

Received: xxx Accepted: xxx Published: xxx.

DOI: xxxxxxx

Volume xxx, Issue xxx, p.p. 1-19: xxx

Research Article

Open Access

Control and Optimization in Applied Mathematics - COAM

A Novel Algorithm for Optimizing the Covering of a Bounded Planar Domain with Simple Geometric Figures

Ali Shokri¹ , Roman Rafiq Maharramov² , Mutallim Mirzaahmed Mutallimov^{3,4,5} ,
Elshan Giyas Hashimov⁴ , Ikin Aladdin Maharramov⁴

¹ Department of Applied Mathematics, Sahand University of Technology, Sahand New-Town, Tabriz, Iran

² Military Scientific-Research Institute, National Defense University of the Ministry of Defense, Baku, Azerbaijan

³ Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan

⁴ Azerbaijan Technical University, Baku, Azerbaijan

⁵ Institute of Information Technologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan

✉ Correspondence:

Ali Shokri

E-mail:

ali_shokri@sut.ac.ir

Abstract. In this paper, we address the problem of covering a given bounded domain in the plane using simple geometric figures. The proposed approach is based on a discretization of the domain, which leads to a corresponding discrete optimization problem. To solve this problem, we introduce a novel iterative algorithm that minimizes a given objective function by generating successive neighboring nodal points. As the covering elements, circular sectors with centers located outside the domain are considered. The objective is to determine the locations of the sector centers and their radii in such a way that the entire domain is completely covered, while the ratio of the total area of the covering sectors to the area of the domain is minimized. Finally, the algorithm is demonstrated on a representative example, and the resulting coverings are illustrated.

How to Cite

Shokri, A., Maharramov, R.R., Mutallimov M.M., Hashimov, E.G., Maharramov, I.A. (2026). "A novel Algorithm for optimizing the covering of a bounded planar domain with simple geometric figures", *Control and Optimization in Applied Mathematics*, 11(-): 1-19, doi: 10.30473/coam.2026.73282.1280.

Keywords. Optimal coverage, Discretization of the domain, Discrete optimization.

MSC. 81T80, 93A30, 97M10.

<https://mathco.journals.pnu.ac.ir>

©2026 by the authors. Lisensee PNU, Tehran, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY4.0) (<http://creativecommons.org/licenses/by/4.0>)

1 Introduction and literature context

The problem of covering a planar domain with simple geometric figures is a fundamental topic that arises in a wide range of economic, technical, and geographical applications. Problems of a military nature can also be associated with this class of optimization tasks. It should be noted that the external (covering) and internal (packing) approximation of sets by simple geometric elements has been studied since the time of Lagrange and Gauss [4, 17, 22]. For example, in [12, 14, 27, 28], the problem of covering a given region in various planes using circles of small diameter was investigated. In [18], Lebedev proposed an iterative method for the optimal covering of a nonconvex simply connected set by circles. Problems of this type also arise in the design of transportation networks or in determining optimal server locations in computer networks [9, 16].

An analysis of the existing literature shows that, in most studies, the covering elements are circular regions whose centers lie inside the domain to be covered. However, situations in which the centers of the circles are located outside the target domain are also of practical interest. In such cases, covering the entire circle is unnecessary, since a portion of it lies outside the domain. Therefore, it is more appropriate to perform the covering using circular sectors with prescribed central angles.

It is worth noting that in [14, 28], the problem of optimal coverage is addressed in terms of minimizing the radius of the covering circles. In contrast, the optimal covering of a bounded, possibly nonconvex domain by circular sectors with fixed radii and centers located outside the domain can be formulated as the problem of ensuring complete coverage of the domain while maximizing the total area of intersection between the sectors and the region of interest [18, 27].

A practical application of this problem arises in the optimal placement of land plots located outside an irrigated region for sector-based irrigation systems. Similar formulations also appear in military applications, such as the optimal deployment of radar systems for reconnaissance over enemy territory [9, 16].

Since the problem considered in this work differs from classical covering problems based on minimal radii, our objective is to develop a new procedure for the optimal coverage of a domain using circular sectors. In this setting, it is necessary to determine not only the locations of the sector centers, but also the orientations of the radius lines defining the sectors. To this end, we propose to study the problem in both continuous and discrete frameworks. In the discrete case, the domain to be covered and the circular sectors are discretized and represented in the form of a computational grid.

The remainder of the paper is organized as follows. The formal problem statement is presented in Section 2. Section 3 introduces the required preliminaries. In Section 4, the discretization of the domain is discussed, and a new algorithm for determining an optimal covering is

proposed and analyzed. Numerical implementation and illustrative examples are also provided in this section. Finally, concluding remarks are given in Section 5.

2 Problem Statement

Let D be a bounded, generally nonconvex domain in the plane (see Figure 1). Consider a set of n points $\{O_i\}_{i=1}^n$ located in the plane such that

$$O_i \notin D, \quad i = 1, 2, \dots, n,$$

that is, all points O_i lie outside the domain D . For each point O_i , consider a circle with center O_i and radius r_i . From each such circle, we define a circular sector with fixed central angle α , which is denoted by $P(O_i, r_i, \alpha)$. Some of these sectors may overlap. Let k denote the number of distinct radii among the sectors; clearly, $k \leq n$.

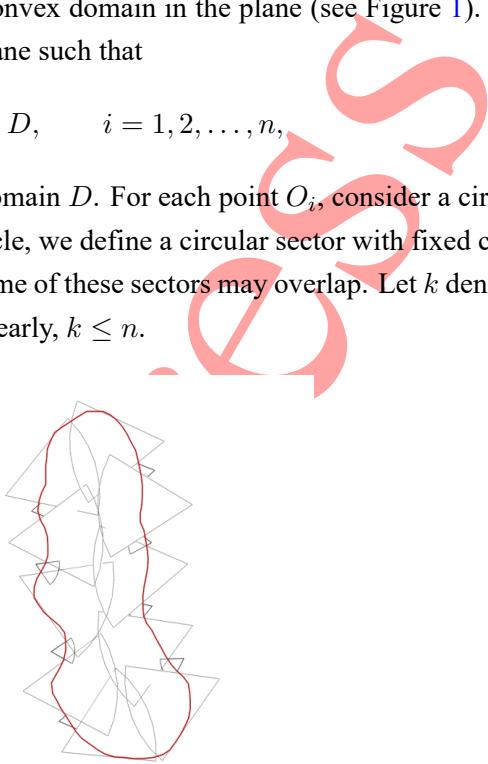


Figure 1: Covering a non-convex domain with circular sectors.

Definition 1. If

$$D \subset \bigcup_{i=1}^n P(O_i, r_i, \alpha),$$

then the family of sectors $\{P(O_i, r_i, \alpha)\}_{i=1}^n$ is said to cover the domain D .

Definition 2. A covering of the domain D by the family of sectors $\{P(O_i, r_i, \alpha)\}_{i=1}^n$ is called *optimal* if the total area of the parts of the sectors lying outside the domain D is minimal, that is,

$$J = \min \sum_{i=1}^n S(P(O_i, r_i, \alpha) \setminus D), \quad (1)$$

where $S(K)$ denotes the area of a planar set K .

According to Definition 1, the covering of the domain D by the family of sectors $P(O_i, r_i, \alpha)$ implies that for every point $(x, y) \in D$ there exists at least one sector $P(O_i, r_i, \alpha)$ such that $(x, y) \in P(O_i, r_i, \alpha)$. In general, such a sector may not be unique.

The algorithm for determining an optimal covering is constructed as follows. The positions of the sector centers $\{O_i\}$, and consequently the orientations of the sectors $P(O_i, r_i, \alpha)$, are varied so that the family of sectors covers the domain D while minimizing the objective functional (1).

It should be noted that the sector $P(O_i, r_i, \alpha)$ is not uniquely defined by the parameters O_i , r_i , and α alone. Indeed, for a given circle, infinitely many sectors with the same central angle α may be constructed. Therefore, to uniquely specify a sector, it is necessary to define the directions of the radii forming the angle α .

Let α_1^i and α_2^i ($\alpha_1^i < \alpha_2^i$) denote the azimuthal angles of the bounding radii of the sector (see Figure 2).

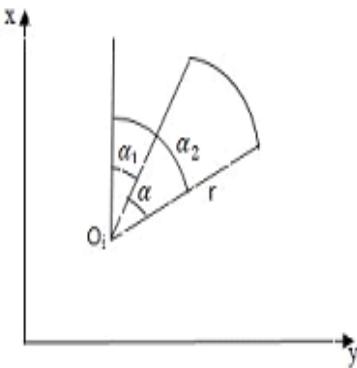


Figure 2: A circular sector with center O_i , central angle α and azimuths α_1 and α_2 .

As shown in Figure 2, the relation

$$\alpha = \alpha_2^i - \alpha_1^i$$

holds. Consequently, if the parameters r_i , α_1^i , and α_2^i are specified, the sector is uniquely determined. In this case, it is more convenient to denote the sector by

$$P(O_i, r_i, \alpha_1^i, \alpha_2^i).$$

Thus, the problem reduces to determining the locations of the centers O_i and the corresponding azimuthal angles α_1^i and α_2^i such that the covering condition is satisfied and the objective functional (1) is minimized, subject to the constraint $\alpha = \alpha_2^i - \alpha_1^i$. If the central angle α is fixed, then it suffices to determine only one of the angles α_1^i or α_2^i .

Finally, we note that the radii r_i are not arbitrary. In this work, we assume that the covering consists of sectors with only two possible radii, denoted by r and R . Let m be the number

of sectors with radius r and l the number of sectors with radius R . Then the total number of sectors is given by

$$n = m + l.$$

3 Algorithm for Finding the Optimal Cover of the Domain

We now consider the construction of an algorithm for determining an optimal covering in the sense of Definition 2. Recall that the objective functional is given by (1). Since the center points O_i are located in the plane, they can be represented as $O_i = (x_i, y_i)$. Accordingly, the sector $P(O_i, r_i, \alpha)$ can be written as $P(x_i, y_i, r_i, \alpha)$.

Let

$$S(P(x_i, y_i, r_i, \alpha) \setminus D) = F_i(x_i, y_i, r_i, \alpha),$$

where F_i denotes the area of the part of the i th sector lying outside the domain D . Since each radius satisfies $r_i \in \{r, R\}$, the objective functional can be decomposed into two groups. Specifically, for $i = 1, \dots, m$ we have

$$F_i(x_i, y_i, r_i, \alpha) = F_r(x_i, y_i, \alpha),$$

and for $i = m + 1, \dots, m + l$,

$$F_i(x_i, y_i, r_i, \alpha) = F_R(x_i, y_i, \alpha),$$

where $m + l = n$.

Therefore, the objective functional (1) can be written as

$$F(x_1, y_1, \dots, x_n, y_n) = \sum_{i=1}^m F_r(x_i, y_i, \alpha) + \sum_{i=m+1}^n F_R(x_i, y_i, \alpha). \quad (2)$$

Thus, the problem of finding an optimal covering reduces to determining the sets of points

$$\{(x_1, y_1), \dots, (x_m, y_m)\} \quad \text{and} \quad \{(x_{m+1}, y_{m+1}), \dots, (x_n, y_n)\}$$

such that the functional (2) attains its minimum.

In the problem formulation, it is required that the center points O_i lie outside the domain D , i.e.,

$$(x_i, y_i) \notin D, \quad i = 1, \dots, n.$$

To define a suitable search region, let

$$x_{\max} = \max\{x \mid (x, y) \in D\},$$

$$\begin{aligned}x_{\min} &= \min\{x \mid (x, y) \in D\}, \\y_{\max} &= \max\{y \mid (x, y) \in D\}, \\y_{\min} &= \min\{y \mid (x, y) \in D\}.\end{aligned}$$

Denote by Q the rectangle with vertices

$$(x_{\min}, y_{\min}), (x_{\max}, y_{\min}), (x_{\max}, y_{\max}), (x_{\min}, y_{\max}).$$

Clearly, $D \subset Q$ (see Figure 3).

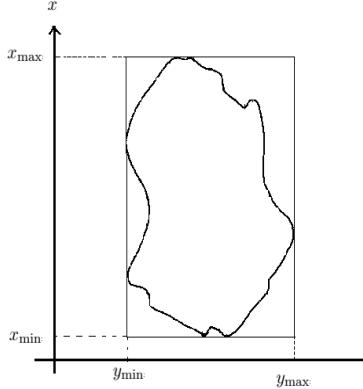


Figure 3: Rectangle Q containing domain D .

It is therefore natural to restrict the search for the center points (x_i, y_i) to the set $Q \setminus D$. Introduce the vector

$$z = (z_1, z_2, \dots, z_{2n}) = (x_1, y_1, x_2, y_2, \dots, x_n, y_n),$$

and define the admissible set

$$K = (Q \setminus D)^n \subset \mathbb{R}^{2n}.$$

Then the constrained optimization problem can be written as

$$\min_{z \in K} F(z). \quad (3)$$

To solve the constrained problem (3), we employ a penalty method. Define the penalty function

$$\varphi_m(z) = \begin{cases} 0, & z \in K, \\ m(|z|^2 + 1)^2, & z \notin K, \end{cases} \quad (4)$$

where $m > 0$ is a penalty parameter.

The constrained problem (3) is thus approximated by the unconstrained optimization problem

$$\min f_m(z) = F(z) + \varphi_m(z). \quad (5)$$

Let z_0 denote the solution of the constrained problem (3), and let $z_0^{(m)}$ be the minimizer of (5). Then, under standard assumptions on F , it follows that

$$\lim_{m \rightarrow \infty} z_0^{(m)} = z_0. \quad (6)$$

Hence, for sufficiently large values of m , the solution of the unconstrained problem (5) provides an accurate approximation of the solution to (3).

To solve the unconstrained problem (5), a gradient-based iterative scheme can be applied, for example,

$$z^{k+1} = z^k - t \nabla f_m(z^k), \quad (7)$$

where $t > 0$ is a step size parameter. Under appropriate regularity and step size conditions, the sequence $\{z^k\}$ generated by (7) converges to a minimizer of (5).

4 Discretization of the Domain and Solution of the Discrete Optimization Problem

In Section 3, the problem was formulated and analyzed in the continuous setting, where it was reduced to the unconstrained optimization problem (5). Although a variety of numerical methods exist for solving such problems, in practice it is often difficult to verify the required regularity conditions for the objective function $f_m(z)$ or to guarantee convergence to a global minimum. For this reason, it is reasonable to consider alternative approaches. One effective technique is the discretization method.

To this end, we subdivide the rectangle Q containing the domain D into a uniform grid, as illustrated in Figure 4.

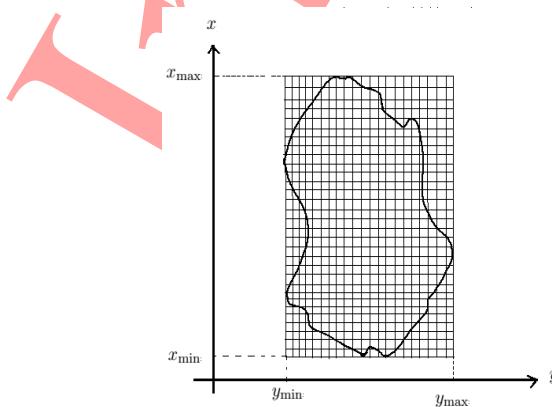


Figure 4: Discretization of the domain D and the rectangle Q .

Let n_x and n_y be positive integers, and define the grid steps

$$h_x = \frac{x_{\max} - x_{\min}}{n_x},$$

$$h_y = \frac{y_{\max} - y_{\min}}{n_y}.$$

The grid nodes are then given by

$$x_i = x_{\min} + ih_x, \quad i = 0, \dots, n_x,$$

$$y_j = y_{\min} + jh_y, \quad j = 0, \dots, n_y. \quad (8)$$

Clearly, $x_0 = x_{\min}$, $x_{n_x} = x_{\max}$, $y_0 = y_{\min}$, and $y_{n_y} = y_{\max}$.

Let $z_{ij} = (x_i, y_j)$. The set of all grid nodes approximating the rectangle Q is defined as

$$Q^* = \{z_{ij} \mid z_{ij} \in Q\}, \quad (9)$$

and the discrete approximation of the domain D is given by

$$D^* = \{z_{ij} \mid z_{ij} \in D\}.$$

Clearly, $D^* \subset Q^*$.

To discretize the objective functional (1), we first approximate each sector $P(O_i, r_i, \alpha)$ by the set

$$P_i^* = \{z_{ij} \mid z_{ij} \in P(O_i, r_i, \alpha)\}. \quad (10)$$

For any finite set A , let $N(A)$ denote the number of its elements. Then $N(P_i^* \setminus D^*)$ represents the number of grid nodes belonging to the i th sector that lie outside the domain D . Summing over all sectors yields the discrete approximation of the objective functional:

$$J \approx \bar{J} = \min \sum_{i=1}^n N(P_i^* \setminus D^*). \quad (11)$$

Thus, the discrete optimization problem consists in determining the sector centers

$$z_{ij} = (x_i, y_j) \in Q^* \setminus D^*, \quad (12)$$

such that the functional (11) attains its minimum. This problem is nonlinear and combinatorial in nature. The discrete optimization problem (11) with (12) is generally nonlinear.

Discrete optimization problems of this type can be addressed using a variety of methods, including dynamic programming, branch-and-bound techniques, heuristic and approximate algorithms, cutting-plane methods, and integer programming approaches [1, 2, 3, 5, 6, 7, 8, 10, 11, 21, 23, 24, 29, 30]. As the grid resolution increases (i.e., as n_x and n_y grow), the solution of the discrete problem (11) converges to that of the continuous optimization problem (3).

We now describe the specific discrete algorithm employed in this study. Following [13, 15, 19, 20, 25, 26, 31], let Q be a rectangle with vertices (x_0, y_0) , (x_0, y_p) , (x_l, y_p) , and (x_l, y_0)

such that $D \subset Q$, where $x_0 < x_{\min}$, $x_l > x_{\max}$, $y_0 < y_{\min}$, and $y_p > y_{\max}$. Define the grid steps

$$\begin{aligned} h_x &= \frac{x_l - x_0}{l}, \\ h_y &= \frac{y_p - y_0}{p}, \end{aligned} \quad (13)$$

where $l, p \in \mathbb{N}$, and the grid nodes

$$\begin{aligned} x_i &= x_0 + ih_x, \quad i = 0, \dots, l, \\ y_j &= y_0 + jh_y, \quad j = 0, \dots, p. \end{aligned}$$

Denote these nodes by $z_{ij} = (x_i, y_j)$, and define

$$Q^* = \{z_{ij} \mid z_{ij} \in Q\}, \quad D^* = \{z_{ij} \mid z_{ij} \in D\}. \quad (14)$$

Assume that m sectors have radius r_1 and n sectors have radius r_2 , with all sector centers located in $Q^* \setminus D^*$. Each sector is defined by

$$P((x^0, y^0), \alpha_1, \alpha_2, r) = \{(x, y) \mid \|(x, y) - (x^0, y^0)\| \leq r, \alpha_1 \leq \arg(x - x^0, y - y^0) \leq \alpha_2\}. \quad (15)$$

The covering sectors are denoted by

$$\begin{aligned} P_k &= P((x_k^0, y_k^0), \alpha_1^k, \alpha_2^k, r_1), \quad k = 1, \dots, m, \\ P_k &= P((x_k^0, y_k^0), \alpha_1^k, \alpha_2^k, r_2), \quad k = m + 1, \dots, m + n. \end{aligned}$$

Let

$$D_k^* = D^* \cap P_k \quad (16)$$

be the set of grid nodes of D^* covered by the sector P_k . Define

$$D^l = \bigcup_{k=1}^{m+n} D_k^*. \quad (17)$$

Clearly, $D^l \subset D^*$. If $D^l = D^*$, then the discrete domain is completely covered. Otherwise, the set $D^* \setminus D^l$ contains uncovered grid nodes.

Since $D^* \setminus D^l$ is finite, let

$$n(D^* \setminus D^l) = f(x_1^0, y_1^0, \dots, x_{m+n}^0, y_{m+n}^0, \alpha_1^1, \dots, \alpha_1^{m+n}) \quad (18)$$

denote the number of uncovered nodes. The objective is to determine the sector centers (x_k^0, y_k^0) and orientations α_1^k (with $\alpha_2^k = \alpha_1^k + 60^\circ$) such that

$$f = 0.$$

If this condition cannot be achieved, the function

$$f(x_1^0, y_1^0, \dots, x_{m+n}^0, y_{m+n}^0, \alpha_1^1, \dots, \alpha_1^{m+n}) \quad (19)$$

is minimized. If the resulting minimum is unsatisfactory, further improvement can be obtained by increasing the number of sectors, i.e., the number of barrier stations.

Before analyzing the algorithm for solving the discrete optimization problem, we first describe the procedure for constructing the set D^* .

Let $x_i, i = 0, \dots, l$, be the discretized coordinates along the x -axis. For each fixed x_i , we consider the straight line parallel to the y -axis that intersects the domain D . Clearly, this line intersects D^* at least at two points. Denote the lowest and highest such points by (x_i, y_{ib}) and (x_i, y_{is}) , respectively. By determining and connecting these points for all indices satisfying $0 < ib \leq i \leq is < l$, we obtain the boundary of the discrete domain D^* , which is denoted by ∂D^* . More precisely,

$$\partial D^* =$$

$$\{(x_i, y_t) \mid ib \leq t \leq is, (x_i, y_{ib}), (x_i, y_{is}) \in D^*, (x_i, y_{ib-1}), (x_i, y_{is+1}) \notin D^*, a \leq i \leq \mu\}.$$

Accordingly, the set D^* can be represented as

$$D^* = \{(x_i, y_j) \in Q^* \mid a < i < \mu, ib < j < is\}. \quad (20)$$

Next, we determine the set D^p . From relation (17), a point belongs to D^p if and only if it is contained in at least one of the sets D_k^* . Therefore, to identify the points of D^p , we consider all points of D^* defined by (20) and verify whether they are contained in any sector P_k . If a point does not belong to any sector P_k , it is excluded from D^p . The number of uncovered points is given by

$$n(D^* \setminus D^p) = n(D^*) - n(D^p),$$

and complete coverage of D^* is achieved if and only if this quantity is equal to zero.

We now describe the conditions under which a node $z_{ij} = (x_i, y_j) \in D^*$ belongs to a sector P_k . Let $z_k^0 = (x_k^0, y_k^0)$ be the center of the circle corresponding to P_k , and let α_1^k and $\alpha_2^k = \alpha_1^k + 60^\circ$ denote the azimuth angles defining the sector. First, we verify the distance condition

$$\|z_{ij} - z_k^0\| \leq r,$$

where $r = r_1$ for $k = 1, \dots, m$ and $r = r_2$ for $k = m + 1, \dots, m + n$. If this condition holds, the point lies within the corresponding circle.

To determine whether z_{ij} lies inside the sector P_k , we compute the azimuth angle of the ray originating from z_k^0 and passing through z_{ij} . First, we evaluate

$$\arctan \left(\frac{y_j - y_k^0}{x_i - x_k^0} \right),$$

and convert it to degrees using

$$\bar{\alpha} = \frac{180^\circ}{\pi} \arctan \left(\frac{y_j - y_k^0}{x_i - x_k^0} \right). \quad (21)$$

The azimuth angle $\alpha(\overrightarrow{z_k^0 z_{ij}})$ is then defined as

$$\alpha(\overrightarrow{z_k^0 z_{ij}}) = \begin{cases} \bar{\alpha}, & x_i > x_k^0, y_j > y_k^0, \\ 180^\circ + \bar{\alpha}, & x_i < x_k^0, y_j > y_k^0, \\ 180^\circ + \bar{\alpha}, & x_i < x_k^0, y_j < y_k^0, \\ 360^\circ + \bar{\alpha}, & x_i > x_k^0, y_j < y_k^0. \end{cases}$$

The point z_{ij} belongs to the sector P_k if

$$\alpha_1^k \leq \alpha(\overrightarrow{z_k^0 z_{ij}}) \leq \alpha_2^k.$$

In the special case where $\alpha_1^k < 360^\circ$ and $\alpha_2^k > 360^\circ$, the above condition is replaced by

$$\alpha_1^k \leq \alpha(\overrightarrow{z_k^0 z_{ij}}) \leq 360^\circ \quad \text{or} \quad 0^\circ \leq \alpha(\overrightarrow{z_k^0 z_{ij}}) \leq \alpha_2^k - 360^\circ.$$

If either condition holds, the point z_{ij} is considered an interior point of the sector.

Consequently, for given centers (x_k^0, y_k^0) and azimuths $\alpha_1^k, k = 1, \dots, m+n$, the set D^p can be constructed and the value $n(D^* \setminus D^p)$ can be evaluated. If this value is zero, then the sectors P_k with $\alpha_2^k = \alpha_1^k + 60^\circ$ provide a complete covering of D^* , that is,

$$D^* \subset \bigcup_{k=1}^{m+n} P_k.$$

Otherwise, the parameters (x_k^0, y_k^0) and α_1^k must be adjusted so that $n(D^* \setminus D^p)$ is minimized, which corresponds to solving the discrete optimization problem (5).

The centers (x_k^0, y_k^0) are required to satisfy

$$\begin{aligned} 2 &\leq d((x_k^0, y_k^0), D^*) \leq 3, \quad k = 1, \dots, m, \\ 5 &\leq d((x_k^0, y_k^0), D^*) \leq 7, \quad k = m+1, \dots, m+n. \end{aligned} \quad (22)$$

To minimize the objective function (19), we initially select centers satisfying (22). If a selected center violates these constraints, it is replaced by a neighboring node until the conditions are met. Afterward, the set D^p and the value $n(D^* \setminus D^p)$ are computed, yielding the value of the objective function f defined in (18). This procedure naturally leads to Algorithm 1, which is proposed for solving the discrete optimization problem (19).

Algorithm 1 Discrete optimization algorithm for optimal sector covering

Input. Set $i = 0$. Choose initial nodal points $z_k^0 = (x_k^0, y_k^0)$ and azimuth angles α_1^k , $k = 1, \dots, m + n$, such that $z_k^0 \in Q^* \setminus D^*$.

Step 1. If for some k the point z_k^0 does not satisfy condition (22), replace it with a neighboring nodal point that does not belong to D^* and satisfies (22).

Step 2. Evaluate

$$f_0 = f(x_1^0, y_1^0, \dots, x_{m+n}^0, y_{m+n}^0, \alpha_1^1, \dots, \alpha_1^{m+n})$$

using (18).

Step 3. For each $k = 1, \dots, m + n$, generate the neighboring candidates

$$(x_k^0 \pm h_x, y_k^0), \quad (x_k^0, y_k^0 \pm h_y), \quad \alpha_1^k \pm \Delta\alpha,$$

and evaluate the corresponding objective function values

$$f_k^{x+}, f_k^{x-}, f_k^{y+}, f_k^{y-}, f_k^{\alpha+}, f_k^{\alpha-}.$$

Step 4. Compute

$$f_{\min} = \min_{k=1, \dots, m+n} \{f_k^{x+}, f_k^{x-}, f_k^{y+}, f_k^{y-}, f_k^{\alpha+}, f_k^{\alpha-}\}.$$

Step 5. Update only the coordinate or azimuth corresponding to f_{\min} , obtaining a new nodal configuration $(x_k^1, y_k^1, \alpha_1^k)$.

Step 6. If $f_{\min} = 0$, terminate the algorithm.

Step 7. If $f_{\min} \leq f_0$, set $f_0 = f_{\min}$, increment $i = i + 1$, and return to Step 1.

Output. The value f_{\min} and the corresponding nodal configuration, which represents a local minimum of (19).

First, choose the points (x_k^0, y_k^0) that satisfy the conditions (22). If condition (22) is not satisfied for a given k , then a neighboring nodal point (x_k^1, y_k^1) of (x_k^0, y_k^0) is selected such that condition (22) holds. By moving to neighboring points, the distances $d((x_k^1, y_k^1), D^*)$ appearing in (9) can either increase or decrease. Repeating this procedure a finite number of times guarantees that condition (22) is satisfied.

After this adjustment, the set D^p is constructed and the value $n(D^* \setminus D^p)$ is computed. This value coincides with the objective function f defined in (18). Note that $n(D^* \setminus D^p)$ can also be computed by checking each point $z_{ij} \in D^*$. If a point z_{ij} does not belong to any of the sectors

P_k , then it is counted as an element of $D^* \setminus D^p$. By examining all points in D^* in this manner, the total number of uncovered points is obtained.

Based on the above discussion, we propose Algorithm 1 for solving the discrete optimization problem (19).

The proposed algorithm minimizes the objective function (19) by successively moving to neighboring nodal points until a local minimum is reached.

Example 1. Consider a square region D (Figure 5, left) with two types of devices: four devices with radius $R = 40$ km and sector angle $\alpha = 60^\circ$, and thirteen devices with radius $R = 10$ km and sector angle $\alpha = 60^\circ$. In this example, we investigate the maximum coverage of the domain D using Algorithm 1.

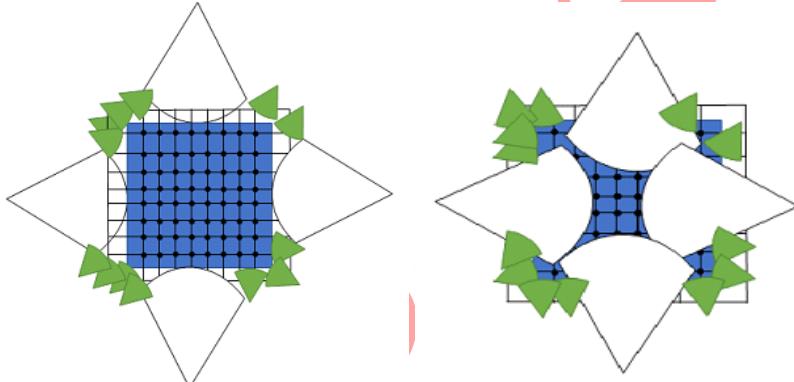


Figure 5: Initial configuration (left) and intermediate configuration (right).

By applying Algorithm 1 and iterating through its steps, the devices gradually move toward the coverage area and their penetration angles are adjusted so as to cover increasing portions of D (Figure 5, right). By performing additional iterations of the algorithm, the devices eventually achieve complete coverage of the desired region (Figure 6).

More precisely, in the initial configuration there are 64 nodal points within the square domain D to be covered (Figure 5, left). After several iterations, an intermediate configuration is obtained (Figure 5, right), in which 46 nodal points are covered by the devices. Upon full and accurate execution of the algorithm, the remaining 18 uncovered nodal points are also covered, resulting in complete coverage of the square domain D (Figure 6).

5 Conclusion

This paper proposes a new algorithm for solving discrete optimization problems arising in covering a planar domain by sectors. The proposed algorithm enables maximal coverage of a given

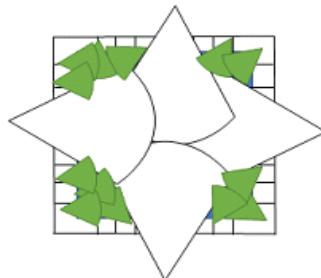


Figure 6: Final configuration corresponding to complete coverage of the domain D .

domain D using a minimum number of devices with radii 40 km and 10 km and a fixed sector angle of 60° . Moreover, the algorithm minimizes the associated objective function by sequentially moving to neighboring nodal points. The developed approach is applicable to various practical problems, including military applications such as multilayer target coverage during missile launch operations. From a theoretical perspective, the algorithm can be extended to higher-dimensional covering problems, which will be investigated in future work.

Declarations

Availability of Supporting Data

All data generated or analyzed during this study are included in this published paper.

Funding

The authors conducted this research without any funding, grants, or support.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Author Contributions

Ali Shokri: Conceptualization, Methodology, Software, Formal analysis, Investigation, Corresponding Author, Project Administration, Supervision, Original Draft, Writing, Review and Editing. **R.R. Maharramov:** Methodology, Software, Formal analysis, Investigation. **M.M. Mutallimov:** Conceptualization, Methodology, Software, Formal analysis, Investigation. **E.G. Hasimov:** Software, Formal analysis, Investigation. **I.A. Ma-**

harramov: Software, Formal analysis, Investigation, Writing, Original Draft, Writing, Review and Editing.

Artificial Intelligence Statement

Artificial intelligence (AI) tools, including large language models, were used solely for language editing and improving readability. AI tools were not used for generating ideas, performing analyses, interpreting results, or writing the scientific content. All scientific conclusions and intellectual contributions were made exclusively by the authors.

Publisher's Note

The publisher remains neutral regarding jurisdictional claims in published maps and institutional affiliations.

References

- [1] Abbasov, A.M., Aliev, F.A., Hajiyeva, N.S. (2024). "Sweep method for solution of linear quadratic optimization problem with constraint in the form of equalities on control". *Informatics and Control Problems*, 44(1), 3-8. DOI: <https://doi.org/10.54381/icp.2024.1.01>
- [2] Ahmad, B., Aljoudi, Sh. (2023). "Investigation of a coupled system of Hilfer–Hadamard fractional differential equations with nonlocal coupled Hadamard fractional integral boundary conditions". *Fractal and Fractional*, 7(2), 178. DOI: <https://doi.org/10.3390/fractfract7020178>
- [3] Aliev, F.A., Hajiyeva, N.S. (2024). "Discrete linear quadratic optimization problem with constraints in the form of equalities on control action". *TWMS Journal of Applied and Engineering Mathematics*, 14(4), 1466-1472. <https://jaem.isikun.edu.tr/web/images/articles/vol.14.no.4/11.pdf>
- [4] Aliev, F.A., Hajiyeva, N.S., Mutallimov, M.M., Velieva, N.I., Namazov, A.A. (2024). "Algorithm for solution of linear quadratic optimization problem with constraint in the form of equalities on control". *Applied and Computational Mathematics*, 23(3), 404-414. DOI: <https://doi.org/10.30546/1683-6154.23.3.2024.404>
- [5] Aliev, F.A., Hajiyeva, N.S., Velieva, N., Mutallimov, M., Tagiyev, R. (2024). "Constructing optimal regulator for discrete linear quadratic optimization problem with constraints on control action". *Proceedings of the 9th International Conference on Control and Op-*

timization with Industrial Applications (COIA 2024), 194-197. <https://coia-conf.org/en/view/pages/22>

[6] Aliev, F.A., Mutallimov, M.M., Hajiyeva, N.S., Velieva, N., Abbasov, A., Ismayilov, N.A. (2024). “Optimal Regulators for Multipoint Problems of Dynamic Systems”. *Proceedings of the 9th International Conference on Control and Optimization with Industrial Applications (COIA 2024)*, 332-335. <https://coia-conf.org/en/view/pages/22>

[7] Aliev, F.A., Mutallimov, M.M., Velieva, N.I., Huseynova, N.Sh. (2022). “Mathematical modeling and control of quadcopter motion. *Proceedings of the 9th International Conference on Control and Optimization with Industrial Applications (COIA 2022)*. 1, 81-83. <https://coia-conf.org/en/view/pages/22>

[8] Bagirov, A.M., Taheri, S., Karmitsa, N., Joki, K., Makela, M.M. (2024). “Nonsmooth DC optimization support vector machines method for piecewise linear regression”. *Applied and Computational Mathematics*, 23(3), 282-306. DOI: <https://doi.org/10.30546/1683-6154.23.3.2024.282>

[9] Brusov, V.S., Piyavskii, S.A. (1971). “A computational algorithm for optimally covering a plane region”. *USSR Computational Mathematics and Mathematical Physics*, 11(2), 17-27. DOI: [https://doi.org/10.1016/0041-5553\(71\)90161-3](https://doi.org/10.1016/0041-5553(71)90161-3)

[10] Celik, B., Akdemir, A.O., Set, E., Aslan, S. (2024). “Ostrowski-mercier type integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators”. *TWMS Journal of Pure and Applied Mathematics*, 15(2), 269-285. DOI: <https://doi.org/10.30546/2219-1259.15.2.2024.01269>

[11] Hajiyeva, N. (2024). “Sweep method for defining of discrete linear quadratic optimization problem with constraint in the form of equalities on control”. *Proceedings of the 9th International Conference on Control and Optimization with Industrial Applications (COIA 2024)*, 328-331. <https://coia-conf.org/en/view/pages/22>

[12] Hashemi Borzabadi, A., Hasanabadi, M., Sadjadi, N. (2016). “Approximate Pareto optimal solutions of multi objective optimal control problems by evolutionary algorithms”. *Control and Optimization in Applied Mathematics*, 1(1), 1-19.

[13] Hatamian, R., Hashemi, S. A. (2025). “A hybrid numerical approach for solving nonlinear optimal control problems”. *Control and Optimization in Applied Mathematics*, 10(1), 125-138. DOI: <https://doi.org/10.30473/coam.2025.72875.1273>

[14] Heppes, A. (2006). “Covering a planar domain with sets of small diameter”, *Periodica Mathematica Hungarica*, 53, 157-168. DOI: <https://doi.org/10.1007/s10998-006-0029-9>

[15] Juraev, D.A., Shokri, A., Marian, D. (2022). “On an approximate solution of the Cauchy problem for systems of equations of elliptic type of the first order”. *Entropy*, 24(7), 968. DOI: <https://doi.org/10.3390/e24070968>

[16] Kazakov, A.L., Lempert, A.A., Bukharov, D.S. (2013). “On segmenting logistical zones for servicing continuously developed consumers”. *Automation and Remote Control*, 74, 968–977. DOI: <https://doi.org/10.1134/S0005117913060076>

[17] Kirane, M., Fino, A.Z., Kerbal, S., Laadhari, A. (2024). “Non-existence of global weak solutions to semi-linear wave equations involving time-dependent structural damping terms”. *Applied and Computational Mathematics*, 23(1), 110-129. DOI: <https://doi.org/10.30546/1683-6154.23.1.2024.110>

[18] Lebedev, P.D. (2019). “Iterative methods for constructing approximations of optimal coverings of non-convex flat sets”. *Chelyabinsk Journal of Physics and Mathematics*, 4(1), 5-17. DOI: <https://doi.org/10.24411/2500-0101-2019-14101>

[19] Maharramov, R.R., Hasimov, E.G., Kalbiyeva, S.R. (2023). “Optimisation algorithm of transfer of limited area with basic element’s on the flatness”. *Azerbaijan National Academy of Sciences Reports*, 78(1-2), 30-34. <https://dergipark.anas.az/index.php/ranas/article/view/1141>

[20] Manalı, D., Demirel, H., Eleyan, A. (2024). “Deep learning based breast cancer detection using decision fusion”. *Computers*, 13(11), 294. DOI: <https://doi.org/10.3390/computers13110294>

[21] Mirsaabov, S.M., Aliev, F.A., Larin, V.B., Tunik, A.A., Mutallimov, M.M., Velieva, N.I. (2021). “Problems of modeling in problems of development of algorithms for controlling spatial motion of quadrocopter”. *Proceedings of the IAM*, 10(2), 96-112. <https://iamj.az/Home/Archive?journalName=Contents%20V.10,%20N.2,%202021>

[22] Qiao, D., Wang, X.K., Wang, J.Q., Li, L. (2024). “Maximum entropy-based method for extracting the underlying probability distributions of Z-number”. *Applied and Computational Mathematics*, 23(2), 201-218. DOI: <https://doi.org/10.30546/1683-6154.23.2.201>

[23] Ozbay, H. (2024). “Strongly stabilizing controller design for systems with time delay”. *Applied and Computational Mathematics*, 23(3), 392-403. DOI: <https://dx.doi.org/10.30546/1683-6154.23.3.2024.392>

[24] Shah, F.A., Teali, A.A., Rahimi, A. (2024). “Linear canonical wavelet frames and their stability”. *Applied and Computational Mathematics*, 23(2), 159-181. DOI: <https://doi.org/10.30546/1683-6154.23.2.2024>

[25] Shokri, A. (2018). “A new eight-order symmetric two-step multiderivative method for the numerical solution of second-order IVPs with oscillating solutions”. *Numerical Algorithms*, 77(1), 95-109. DOI: <https://doi.org/10.1007/s11075-017-0306-0>

[26] Shokri, A., Shokri, A.A. (2014). “The hybrid Obrechkoff BDF methods for the numerical solution of first order initial value problems”. *Acta Universitatis Apulensis*, 38, 23-33.

[27] Takhonov I.I. (2014). “On some problems of covering a plane with circles”. *Discrete Analysis and Operations Research*, 21(1), 84-102. <http://old.math.nsc.ru/publishing/DAOR/content/2014/01en/2014.21.377.html>

[28] Tóth, G.F., and Mathematical Sciences Research Institute, (2005). “Thinnest covering of a circle by eight, nine, or ten congruent circles”. In: *J. E. Goodman, J. Pach, & E. Welzl (Eds.), Combinatorial and Computational Geometry (pp. 361–376). Chapter, Cambridge: Cambridge University Press*. DOI: <https://doi.org/10.1017/9781009701259.019>

[29] Yesil, U.B., Yahnioglu, N. (2024). “Free vibration analysis of an elastic rectangular plate containing a cylindrical piezoelectric inclusion”. *TWMS Journal of Pure and Applied Mathematics*, 15(1), 26-41. DOI: <https://doi.org/10.30546/2219-1259.15.1.2024.1520>

[30] Yucel, M., Mukhtarov, O.Sh. (2024). “A new algorithm for solving two-linked boundary value problems with impulsive conditions”. *TWMS Journal of Pure and Applied Mathematics*, 15(2), 174-182. www.twmsj.az/Abstract.aspx?Id=5429

[31] Zafer, A., Bohner, M. (2024). “Bellman-Halanay type stability theorems for delay dynamic equations”. *TWMS Journal of Pure and Applied Mathematics*, 15(2), 246-256. DOI: <https://doi.org/10.30546/2219-1259.15.2.2024.01246>

Authors Bio-sketches

Ali Shokri received his Ph.D. degree in 2010 from the University of Tabriz, Tabriz, Iran. Currently, he is full professor at the Department of Applied Mathematics, Sahand University of Technology, Sahand New-Town, Tabriz, Iran. He has published more than 180 research articles. His research interests include numerical solution of ODEs, PDE, Fractional Calculus, numerical linear algebra, and numerical optimization. Corresponding author: Email: ali_shokri@sut.ac.ir

Roman Rafiq Maharramov received his Bachelor's degree in Radio Engineering from the Baku Military University in 2007 and completed his Master's degree in the same field

in 2019. He is currently pursuing a Doctor of Philosophy (PhD) degree in National Security and Military Sciences. He is the author of more than 50 scientific publications. He is employed at the Military Scientific Research Institute. His research interests include unmanned aerial vehicles (UAVs), the application of air defense systems against UAVs, and mathematical modeling.

Mutallim Mirzaahmed Mutallimov, born on December 12, 1955, is the Head of the Department of Information Technologies and Mathematical Modeling at the Research Institute of Applied Mathematics of Baku State University (BSU). He completed his undergraduate studies at the Faculty of Applied Mathematics of Azerbaijan State University (now Baku State University) from 1973 to 1978, earned the degree of Candidate of Physical and Mathematical Sciences (PhD) in 1984, and was awarded the degree of Doctor of Technical Sciences in 2014.

Elshan Giyas Hashimov completed his Bachelor's degree in Mechanics at Kharkov Military University in 1993 and his Master's degree at the same university in 1994. In 1998, he successfully defended his PhD dissertation in Technics and was awarded the degree of Doctor of Philosophy (PhD) in 1999 in the field of Military Sciences. In 2018, he successfully defended his ScD dissertation in National security and military sciences and was awarded the degree of Doctor of Sciences (ScD) in 2019 in the field of National security and military sciences. He is the author of 417 scientific works, including 16 research articles in Scopus and 10 in Web of Science, and has also published 31 textbooks. Currently, he serves as professor at Azerbaijan Technical University and is actively engaged in teaching and academic research.

Ilkin Aladdin Maharramov completed his Bachelor's degree in Mathematics at Baku State University in 2009 and his Master's degree at the same university in 2011. In 2024, he successfully defended his PhD dissertation in Mathematics and was awarded the degree of Doctor of Philosophy (PhD) in 2025 in the field of Systems Analysis, Control, and Information Processing. He is the author of 17 scientific works, including 12 research articles in mathematics, and has also published one mathematics book. Currently, he serves as Head of Department at Azerbaijan Technical University and is actively engaged in teaching and academic research.