer-driven signals on reverse logistics decisions via an RL-inspired

decision mechanism.

Model performance was assessed using classifier accuracy, multi-objective optimization

indicators, and computational efficiency measures
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Table 1: Nomenclature of Main Symbols and Parameters

Symbol Description

f Index representing a product feature or component
Py Aggregated sentiment polarity associated with feature f, where Py € [—1, 1]
Cy Sentiment confidence score for feature f, where C'y € [0, 1]
Sy Expert-assigned Severity score for feature fin classical FMEA
Oy Expert-assigned Occurrence score for feature fin classicalkFMEA

Dy Expert-assigned Detection score for feature fin classical FMEA

;E Sentiment-adjusted Severity score for feature f
O3 Sentiment-adjusted Occurrence score for feature f
D} Sentiment-adjusted Detection score for feature f
Qs Calibration coefficient controlling sentiment influence on Severity
o, Calibration coefficient controlling sentiment influence on Occurrence
oq Calibration coefficient controlling sentiment influence on Detection

wg Weight associated with Severity in weighted FEMEA
wo Weight associated with Occurrence in weighted FMEA
wp Weight associated with Detection in weighted FMEA
RPN  Classical Risk Priority Number
RPN}ent Sentiment-weighted Risk Priority Number for feature f
L(6) Loss function used for training the deep learning sentiment analysis model

0 Vector of trainable parameters in the deep learning model
OR Optimization Rate, representing the proportion of decisions redirected from reuse

recycling

4.1 Data Collection and Sentiment Analysis

The empirical analysis commenced with large-scale data acquisition from Twitter over a contin-
uous 91-day observation period, in accordance with the methodological framework described
in Section 3. Using the Twitter Streaming API and a curated set of product-related keywords as-
sociated with Apple MacBook Pro models, a substantial volume of user-generated content was
collected. The dataset comprised original tweets, retweets, quoted tweets, and quotes derived
from retweets, thereby capturing both direct consumer opinions and amplified engagement-
driven reactions.

Following data acquisition, a comprehensive preprocessing pipeline was applied to im-
prove data quality and analytical reliability. This pipeline included the removal of URLs, user

mentions, duplicated content, and tweets that were either excessively short or semantically un-

informative. Language identification revealed that English, Japanese, and Portuguese were the
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dominant languages in the corpus; these languages were retained for subsequent analysis to

ensure sufficient data density and linguistic consistency.

Table 2 summarizes the composition of the collected dataset and the subset of tweets filtered

using the keyword “MacBookPro”.

Table 2: Number of Tweets Collected and Filtered

Tweets Filtered

Type ID Tweet Count Ratio by Keyword
“MacBookPro”
Original Tweet TO 43,261,451 ~46.6% ~19,089,139
Retweet TO-RSO 10,241,784 11.0% 4,885,205
Quote TO-QSO 31,131,579 33.5% 13,490,872
Quote from Retweet TO-RSO-QSO 8,246,194 8.9% 3,390,762
Total — 92,881,008 100% 40,855,979

Feature Ontology Construction

To construct a structured and interpretable representation of consumer feedback, a standard-
ized product feature ontology was developed using official Apple technical documentation and
manufacturer repositories. This ontology serves as a conceptual abstraction layer that links
unstructured textual content to analytically meaningful product attributes.

Based on this ontology, n-grams (n = 1,...,5) were generated from the cleaned tweet
corpus. Part-of-speech tagging was applied to extract semantically meaningful unigrams and
multiword expressions. High-frequency n-grams were mapped to predefined product features
and subsequently validated by domain experts to ensure semantic accuracy, domain relevance,
and consistency across product generations.

The validated feature—keyword associations formed the basis for constructing a consumen
opinion matrix, which quantitatively captures the relationship between product features and user|
sentiment. This matrix constitutes a core analytical input to both the sentiment classification
module and the subsequent FMEA-based risk assessment, enabling a consistent and data-driven
linkage between consumer perceptions and reverse logistics decision variables.

Table 3 represents a standardized and expert-validated feature ontology, serving as a con-
ceptual abstraction rather than raw empirical frequency counts. This design enhances inter-
pretability, reduces semantic noise in social media data, and facilitates a reliable mapping be-

tween consumer sentiment indicators and the subsequent FMEA-based risk evaluation frame-

work
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Table 3: Standardized Product Features and Representative Keywords for MacBookPro Sentiment Analysis

Representative Keywords (Illustrative and Standard-

No. Main Feature
ized)
1 Price price, cost, value, expensive, affordable
2 Storage storage, SSD, capacity, disk space
3 Memory RAM, memory, multitasking, performance lag
4 Processor (Chip) M1, M2, M3, processor, chipset, performance
5 Graphics GPU, graphics, rendering, visual performance
6 Display display, screen, Retina, brightness, resolution
7 Design & Build design, weight, thickness, aluminum, portability
8 Keyboard & Trackpad keyboard, trackpad, touchpad; typing
9 Battery & Power battery life, charging, power adapter, fast charge
10 Thermal Performance overheating, fan.noise; temperature
11 Connectivity Wi-Fi, Bluetooth, wireless, signal
12 Ports & Connectors USB-C, Thundetbolt, HDMI, ports
13 Audio speakers, sound quality, microphone
14  Camera webcam, FaceTime camera, video quality
15  Software Compatibility macOS, updates, compatibility, bugs
16  Reliability & Durability reliability, lifespan, failure, durability
17  Warranty & Repair warranty, repair, service, AppleCare

18  Sustainability & Recycling recyeling, trade-in, refurbished, environment

Sentiment Classification and Aggregation

Following feature categorization, a sentiment analysis matrix was constructed to quantify con-
sumer attitudes toward each product feature. Tweets were classified into two discrete sentiment
categories—Happy (H) and Unhappy (U)—based on polarity and confidence scores generated
by the sentiment classification model.” For each product model mand feature n, an aggregated
sentiment score &,,, was computed by combining polarity intensity and classification confi-
dence across all associated tweets. To ensure robustness and minimize classification noise,

only high-confidence observations were retained, defined as those satisfying:
| confidence |> 0.8.
Sentiment class assignment followed strict thresholds:
mean polarity > +0.8 = H, mean polarity < —0.8 = U.

These thresholds ensure that only strongly expressed and reliably classified consumer opinions

influence downstream risk evaluation and reverse logistics decisions
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The resulting sentiment analysis matrix serves as a key input to both the reinforcement-
learning decision rule and the FMEA-based risk evaluation framework. This integrated sentiment-
analytics pipeline achieved an overall accuracy of 89.9%, offering competitive performance

with significantly reduced computational complexity compared with deep learning alternatives.

Table 4: Aggregated Sentiment Analysis Matrix and Classifier Evaluation

Classifier Support F1-Score Coverage -Accuracy (%)
SVM 160 0.97 0.94 81.3

MaxEnt 160 0.97 0.97 79.2

NB 157 0.86 0.89 79.6

Voting Classifier 159 0.88 0.85 91.7

Accuracy Criterion 636 0.92 — —

Macro Average 636 0.92 0.92 0.92

Weighted Average 636 0.92 0.92 0.92

To further evaluate classification reliability, Figure 5'presents the confusion matrix of the
final ensemble sentiment classification model, demonstrating balanced predictive performance
across sentiment classes and confirming the stability and robustness of the proposed sentiment

analytics pipeline.

Confusion Matrix
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Figure 5: Confusion Matrix of the Sentiment Classification Model
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4.2 Consumer-Oriented Reverse Logistics Decisions

The core contribution of this study lies in the explicit integration of consumer sentiment sig-
nals into reverse logistics decision-making within the reverse supply chain. Unlike traditional
reverse logistics models, which predominantly rely on cost, condition, or expert-based assess-
ments, the proposed framework incorporates aggregated consumer perceptions as an additional,
data-driven decision criterion.

Within the proposed decision-support system, consumer sentiment functions as an opera-
tional indicator of perceived product and component quality. Specifically, aggregated negative
sentiment is interpreted as a signal of diminished perceived value or functional dissatisfaction,
thereby favoring recycling-oriented recovery strategies. Conversely,-aggregated positive sen-
timent indicates acceptable or desirable product performance ffom the consumer perspective,
supporting reuse-oriented recovery strategies, including refurbishment and secondary market
redistribution.

To operationalize this logic, sentiment classifications were organized into a structured deci-
sion matrix in which each MacBook Pro model was evaluated across its major product features|
(e.g., storage, memory, design, display, processor, power and battery, and graphics). Each ma-
trix entry represents the dominant sentiment class—Happy (H) or Unhappy (U)—derived from
high-confidence sentiment observations for a specific model-feature combination. Dominance
was determined based on the aggregated sentiment score z,,,, introduced in Section 4.1.

Table 5 presents the aggregated sentiment outcomes for MacBook Pro models from 2015 to
2024. A clear temporal pattern emerges from the results. As shown, earlier-generation models
such as MacBookPro11.4 and MacBookPro12.1 exhibit widespread dissatisfaction, especially|
with regard to Wireless and Design. Based on the RL decision rule, these items should pre-
dominantly be directed to recycling. In contrast, user feedback for more recent models, such
as MacBookPro15.2 and MacBookPro16.3, indicates satisfaction with several features (e.g.,
Power & Battery), supporting reuse stratégies for these components.

Importantly, the proposed framework does not rely on sentiment signals in isolation. Rather,
consumer sentiment acts as an initial screening and prioritization mechanism that informs the
subsequent FMEA-based risk evaluation and learning-informed optimization processes. In this
manner, sentiment-driven insights enhance the responsiveness and consumer alignment of re-

verse logistics decisions while maintaining methodological rigor and operational feasibility.

4.3 Quantifying the Impact: Optimization Rate

To assess how consumer sentiment influences reverse-logistics decisions relative to the com-

pany’s baseline strategy (typically “reuse”), an Optimization Rate (OR) metric was developed
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Table S: Aggregated Consumer Sentiment by Product Model and Feature (Happy/Unhappy)

Model

Battery

MacBookProl1.4
MacBookPro12.1

MacBookPro13.1/2

MacBookPro13.3
MacBookProl4.1
MacBookPro14.2
MacBookPro14.3
MacBookPro15.1
MacBookProl15.2
MacBookProl15.3
MacBookPro15.4
MacBookPro16.1
MacBookProl16.4
MacBookPro16.2
MacBookProl16.3
MacBookProl17.1
MacBookProl17.2
MacBookPro17.3
MacBookPro17.4
MacBookPro

M3 Pro/Max 13
M3 Pro/Max 14
M3 Pro/Max 16

IEZICIEIIODEIZIZICIDCIDCITCOCCOCETEZCOCCC C C|Storage

IITZIZITDZEITIDIETCTZICICETNTCCECOCCC C|Memory

I ETODETTIDITTDETDTCCECCCCcCC C|Design

I TR I-DCcCccE T @mccccECcccc cDisplay

ITEIEZIEZEEIITDIDEIDILLCCCIDCCCcC@TCccc|Chip

ITETZIEZEIIZIITOZETDIIZECCCCITCRER®TC C C|Camera

ITETZIZIITZIITDIISENDET DTS T T I T I C C| Wireless

T T TCIZITCIZICITCE@ONDCCCacaacacc c|Power

I ITIZICTTDZTTTZCC@TDIT T T T T T C| Graphics

I IITZIEZIDIZITTDTZTCZC T T CC C C CfSensors

ITETZICIEIIZITITTZCCCITIIEDE®TCOCOCC®TC C T Interface

TEITZIEZETZITTZIEZTTIZICTECDETITT T T E C C| Accessories

T TZIIZITZTTTZTZTTTZTCTCITCCTCccaccclTetal

archical levels:

In the baseline scenario, all returned products are assumed to follow a reuse-oriented recovery|
policy, which reflects common industry practice aimed at maximizing residual value. The OR|
captures the proportion of these baseline reuse decisions that are modified to recycling-oriented

actions after incorporating consumer sentiment information. The OR is formally defined as:

This metric provides an interpretable and scale-independent measure of how strongly sentiment-
driven insights influence operational decision-making within the reverse logistics system. To

capture decision impacts at different levels of granularity, the OR was computed at three hier-

OR — Number of decisions changed from reuse to recycle

Total number of baseline reuse decisions
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1. Feature level, reflecting sentiment-driven adjustments associated with specific product
attributes;

2. Model level, capturing overall decision changes for each notebook generation; and

3. Combined (two-dimensional) level, jointly accounting for interactions between product]

models and features.

4.3.1 Feature-Level Optimization Analysis

At the feature level, the OR quantifies the extent to which reuse-oriented recovery decisions are
redirected toward recycling after incorporating sentiment-weighted risk information. Specif-
ically, feature-level redirection is driven by the sentiment-adjusted Risk Priority Numbers
(RPN er"t), computed using the modified Severity, Occurrence,-and Detection parameters de-
fined in Section 2.7.1.

The results indicate that durability-related features—most notably Power and Battery and
Storage—exhibit the highest ORs. These features are associated with elevated sentiment-
adjusted RPN values, reflecting strong and high-confidence negative consumer sentiment that
amplifies expert-assessed risk levels. From an operational perspective, this pattern suggests
increased degradation, higher failure likelihood, and reduced residual value in secondary use
contexts, thereby justifying a shift from reuse-oriented strategies toward recycling-based re-
covery. In contrast, the connector category demonstrates the lowest OR and consistently low|
sentiment-adjusted RPN values. This outcome indicates stable perceived functionality and high|
consumer satisfaction, implying limited additional risk beyond expert assessments. Conse-
quently, connector-related components remain strong candidates for reuse-oriented recovery|
strategies, such as refurbishment or remanufacturing.

These feature-level results are illustrated in Figure 6, which presents ORs aggregated by,
product attribute/and clearly distinguishes high-risk, sentiment-sensitive features from those

that remain reuse-favorable under the proposed sentiment-weighted FMEA framework.

4.3.2 Model-Level Optimization Analysis

At the model level, substantial heterogeneity is observed across product generations. As illus-
trated in Figure 7, recent MacBook Pro models equipped with M3 Pro/Max processors (14-
inch and 16-inch variants) exhibit the most favorable performance, with minimal deviations
from the baseline reuse strategy. This outcome indicates strong consumer satisfaction and high|

perceived residual value for newer models. Conversely, early-generation models such as Mac-

0okProll.4 and MacBookProl2.1 display the lowest optimization scores, implying frequen
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Figure 6: The OR of RL Decisions by Feature

sentiment-driven redirection toward recycling. These findings are consistent with the aggre-
gated sentiment patterns reported in Section 4.2 and reflect the cumulative effects of aging
hardware, outdated design, and declining functional performance.
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Figure 7: The OR for the RL Decisions Separated by MacBook Pro Models

4.3.3 Joint Model-Feature Optimization Surface

To examine the interaction between product model maturity and feature-specific satisfaction,
a three-dimensional optimization surface was constructed. For model iand feature j, the joint

optimization score O;; was defined as:

Oi':‘ R; Fj

4
J \4
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where I?; denotes the aggregated satisfaction score for model 7, and F; represents the aggregated
satisfaction score for feature j. This formulation balances model-level and feature-level effects
while preserving interpretability.

The resulting 3D surface, depicted in Figure 8, reveals distinct clusters of high and low
reusability potential. Regions with high O;; values correspond to feature-model combinations
that are well suited for reuse, whereas low-value regions identify candidates for recycling pri-
oritization.

Notably, newer product generations, particularly those released in“2024, consistently oc-
cupy the high-O;; region of the surface. This pattern indicates substantially increased reusabil-
ity potential and suggests a lower environmental footprint for reverse logistics operations in-
volving these models.

Figure 8: 3D Plot of Notebook Models and Features

4.3.4 Reliability Verification and Classification Robustness

To further validate the robustness of feature-level decision outcomes, classification reliability|
for notebook features in 2024 was evaluated using a Logistic Regression (LR) classifier. The
resulting confusion matrix, presented in Figure 9, demonstrates balanced classification perfor-
mance and confirms the stability of sentiment-based feature categorization for the most recent

product generation.

4.3.5 FMEA-Based Risk Evaluation

To complement the sentiment-driven optimization analysis and identify critical components

within the reverse supply chain, the Failure Mode and Effects Analysis (FMEA) methodologyl
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Figure 9: Confusion Matrix for LR Classifier for Notebook Features in 2024

was applied. FMEA enables systematic decomposition of system complexity into manageable
components, thereby enhancing the precision and interpretability of risk assessments.

Table 6 summarizes the evaluation scales used for Severity (S), Occurrence (O), and Detection
(D), which together determine the Risk Priority Number (RPN) for each component.

Based on expert evaluations, aggregated FMEA results are reported in Table 7. The findings
indicate that Power and Battery represents the most critical risk category, followed by Storage.
Together, these components account for nearly one-third of the total risk exposure within the
reverse supply chain.

Conversely, attributes such as Design and Memory exhibit minimal risk contributions, sug-
gesting lower strategic priority for mitigation efforts. These results are visually reinforced in
Figure 10, which illustrates the comparative dominance of battery- and storage-related risks
within the FMEA framework.
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Figure 10: Graphical Representation of Risk Priority Index
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Table 6: Main Evaluation Criteria

Rating Probability (Occurrence Rating)

1 Very unlikely (almost impossible; no known failures in comparable prod-
ucts or high-hour operations).

Remote (few documented failures).

Occasional (failures occur intermittently).

Reasonably possible (failures observed frequently).

(O IRV I )

Repeated (failure is almost unavoidable).

Severity of Impact

No meaningful impact on reliability or safety.

2 Very minor (no damage or injury; simple maintenance may be required;
noticeable only to highly discerning users).

3 Minor (light damage affecting typical users; limited impact on system per-
formance).

4 Critical (loss of functional performance or safety margins; severe damage
or injury; possible single fatality).

5 Catastrophic (product becomes inoperable; unsafe operation; potential for
multiple fatalities).

Detectability
1 Certain (failure is reliably identified through routine testing).
2 Almost certain.
3 High detectability:
4 Moderate detectability.
5 Low detectability (failure is unlikely to be detected before it occurs).

4.3.6 Optimization Engine Validation

Finally, the robustness of the optimization engine was assessed through systematic parameter|
tuning of the Genetic Algorithm (GA). As shown in Figure 11, the optimal parameter config-

uration was identified as a crossover rate of 0.8 and a mutation rate of 0.1. This configuration

ensured rapid convergence and stable performance across multiple experimental runs
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Table 7: Risk Priority Index and Relative Risk Weights

Risk Priorit Relative
Property Probability =~ Severity Diagnosis SEETONY Rank ) )
Index Risk Weight
Storage 4 3 3 36 2 0.144
Memory 2 2 2 8 6 0.032
Design 1 2 1 2 7 0.008
Screen 3 4 2 24 3 0.096
Chip 2 2 3 12 5 0.048
Camera 2 3 2 12 5 0.048
Wireless 2 3 2 12 5} 0.048
Power and
4 4 3 48 1 0.192
Battery
Graphics 2 3 3 18 4 0.072
Sensors 2 3 4 24 3 0.096
Display 3 2 3 18 4 0.072
Interface 2 3 3 18 4 0.072
F
catured. 3 2 3 18 4 0.072
Accessories
analysis for crossover and mutation rate
95% CI for the Mean
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Figure 11: MINITAB Output for Tuning Crossover and Mutation Rates

4.3.7 Integrated Interpretation

The results of the optimization and risk analyses reinforce the earlier sentiment classification|
findings. For instance, consumer dissatisfaction with battery performance—frequently ob-
served in sentiment data—is independently corroborated by its high RPN score in the FMEA|

assessment. This convergence of consumer-derived and technical risk indicators demonstrates

the analytical strength of the proposed framework
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Overall, the integration of sentiment analytics, optimization modeling, and FMEA-based
risk evaluation provides a holistic and robust foundation for reverse logistics decision-making,
The proposed approach supports more reliable, consumer-oriented, and environmentally re-
sponsible recovery strategies, thereby enhancing both operational efficiency and sustainability,

outcomes.

5 Discussion

This study has established a coherent and effective link between the qualitative expectations
of consumers and the quantitative, strategic requirements of the reverse supply chain by devel-
oping and validating an integrated analytical framework. The findings clearly demonstrate the
strength and practical relevance of this approach.

A central contribution of this work is the convergence of insights obtained from two in-
dependent analytical sources: sentiment analysis, representing the consumer viewpoint, and
FMEA, reflecting the technical risk perspective. For example, sentiment analysis highlighted
widespread dissatisfaction regarding Power and Battery performance, while the FMEA results
independently identified this same component as a high-priority strategic risk, responsible for
nearly one-third of total supply chain risk. This aligninent offers a strong basis for managerial
decision-making, assuring stakeholders that resulting actions are simultaneously responsive to

customer feedback and supported by technical evidence.

In addition, the OR metric introduced in-this research offers a valuable managerial tool. It
enables decision-makers to quantitatively assess the benefits of shifting from a default reuse
policy to a more dynamic, data-driven strategy guided by user sentiment. These outcomes
correspond closely with the strategic—tactical-operational decision-making hierarchy proposed
by De Brito and Dekker [7], illustrating how real-time consumer-derived data can meaningfully|

inform high-level decisions within reverse logistics.

Despite its demonstrated utility, the interpretation of these findings must consider several
limitations. First, the 91-day data collection period may not fully represent long-term sentiment
fluctuations. Second, the reliance on publicly available online data limits the framework’s ef-
fectiveness in sectors with low digital participation. Third, although translation methods were
applied, the predominance of English-language content may introduce linguistic bias and ob-

scure culturally specific emotional patterns. These limitations delineate the current scope of]

applicability while simultaneously providing clear directions for future research
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6 Conclusion and Future Work

This study introduced a data-driven hybrid framework that integrates Failure Mode and Effects
Analysis (FMEA) with deep learning—based sentiment analysis to strengthen decision-making
within reverse logistics systems. The framework demonstrates how large-scale consumer feed-
back, particularly from high-traffic platforms such as Twitter, can substantially improve risk
prioritization and support the development of more sustainable product recovery strategies.
The findings confirm that incorporating consumer perspectives into reverse logistics can en-
hance both environmental and operational performance by extending product lifecycles, reduc-
ing waste, and increasing overall profitability. Additionally, the incorporation of the o parame-
ter as a measure of user engagement provided meaningful‘insight into the dynamic influence of
consumer sentiment and its temporal evolution. Despite the significant contributions of this re-
search, several constraints were identified. Real-time data acquisition remains challenging due
to platform limitations, and the computational demands of large-scale sentiment analysis restrict
the scalability of current methods. Addressing these/issues will require more advanced opti-
mization techniques, improved system architectures, and the creation of open-access datasets to
support reproducibility. Future investigations could expand on this work through the following

directions:

1. Keyword Refinement and Topic Modeling: Employing more sophisticated topic model-
ing techniques—such as LDA, NMF, or transformer-based models—may enhance the
accuracy of keyword extraction and improve contextual interpretation of social media

content.

2. Extended Data Horizons-and Multi-Platform Integration: Incorporating longer data col-
lection periods and expanding analysis to platforms such as Reddit, YouTube, and product]

review forums would improve robustness and capture broader sentiment dynamics.

3. API and Algorithmic Enhancements: Leveraging advanced data retrieval APIs and inte-
grating additional sentiment analysis models (e.g., Multinomial Naive Bayes, Random|
Forest, or transformer-based networks) could increase predictive strength and analytical
depth.

4. Integration of Multi-Criteria Decision-Making (MCDM) Approaches: Combining FMEA
with fuzzy logic, AHP, or hybrid MCDM methods would enrich interpretability and en-

hance managerial confidence in risk prioritization outcomes.

5. Algorithmic and Computational Optimization: Incorporating metaheuristic algorithms,

such as Genetic Algorithms, Particle Swarm Optimization, or Tabu Search, could reduce

computational overhead and improve convergence efficiency in complex datasets
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6. Temporal Weighting of the Alpha Parameter: Because the o parameter reflects time-
sensitive user engagement, future models should implement temporal weighting to more

accurately capture evolving sentiment patterns.

In summary, the proposed framework provides a scalable, intelligent decision-support system|
that integrates machine learning methods, risk analysis techniques, and behavioral data within
a unified structure. It offers a practical pathway toward developing greener, more consumer-
responsive and data-optimized supply chain systems. Future research:.should focus on improv-
ing algorithmic generalization, facilitating cross-industry implementation; and ensuring the eth-
ical management of consumer-generated data to support the development of more sustainable

and resilient industrial ecosystems.
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