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Abstract. This paper introduces and analyzes, for the first time, the
fractional Pauli operator, a non-local generalization of the fundamental
quantum mechanical operator describing spin-1/2 particles in magnetic
fields. The operator is defined through the spectral theory of the
magnetic fractional Laplacian (HA)

s, with s ∈ (0, 1), and acts on
spinor-valued wavefunctions. We formulate the associated eigenvalue
problem on a bounded domain Ω ⊂ R2 subject to exterior Dirichlet
conditions. The intrinsic non-locality of the model is addressed via a
variational formulation in suitable magnetic fractional Sobolev spaces.
Under appropriate assumptions on the vector potential A and the
magnetic field B, we establish the existence of a discrete spectrum.
For a constant magnetic field on ⇒2, we derive explicit eigenvalues
exhibiting a nonlinear B s

0 scaling of the Landau levels. In addition,
a finite element–based numerical scheme is developed to compute
the spectrum on a disk, illustrating the combined effects of spatial
confinement and non-locality. The physical implications of fractional
kinetic effects on Landau quantization and spin-dependent phenomena
are discussed, highlighting the relevance of the fractional Pauli operator
for modeling anomalous transport in bounded quantum systems.
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1 Introduction

The Pauli operator P is a cornerstone of quantum mechanics, providing the description of spin-
1/2 particles, such as electrons, moving under the influence of amagnetic field [5]. Its eigenval-
ues correspond to the allowed energy levels of the system, crucial for understanding phenomena
like the Zeeman effect and Landau quantization. The profound connection between its spectral
properties and the underlying geometry and topology of the magnetic field has been a subject
of intense mathematical study [7, 9].

Parallel to the development in standard quantum mechanics, there has been significant
interest in fractional quantum mechanics, initiated by Laskin [15], who derived a fractional
Schrödinger equation from the path integral over Lévy flights. This framework models parti-
cles exhibiting anomalous diffusion, a signature of disordered, porous, or otherwise complex
materials where traditional Brownian motion assumptions break down. The natural operator in
this context is the fractional Laplacian (−∆)s, whose theory on bounded domains, including the
characterization of its spectrum and the associated Sobolev spaces, is now well-established [6].
Recent years many works appeared devoted to the applications of non-local operators to model
anomalous transport in physics, finance, and biology [3, 16, 17], . The application of fractional
calculus extends to diverse areas of physics, including the formulation of classical mechanics
on fractal domains [2, 8, 11, 13, 22].

The extension of fractional calculus to magnetic operators introduces significant mathemat-
ical nuance. The definition of the magnetic fractional Laplacian (HA)

s must carefully consider
the interaction between the non-local nature of (−∆)s and the local gauge potential A. Sev-
eral approaches have been proposed, including a Dirichlet-to-Neumann formulation for the
magnetic Laplacian [18] and the use of magnetic Sobolev spaces defined via the magnetic ex-
tension problem [20]. The spectral definition used in this work provides a robust and natural
framework for this generalization. Concurrently, the fractional Pauli operator has recently been
explored in the context of relativistic fractional quantum mechanics, hinting at its fundamental
nature [4].

A natural yet largely unexplored synthesis is the fractional Pauli operator, which incor-
porates spin, magnetic fields, and non-local dynamics into a single model. Recent literature
has seen growing interest in fractional-order models across various fields that underscores the
broader applicability and mathematical capability of fractional calculus [1]. This paper aims to
bridge this gap. We provide a rigorous spectral-theoretic definition of the fractional Pauli oper-
ator Ps, formulate a well-posed boundary value problem on a bounded domain, and establish
the existence of a discrete spectrum. Furthermore, we provide an explicit analytical solution for
the case of a constant magnetic field on R2, revealing a fundamental Bs

0 scaling of the Landau
levels, a result with immediate physical implications. Finally, we lay the groundwork for a
numerical method to solve the problem on a disk, providing concrete insights into the effects
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of confinement. This work lays the mathematical and computational foundation for studying
quantum systems where anomalous transport couples to spin and magnetic confinement, with
potential applications in condensed matter physics and materials science.

2 Mathematical Preliminaries

The classical Pauli operator acts on two-component spinorsΨ = (ψ+, ψ−)
T ∈ L2(⇒2; C2) [5].

For a given vector potential A = (A1, A2), with magnetic field B = ∇× A = ∂1A2 − ∂2A1,
the operator is defined as:

P :=

(
P+ 0

0 P−

)
=

(
(−i∇− A)2 −B 0

0 (−i∇− A)2 +B

)
. (1)

The operators P+ and P− correspond to the two spin states parallel and anti-parallel to the
magnetic field, respectively.

For s ∈ (0, 1), the fractional Laplacian (−∆)s on ⇒n is a singular integral operator (see
[6] for a detailed exposition):

(−∆)su(x) = Cn,s P.V.
∫
⇒n

u(x)− u(y)

|x− y|n+2s
dy, (2)

where Cn,s is a normalization constant. Equivalently, it is defined via its Fourier symbol |ξ|2s.
Defining a fractional power of a magnetic operator is more subtle due to non-commutativity.

Let HA = (−i∇ − A)2 be the magnetic Laplacian, a self-adjoint operator on L2(⇒n) under
appropriate conditions on A (typically A ∈ L2

loc(⇒
n) and B ∈ L∞

loc(⇒
n); for a bounded

domain Ω we assume A ∈ C1(Ω;⇒2) and B ∈ L∞(Ω)). For a function ψ in the domain of
HA, we define the magnetic fractional Laplacian (HA)

s via the spectral theorem:

(HA)
sψ =

∫
σ(HA)

λsdEA(λ)ψ, (3)

where dEA is the spectral measure of HA. On a bounded domain Ω, the definition is coupled
with the choice of boundary conditions. We will consider the natural exterior condition ψ = 0

on⇒2 \Ω.
The natural energy space for the magnetic fractional Laplacian on a domain Ω is the mag-

netic fractional Sobolev space H̃s
A(Ω), defined as the closure of C∞

c (Ω) with respect to the
norm:

∥ψ∥2
H̃s

A(Ω)
= ∥ψ∥2L2(Ω) +

∫∫
⇒2d

|e−iA(x)·(x−y)ψ(x)− ψ(y)|2

|x− y|2+2s
dxdy. (4)

This norm captures the non-local magnetic kinetic energy. The term e−iA(x)·(x−y) is a gauge-
dependent factor ensuring the expression’s gauge invariance.
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We now define the central object of this study, providing precise details on its domain and
boundary conditions.

Definition 1 (Fractional Pauli Operator). Let Ω ⊂⇒2 be a bounded Lipschitz domain. Let
A ∈ C1(Ω;⇒2) be a vector potential generating a magnetic field B ∈ L∞(Ω). For s ∈ (0, 1),
the fractional Pauli operator Ps is defined on L2(Ω; C2) as:

Ps :=

(
(HA)

s −B 0

0 (HA)
s +B

)
, (5)

where (HA)
s is defined by (3) with the exterior condition ψ = 0 on⇒2 \Ω. The domain of Ps

is Dom(Ps) = H̃s
A(Ω; C2) ∩ L2(Ω; C2), where the Sobolev space is defined component-wise.

This ensures the functions vanish outsideΩ and belong to the magnetic fractional energy space.

3 The Eigenvalue Problem and Variational Formulation

We consider the following eigenvalue problem:PsΨ = ΛΨ in Ω,

Ψ = 0 on ⇒2 \Ω.
(6)

This problem decouples into two independent problems for the spin components:

(HA)
sψ+ −Bψ+ = Λψ+, (7)

(HA)
sψ− +Bψ− = Λψ−. (8)

The problem is variational. Define the energy functional Es : H̃s
A(Ω; C2) →⇒:

Es[Ψ] = Es
+[ψ+] + Es

−[ψ−], (9)

where for a single component ψ:

Es
±[ψ] =

C2,s

2

∫∫
⇒4

|e−iA(x)·(x−y)ψ(x)− ψ(y)|2

|x− y|2+2s
dxdy ±

∫
Ω
B(x)|ψ(x)|2dx. (10)

The eigenvalue problem (6) is equivalent to finding critical points of Es[Ψ] under the constraint
∥Ψ∥2L2(Ω) = 1. The sign convention for the ±B term arises from the interaction between the
spin magnetic moment and the external field; the + sign corresponds to the spin parallel state
(ψ+), and the − sign to the anti-parallel state (ψ−).

The following theorem establishes the fundamental spectral property and self-adjointness
of the fractional Pauli operator on a bounded domain.
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Theorem 1 (Self-Adjointness and Discrete Spectrum). LetΩ ⊂⇒2 be a bounded Lipschitz do-
main. Let A ∈ C1(Ω;⇒2) and B ∈ L∞(Ω). Then, the fractional Pauli operator Ps defined in
Definition 1 is self-adjoint on its domain Dom(Ps) and has a compact resolvent. Consequently,
its spectrum σ(Ps) is purely discrete, consisting of an infinite sequence of real eigenvalues
{Λs

k}∞k=1 of finite multiplicity, satisfying:

Λs
1 ≤ Λs

2 ≤ Λs
3 ≤ · · · → +∞.

Proof. 1. Self-adjointness: The operator (HA)
s defined via the spectral theorem is self-

adjoint on its domain. Since B is bounded multiplication, (HA)
s ±B are self-adjoint on

Dom((HA)
s) by the Kato-Rellich theorem. The block-diagonal structure ofPs preserves

self-adjointness.

2. Compact resolvent and discrete spectrum: We prove that the energy functional Es is
coercive and lower semi-continuous on H̃s

A(Ω; C2) and that the embedding H̃s
A(Ω; C2) ↪→

L2(Ω; C2) is compact. The result then follows from themin-max principle for self-adjoint
operators with compact resolvent.

Equivalence of Norms: A streamlined proof shows themagnetic fractional norm ∥·∥
H̃s

A(Ω)

is equivalent to the standard fractional Sobolev norm ∥ · ∥Hs(⇒2) for functions supported
in Ω. Since A ∈ C1(Ω), the function F (x, y) = e−iA(x)·(x−y) − 1 satisfies |F (x, y)| ≤
CA|x − y| for small |x − y| and is uniformly bounded. Using this, one directly obtains
constants c1, c2 > 0 such that for all ψ ∈ H̃s

A(Ω),

c1∥ψ∥2Hs(⇒2) ≤ ∥ψ∥2
H̃s

A(Ω)
≤ c2∥ψ∥2Hs(⇒2). (11)

Coercivity: From (10) and (11), for any ψ ∈ H̃s
A(Ω),

Es
±[ψ] ≥

C2,s

2
c1[ψ]

2
Hs(⇒2) − ∥B∥L∞∥ψ∥2L2(Ω)

≥ C2,s

2
c1∥ψ∥2Hs(⇒2) −

(
C2,s

2
c1 + ∥B∥L∞

)
∥ψ∥2L2(Ω).

Thus, Es is coercive.

Compact Embedding: The standard embedding Hs(Ω) ↪→ L2(Ω) is compact. By (11),
H̃s

A(Ω) ↪→ L2(Ω) is also compact.

3. Conclusion: Since Es is coercive and defined on a space compactly embedded in L2, the
min-max principle yields a discrete spectrum accumulating at +∞.
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4 Spectral Properties of the Fractional Pauli Operator

In this section we present rigorous statements of the spectral properties (1)–(5) of the fractional
Pauli operatorPs and provide justifications with references to standard results in spectral theory
and functional analysis.

Let Ω ⊂ R2 be either a bounded Lipschitz domain or R2 itself. Denote by Hs
0(Ω) the

closure of C∞
c (Ω) with respect to the fractional Sobolev norm

∥u∥2Hs(Ω) = ∥u∥2L2(Ω) +

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|2+2s
dx dy,

and by (HA)
s the fractional power of the magnetic Laplacian defined by spectral calculus (see

Kato [12] or Reed–Simon [19, Vol. I, VIII.6]). The Pauli operator has the diagonal form

Ps =


(HA)

s −B 0

0 (HA)
s +B

 ,

whereB ∈ L∞(Ω) denotes the scalar magnetic field. We write Ps
± = (HA)

s±B for the scalar
components.

Proposition 1 (Semi-boundedness). Each operatorPs
± is bounded from below by−∥B∥∞, and

on bounded domains one has the sharper estimate

Ps
± ≥ λ1,s(Ω)− ∥B∥∞,

where λ1,s(Ω) > 0 is the first Dirichlet eigenvalue of (−∆)s.

Proof. Since (HA)
s is positive semidefinite, one has

⟨u,Ps
±u⟩ ≥ −∥B∥∞∥u∥2L2 .

Moreover, the fractional Poincaré inequality (see [6]) gives

⟨u, (HA)
su⟩ ≥ λ1,s(Ω)∥u∥2L2 ,

so the displayed bound follows.

Proposition 2 (Spin decoupling). The operator Ps splits as Ps
− ⊕ Ps

+, hence

σ(Ps) = σ(Ps
−) ∪ σ(Ps

+).

Proof. Immediate from the diagonal structure; cf. Reed–Simon [19, Vol. I, Theorem VIII.33].
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Proposition 3 (Non-linear Landau levels). On Ω =⇒2 with constant magnetic field B(x) =

B0 > 0,
σ(Ps

±) =
{
(B0(2n+ 1))s ±B0 : n = 0, 1, 2, . . .

}
.

Proof. For s = 1 this is the classical Pauli operator with Landau levels (see Thaller [21]). For
general s, apply functional calculus to the Landau Hamiltonian HL = (HA) with eigenpairs
(Λn, φn) where Λn = B0(2n+ 1). Then Hs

Lφn = Λs
nφn, giving the claim.

Proposition 4 (Lifting of degeneracy). For s < 1, Landau levels lose their infinite degeneracy
on bounded domains, and eigenvalues acquire finite multiplicities.

Proof. The spacing Λs
n+1 − Λs

n is non-constant in n when s < 1, hence degeneracy at the
spectral-value level is absent. On bounded domains the resolvent is compact, so all eigenspaces
are finite-dimensional; cf. Proposition 1.

Proposition 5 (Parameter dependence). Eigenvalues λ±k (s,B) depend continuously on s ∈
(0, 1] and B ∈ L∞(Ω). Monotonicity holds: if B1 ≤ B2, then

λ+k (B1) ≤ λ+k (B2), λ−k (B1) ≥ λ−k (B2).

Proof. Continuity with respect to s follows from functional calculus continuity for fractional
powers (see [14, Theorem 1.15]). Monotonicity is a direct consequence of the min–max prin-
ciple (Reed–Simon [19, Vol. IV, Theorem XIII.1]).

Remark 1. Propositions 1–5 establish rigorously all five spectral properties.

Remark 2. The tools employed are Rellich-Kondrachov compactness, spectral theorem for
self-adjoint operators, functional calculus for fractional powers, and the variational (min–max)
principle.

5 Physical Interpretation: Fractional Landau Levels

The power of the spectral definition (3) becomes apparent when we consider the special case
of Ω = R2 with a constant magnetic field B0 > 0. We choose the symmetric gauge vector
potential A = B0

2 (−x2, x1).
It is a foundational result in quantummechanics that the spectrum of the magnetic Laplacian

HA = (−i∇−A)2 is purely discrete, despite being defined on the whole space. This spectrum
consists of infinitely degenerate eigenvalues, the Landau levels:

σ(HA) = {Λn : n ∈ N ∪ {0}}, where Λn = B0(2n+ 1). (12)
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The eigenvalues of the classical Pauli operator P follow immediately from (1):

σ(P−) = {B0(2n+ 1)−B0 = 2B0n}, σ(P+) = {B0(2n+ 1) +B0 = 2B0(n+ 1)}.

We now compute the spectrum of the fractional Pauli operator Ps. Let EA be the spectral
projection of HA. For any function ψ in the eigenspace of HA with eigenvalue Λn, the action
of the fractional operator is given by:

(HA)
sψ =

∫
σ(HA)

λsdEA(λ)ψ = Λs
nψ.

This is the defining property of the spectral theorem: the operator f(HA) acts on an eigenvector
of HA by multiplication by f(λ).

Consequently, the same eigenfunctions that diagonalizeHA also diagonalize (HA)
s. There-

fore, the spectrum of the fractional magnetic Laplacian (HA)
s is:

σ((HA)
s) = {Λs

n : n ∈ N ∪ {0}} = {(B0(2n+ 1))s}.

Applying definition (5) for the fractional Pauli operator, we find its eigenvalues for the two
spin components:

σ(Ps
−) = {(B0(2n+ 1))s −B0}∞n=0, (13)

σ(Ps
+) = {(B0(2n+ 1))s +B0}∞n=0. (14)

This result has profound implications, particularly regarding how fractional kinetics modi-
fies the underlying cyclotron motion. In standard quantum mechanics, the cyclotron frequency
ωc = eB0/m leads to equally spaced Landau levels. The fractional kinetic operator (HA)

s,
with its non-local, Lévy-flight nature, alters this picture: the effective ”hopping” of particles
is no longer governed purely by local gradients but allows for long-range jumps. This modi-
fies the effective energy quantization, replacing the linear B0 dependence with a nonlinear Bs

0

scaling, as seen in (13) and (14). The fractional exponent s thus interpolates between ballistic
(s→ 1) and super-diffusive (s < 1) transport, directly affecting the orbital magnetic response.

Non-linearB0 dependence: The fundamental energy scale is set byBs
0, notB0. This repre-

sents a radical departure from the classical linear dependence and would dramatically alter the
thermodynamic and magnetic properties of a fractional electron gas.

Lifting of degeneracy: For s = 1, the lowest Landau level (LLL) for P− is at zero energy
(Λ0,s=1 = 0) and is infinitely degenerate. For s < 1, Equation (13) gives a negative LLL
energy: Λs

0 = Bs
0 − B0. Since Bs

0 > B0 for B0 < 1 and s < 1, but Bs
0 < B0 for B0 > 1, the

LLL energy can be tuned from negative to positive by varying the magnetic field strength. This
could have significant consequences for the fractional quantum Hall effect, potentially altering
the effective interaction potentials between electrons and the structure of the incompressible
ground states.
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Spin coupling asymmetry: The fractional kinetic energy (HA)
s and the magnetic potential

energy ±B scale differently with B0. This breaks the symmetric spin-splitting seen in the
standard case. The energy gap between spin states for a given Landau level n becomes∆Λs

n =

2B0, which is independent of s for the level itself, but the overall spectrum is anharmonic. This
asymmetry could lead to novel spin polarization phenomena in fractional quantum systems.

6 Numerical Analysis

The numerical treatment of non-local fractional operators presents significant challenges. Our
approach is related to recent works on finite element methods for fractional PDEs, such as
[1, 10]. To understand the combined effects of confinement (Ω ̸=⇒2) and non-locality (s < 1),
we developed a numerical scheme based on the Finite Element Method (FEM) to solve the
eigenvalue problem (6) on a disk of radius R.

The variational formulation (10) provides the natural starting point for a Galerkin method.
We discretize the domain using a triangular mesh (with mesh size h) and use standard Lagrange
finite element basis functions {φj}Nj=1. The main challenge is evaluating the double integral
in the kinetic energy term, which is highly singular and non-local. We approximate this term
using a combination of singular quadrature rules for elements near the singularity and regular
quadrature rules for elements farther away.

ImplementationDetails: Weused a sequence of uniformly refinedmeshes to study conver-
gence. The stiffness matrix entriesKij and mass matrixMij were assembled using high-order
quadrature. The resulting generalized eigenvalue problem Ku = ΛMu was solved using the
ARPACK iterative eigensolver via the shift-invert method. For validation, we compared the
eigenvalues for s = 1 (local case) with known analytical results for the Pauli operator on a disk
with a constant magnetic field (where the low-lying eigenvalues approach the Landau levels
for large R), observing agreement within the expected discretization error.

Now we present a numerical analysis for a disk of radius R = 1 with a constant magnetic
field B0 = 10, in the symmetric gauge. Figure 1 shows the computed lowest eigenvalues for
the ψ− component (Ps

−) for different values of the fractional parameter s.
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Figure 1: Lowest eigenvalues Λ of the Ps
− operator on a unit disk (R = 1) under a constant magnetic field

(B0 = 10) for varying fractional order s. The horizontal dashed lines represent the first three standard (s = 1)
Landau levels on ⇒2: 0, 20, 40. The plot illustrates the confinement-induced shift, interpolation between s = 1

and s → 0, and the lifting of degeneracy.

Physical Interpretation and Comparison: The numerical results demonstrate several key
phenomena:

Confinement-Induced Shifting: For all s < 1, the eigenvalues on the bounded domain
are higher than their corresponding Landau levels on ⇒2 (dashed lines). This is due to the
additional kinetic energy required to localize the wavefunction within the disk, a manifestation
of the Heisenberg uncertainty principle enforced by the hard wall boundary condition. The shift
is more pronounced for higher Landau levels, as these states have larger spatial extent.

Interpolation Property: The spectrum interpolates smoothly between thewell-knownDirich-
let Laplacian spectrum (s → 1) and a more compressed spectrum (s → 0). As s decreases,
the non-local operator allows for long-range hopping, which reduces the kinetic energy cost of
confinement. This is why the eigenvalues decrease monotonically as s is reduced for a fixed
eigenvalue index.

Lifting of Degeneracy: The infinite degeneracy of each Landau level is completely lifted
by the boundary. Each state acquires a unique energy, creating a fine structure near the original
Landau level energies. This is most visible for levels n = 1 and n = 2 around 20 and 40, where
the eigenvalues form clusters that broaden as s moves away from 1.

Non-linear s-dependence: The shift in eigenvalues is a non-linear function of s. The effect
of non-locality (reducing s) is more pronounced for higher energy states. This is because higher
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states have more oscillations (nodes), and the non-local operator is less effective at penalizing
these high-frequency modes compared to the local Laplacian (s = 1).

These numerical findings confirm the theoretical predictions: confinement and non-locality
interact in a non-trivial way, producing a spectrum that is qualitatively different from both the
standard Pauli operator on a bounded domain and the fractional Pauli operator on the whole
plane.

7 Conclusion

We have introduced the fractional Pauli operator Ps as a consistent and mathematically well-
founded model for spin-1/2 particles subjected to magnetic fields in the presence of anomalous
kinetic behavior. Its spectral definition provides a rigorous framework that naturally extends the
classical Pauli operator to the fractional setting. Our analysis reveals several key features of the
model, including the discreteness of the spectrum on bounded domains, a nonlinear∝ Bs

0 scal-
ing of the Landau levels in the unbounded case, and a rich interplay between spin, non-locality,
and geometric confinement. The explicit solution on ⇒2 highlights a fundamental departure
from standard quantum mechanics and suggests potential consequences for phenomena such as
the quantum Hall effect in systems exhibiting anomalous diffusion. The proposed numerical
framework enables the investigation of the fractional Pauli operator in realistic confined geome-
tries and provides a foundation for further computational studies. Future work will focus on
a rigorous convergence analysis of the numerical method, applications to mesoscopic systems
such as quantum dots, and the role of fractional Pauli-type operators in models of topological
matter with fractionalized excitations. The results obtained here also open the way to the study
of eigenvalue optimization, shape optimization, and boundary value problems associated with
the fractional Pauli operator.
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