In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Azerbaijan University, Baku, Azerbaijan

2 Institute for Physical Problems, Baku State University, Baku, Azerbaijan

3 Sumgayit State University, Sumgayit, Azerbaijan

10.30473/coam.2026.76342.1354

Abstract

 This paper introduces and analyzes, for the first time, the \emph{fractional Pauli operator}, a non-local generalization of the fundamental quantum mechanical operator describing spin-1/2 particles in magnetic fields. The operator is defined through the spectral theory of the magnetic fractional Laplacian $(H_{\vecA})^s$, with s ∈ (0,1), and acts on spinor-valued wavefunctions. We formulate the associated eigenvalue problem on a bounded domain Ω ⊂ ℝ^2 subject to exterior Dirichlet conditions. The intrinsic non-locality of the model is addressed via a variational formulation in suitable magnetic fractional Sobolev spaces. Under appropriate assumptions on the vector potential $\vecA$ and the magnetic field B, we establish the existence of a discrete spectrum. For a constant magnetic field on \R^2, we derive explicit eigenvalues exhibiting a nonlinear B_0^s scaling of the Landau levels. In addition, a finite element–based numerical scheme is developed to compute the spectrum on a disk, illustrating the combined effects of spatial confinement and non-locality. The physical implications of fractional kinetic effects on Landau quantization and spin-dependent phenomena are discussed, highlighting the relevance of the fractional Pauli operator for modeling anomalous transport in bounded quantum systems.

Highlights

  • Introduction of the fractional Pauli operator Ps as a non-local, spectral generalization of the Pauli operator for spin-1/2 particles in magnetic fields, built on the magnetic fractional Laplacian (H_A) ^s with s ∈ (0,1).
  • Well-posed eigenvalue problem formulated on bounded domains Ω ⊂ ℝ^2 with exterior Dirichlet-like conditions, establishing existence and discreteness of the spectrum under suitable assumptions on A and B.
  • Explicit Landau-type spectrum derived for a constant magnetic field on ℝ^2, revealing a nonlinear B_0^s scaling of Landau levels unlike the classical linear scaling.
  • Rich interplay between spin, non-local fractional kinetics, and geometric confinement, showing domain shape and boundary conditions influence spectral properties and Landau quantization.
  • Finite element–based numerical framework developed to compute the spectrum on realistic domains (e.g., a disk), demonstrating practical computability of fractional Pauli spectra in confined geometries.
  • Physical implications discussed: modified Landau quantization and spin-dependent phenomena due to fractional dynamics, with potential relevance to anomalous transport and quantum Hall-like behavior in systems with anomalous diffusion.

Keywords

Main Subjects

[1] Boutiba, M., Baghli-Bendimerad, S., Bouzara-Sahraoui, N.E.H. (2024). “Numerical solution by finite element method for time Caputo-Fabrizio fractional partial diffusion equation”. Advanced Mathematical Models & Applications, 9(2), 316-328. DOI: https: //doi.org/10.62476/amma9316
[2] Can, N.H., Nikan, O., Rasoulzadeh, M.N., Jafari, H., Gasimov, Y.S. (2020). “Numerical computation of the time nonlinear fractional generalized equal width model arising in shallow water channel”. Thermal Science, 24(Suppl. 1), S49-S58. DOI: https://doi. org/10.2298/TSCI20S1049C
[3] Cartea, Á., del Castillo-Negrete, D. (2007). “Fractional diffusion models of option prices in markets with jumps”. Physica A: Statistical Mechanics and its Applications, 374(2), 749-763. DOI: https://doi.org/10.1016/j.physa.2006.08.071
[4] Célérier, M.N., Nottale, L. (2006). “The Pauli equation in scale relativity”. Journal of Physics A: Mathematical and General, 39(40), 12565-12583. DOI: https://doi.org/ 10.1088/0305-4470/39/40/020
[5] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B. (1987). “Schrödinger operators: With application to quantum mechanics and global geometry”. Springer Berlin Heidelberg.
[6] Di Nezza, E., Palatucci, G., Valdinoci, E. (2012). “Hitchhiker’s guide to the fractional Sobolev spaces”. Bulletin des Sciences Mathématiques, 136(5), 521-573. DOI: https: //doi.org/10.1016/j.bulsci.2011.12.004
[7] Erdős, L., Solovej, J.P. (2014). “The kernel of Dirac operators on S3 and R3”. Reviews in Mathematical Physics, 13(10), 1247-1280. DOI: https://doi.org/10.1142/ S0129055X01000983
[8] Golmankhaneh, A.K., Welch, K., Tunç, C., Gasimov, Y.S. (2023). “Classical mechanics on fractal curves”. European Physical Journal Special Topics, 232, 991-999. DOI: https: //doi.org/10.1140/epjs/s11734-023-00775-y
[9] Helffer, B. (1997). “Spectral theory and its applications”. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139505727
[10] Jafari, H., Tajadodi, H., Gasimov, Y.S. (2025). “Modern computational methods for fractional differential equations”. Chapman and Hall/CRC, New York. DOI: https://doi. org/10.1201/9781003474609
[11] Joshi, H., Yavuz, M. (2026). “A novel fractional-order model and analysis of cancer-immune system interaction in an avascular environment with an efficient control mechanism”. Journal of Computational and Applied Mathematics, 473, 116888. DOI: https: //doi.org/10.1016/j.cam.2025.116888
[12] Kato, T. (2013). “Perturbation theory for linear operators”. 2nd edition, Springer Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-66282-9
[13] Kaya, M.Z., Karabacak, M., Çelik, E. (2025). “Solution of fractional order diffusion equations with clique neural network”. Mathematical Modelling and Numerical Simulation with Applications, 5(3). DOI: https://doi.org/10.53391/2791-8564.1003
[14] Kwaśnicki, M. (2017). “Ten equivalent definitions of the fractional Laplace operator”. Fractional Calculus and Applied Analysis, 20, 7-51. DOI: https://doi.org/10.1515/ fca-2017-0002
[15] Laskin, N. (2000). “Fractional quantum mechanics”. Physical Review E, 62(3), 3135- 3145. DOI: https://doi.org/10.1103/PhysRevE.62.3135
[16] Ma, M., Baleanu, D., Gasimov, Y.S., Yang, X.J. (2016). “New results for multidimensional diffusion equations in fractal dimensional space”. Romanian Journal of Physics, 61(5-6), 784-794.
[17] Metzler, R., Klafter, J. (2014). “The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics”. Journal of Physics A: Mathematical and General, 37(31), R161-R208. DOI: https://doi.org/ 10.1088/0305-4470/37/31/R01
[18] Pozrikidis, C. (2018). “The fractional Laplacian (1st ed.)” Chapman and Hall/CRC, New York. DOI: https://doi.org/10.1201/9781315367675
[19] Reed, M., Simon, B. (1972). “Methods of modern mathematical physics. Vol. I: Functional analysis”. Academic Press. DOI: https://doi.org/10.1016/ B978-0-12-585001-8.X5001-6
[20] Servadei, R., Valdinoci, E. (2015). “Fractional Laplacian equations with critical Sobolev exponent”. Revista Matemática Complutense, 28(3), 655-676. DOI: https://doi.org/ 10.1007/s13163-015-0170-1
[21] Thaller, B. (2013). “The Dirac equation”. Springer Science & Business Media.
[22] Yapışkan, D., Eroglu, B.B.I. (2024). “Fractional-order brucellosis transmission model between interspecies with a saturated incidence rate”. Bulletin of Biomathematics, 2(1), 114- 132. DOI: https://doi.org/10.59292/bulletinbiomath.2024 005