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1 Introduction and literature context

The problem of covering a planar domain with simple geometric figures is a fundamental topic
that arises in a wide range of economic, technical, and geographical applications. Problems of
a military nature can also be associated with this class of optimization tasks. It should be noted
that the external (covering) and internal (packing) approximation of sets by simple geometric
elements has been studied since the time of Lagrange and Gauss [4, 17, 22]. For example,
in [12, 14, 27, 28], the problem of covering a given region in various planes using circles of
small diameter was investigated. In [18], Lebedev proposed an iterative method for the optimal
covering of a nonconvex simply connected set by circles. Problems of this type also arise in
the design of transportation networks or in determining optimal server locations in computer
networks [9, 16].

An analysis of the existing literature shows that, in most studies, the covering elements are
circular regions whose centers lie inside the domain to be covered. However, situations in which
the centers of the circles are located outside the target domain are also of practical interest. In
such cases, covering the entire circle is unnecessary, since a portion of it lies outside the domain.
Therefore, it is more appropriate to perform the covering using circular sectors with prescribed
central angles.

It is worth noting that in [14, 28], the problem of optimal coverage is addressed in terms of
minimizing the radius of the covering circles. In contrast, the optimal covering of a bounded,
possibly nonconvex domain by circular sectors with fixed radii and centers located outside the
domain can be formulated as the problem of ensuring complete coverage of the domain while
maximizing the total area of intersection between the sectors and the region of interest [18, 27].

A practical application of this problem arises in the optimal placement of land plots located
outside an irrigated region for sector-based irrigation systems. Similar formulations also appear
in military applications, such as the optimal deployment of radar systems for reconnaissance
over enemy territory [9, 16].

Since the problem considered in this work differs from classical covering problems based on
minimal radii, our objective is to develop a new procedure for the optimal coverage of a domain
using circular sectors. In this setting, it is necessary to determine not only the locations of the
sector centers, but also the orientations of the radius lines defining the sectors. To this end, we
propose to study the problem in both continuous and discrete frameworks. In the discrete case,
the domain to be covered and the circular sectors are discretized and represented in the form of
a computational grid.

The remainder of the paper is organized as follows. The formal problem statement is pre-
sented in Section 2. Section 3 introduces the required preliminaries. In Section 4, the discretiza-
tion of the domain is discussed, and a new algorithm for determining an optimal covering is
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proposed and analyzed. Numerical implementation and illustrative examples are also provided
in this section. Finally, concluding remarks are given in Section 5.

2 Problem Statement

Let D be a bounded, generally nonconvex domain in the plane (see Figure 1). Consider a set
of n points {Oi}ni=1 located in the plane such that

Oi /∈ D, i = 1, 2, . . . , n,

that is, all points Oi lie outside the domain D. For each point Oi, consider a circle with center
Oi and radius ri. From each such circle, we define a circular sector with fixed central angle α,
which is denoted by P (Oi, ri, α). Some of these sectors may overlap. Let k denote the number
of distinct radii among the sectors; clearly, k ≤ n.

Figure 1: Covering a non-convex domain with circular sectors.

Definition 1. If

D ⊂
n⋃

i=1

P (Oi, ri, α),

then the family of sectors {P (Oi, ri, α)}ni=1 is said to cover the domain D.

Definition 2. A covering of the domainD by the family of sectors {P (Oi, ri, α)}ni=1 is called
optimal if the total area of the parts of the sectors lying outside the domain D is minimal, that
is,

J = min
n∑

i=1

S
(
P (Oi, ri, α) \D

)
, (1)

where S(K) denotes the area of a planar setK.
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According toDefinition 1, the covering of the domainD by the family of sectorsP (Oi, ri, α)

implies that for every point (x, y) ∈ D there exists at least one sector P (Oi, ri, α) such that
(x, y) ∈ P (Oi, ri, α). In general, such a sector may not be unique.

The algorithm for determining an optimal covering is constructed as follows. The posi-
tions of the sector centers {Oi}, and consequently the orientations of the sectors P (Oi, ri, α),
are varied so that the family of sectors covers the domain D while minimizing the objective
functional (1).

It should be noted that the sector P (Oi, ri, α) is not uniquely defined by the parameters
Oi, ri, and α alone. Indeed, for a given circle, infinitely many sectors with the same central
angle α may be constructed. Therefore, to uniquely specify a sector, it is necessary to define
the directions of the radii forming the angle α.

Let αi
1 and αi

2 (αi
1 < αi

2) denote the azimuthal angles of the bounding radii of the sector
(see Figure 2).

Figure 2: A circular sector with center Oi, central angle α and azimuths α1 and α2.

As shown in Figure 2, the relation

α = αi
2 − αi

1

holds. Consequently, if the parameters ri, αi
1, and αi

2 are specified, the sector is uniquely
determined. In this case, it is more convenient to denote the sector by

P (Oi, ri, α
i
1, α

i
2).

Thus, the problem reduces to determining the locations of the centersOi and the correspond-
ing azimuthal angles αi

1 and αi
2 such that the covering condition is satisfied and the objective

functional (1) is minimized, subject to the constraint α = αi
2 − αi

1. If the central angle α is
fixed, then it suffices to determine only one of the angles αi

1 or αi
2.

Finally, we note that the radii ri are not arbitrary. In this work, we assume that the covering
consists of sectors with only two possible radii, denoted by r and R. Let m be the number
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of sectors with radius r and l the number of sectors with radius R. Then the total number of
sectors is given by

n = m+ l.

3 Algorithm for Finding the Optimal Cover of the Domain

We now consider the construction of an algorithm for determining an optimal covering in the
sense of Definition 2. Recall that the objective functional is given by (1). Since the center
points Oi are located in the plane, they can be represented as Oi = (xi, yi). Accordingly, the
sector P (Oi, ri, α) can be written as P (xi, yi, ri, α).

Let
S
(
P (xi, yi, ri, α) \D

)
= Fi(xi, yi, ri, α),

where Fi denotes the area of the part of the ith sector lying outside the domain D. Since
each radius satisfies ri ∈ {r,R}, the objective functional can be decomposed into two groups.
Specifically, for i = 1, . . . ,m we have

Fi(xi, yi, ri, α) = Fr(xi, yi, α),

and for i = m+ 1, . . . ,m+ l,

Fi(xi, yi, ri, α) = FR(xi, yi, α),

wherem+ l = n.
Therefore, the objective functional (1) can be written as

F (x1, y1, . . . , xn, yn) =
m∑
i=1

Fr(xi, yi, α) +
n∑

i=m+1

FR(xi, yi, α). (2)

Thus, the problem of finding an optimal covering reduces to determining the sets of points

{(x1, y1), . . . , (xm, ym)} and {(xm+1, ym+1), . . . , (xn, yn)}

such that the functional (2) attains its minimum.
In the problem formulation, it is required that the center points Oi lie outside the domain

D, i.e.,
(xi, yi) /∈ D, i = 1, . . . , n.

To define a suitable search region, let

xmax = max{x | (x, y) ∈ D},
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xmin = min{x | (x, y) ∈ D},

ymax = max{y | (x, y) ∈ D},

ymin = min{y | (x, y) ∈ D}.

Denote by Q the rectangle with vertices

(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax).

Clearly, D ⊂ Q (see Figure 3).

Figure 3: Rectangle Q containing domainD.

It is therefore natural to restrict the search for the center points (xi, yi) to the set Q \D.
Introduce the vector Introduce the vector

z = (z1, z2, . . . , z2n) = (x1, y1, x2, y2, . . . , xn, yn),

and define the admissible set
K = (Q \D)n ⊂ R2n.

Then the constrained optimization problem can be written as

min
z∈K

F (z). (3)

To solve the constrained problem (3), we employ a penalty method. Define the penalty
function

φm(z) =


0, z ∈ K,

m
(
|z|2 + 1

)2
, z /∈ K,

(4)

wherem > 0 is a penalty parameter.
The constrained problem (3) is thus approximated by the unconstrained optimization prob-

lem
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min fm(z) = F (z) + φm(z). (5)

Let z0 denote the solution of the constrained problem (3), and let z(m)
0 be the minimizer of

(5). Then, under standard assumptions on F , it follows that

lim
m→∞

z
(m)
0 = z0. (6)

Hence, for sufficiently large values ofm, the solution of the unconstrained problem (5) provides
an accurate approximation of the solution to (3).

To solve the unconstrained problem (5), a gradient-based iterative scheme can be applied,
for example,

zk+1 = zk − t∇fm(zk), (7)

where t > 0 is a step size parameter. Under appropriate regularity and step size conditions, the
sequence {zk} generated by (7) converges to a minimizer of (5).

4 Discretization of the Domain and Solution of the Discrete Optimization Problem

In Section 3, the problem was formulated and analyzed in the continuous setting, where it
was reduced to the unconstrained optimization problem (5). Although a variety of numerical
methods exist for solving such problems, in practice it is often difficult to verify the required
regularity conditions for the objective function fm(z) or to guarantee convergence to a global
minimum. For this reason, it is reasonable to consider alternative approaches. One effective
technique is the discretization method.

To this end, we subdivide the rectangle Q containing the domain D into a uniform grid, as
illustrated in Figure 4.

Figure 4: Discretization of the domainD and the rectangle Q.

Let nx and ny be positive integers, and define the grid steps
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hx =
xmax − xmin

nx
,

hy =
ymax − ymin

ny
.

The grid nodes are then given by

xi = xmin + ihx, i = 0, . . . , nx,

yj = ymin + jhy, j = 0, . . . , ny. (8)

Clearly, x0 = xmin, xnx = xmax, y0 = ymin, and yny = ymax.
Let zij = (xi, yj). The set of all grid nodes approximating the rectangle Q is defined as

Q∗ = {zij | zij ∈ Q}, (9)

and the discrete approximation of the domainD is given by

D∗ = {zij | zij ∈ D}.

Clearly, D∗ ⊂ Q∗.
To discretize the objective functional (1), we first approximate each sector P (Oi, ri, α) by

the set
P ∗
i = {zij | zij ∈ P (Oi, ri, α)}. (10)

For any finite set A, let N(A) denote the number of its elements. Then N(P ∗
i \D∗) rep-

resents the number of grid nodes belonging to the ith sector that lie outside the domain D.
Summing over all sectors yields the discrete approximation of the objective functional:

J ≈ J = min
n∑

i=1

N
(
P ∗
i \D∗). (11)

Thus, the discrete optimization problem consists in determining the sector centers

zij = (xi, yj) ∈ Q∗ \D∗, (12)

such that the functional (11) attains its minimum. This problem is nonlinear and combinatorial
in nature. The discrete optimization problem (11) with (12) is generally nonlinear.

Discrete optimization problems of this type can be addressed using a variety of methods,
including dynamic programming, branch-and-bound techniques, heuristic and approximate al-
gorithms, cutting-plane methods, and integer programming approaches [1, 2, 3, 5, 6, 7, 8, 10,
11, 21, 23, 24, 29, 30]. As the grid resolution increases (i.e., as nx and ny grow), the solution
of the discrete problem (11) converges to that of the continuous optimization problem (3).

We now describe the specific discrete algorithm employed in this study. Following [13, 15,
19, 20, 25, 26, 31], let Q be a rectangle with vertices (x0, y0), (x0, yp), (xl, yp), and (xl, y0)
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such that D ⊂ Q, where x0 < xmin, xl > xmax, y0 < ymin, and yp > ymax. Define the grid
steps

hx =
xl − x0

l
,

hy =
yp − y0

p
,

(13)

where l, p ∈ N, and the grid nodes

xi = x0 + ihx, i = 0, . . . , l,

yj = y0 + jhy, j = 0, . . . , p.

Denote these nodes by zij = (xi, yj), and define

Q∗ = {zij | zij ∈ Q}, D∗ = {zij | zij ∈ D}. (14)

Assume that m sectors have radius r1 and n sectors have radius r2, with all sector centers
located in Q∗ \D∗. Each sector is defined by

P
(
(x0, y0), α1, α2, r

)
=

{
(x, y)

∣∣ ∥(x, y)− (x0, y0)∥ ≤ r, α1 ≤ arg(x− x0, y − y0) ≤ α2

}
.

(15)
The covering sectors are denoted by

Pk = P
(
(x0k, y

0
k), α

k
1 , α

k
2 , r1

)
, k = 1, . . . ,m,

Pk = P
(
(x0k, y

0
k), α

k
1 , α

k
2 , r2

)
, k = m+ 1, . . . ,m+ n.

Let
D∗

k = D∗ ∩ Pk (16)

be the set of grid nodes of D∗ covered by the sector Pk. Define

Dl =
m+n⋃
k=1

D∗
k. (17)

Clearly, Dl ⊂ D∗. If Dl = D∗, then the discrete domain is completely covered. Otherwise,
the set D∗ \Dl contains uncovered grid nodes.

Since D∗ \Dl is finite, let

n(D∗ \Dl) = f
(
x01, y

0
1, . . . , x

0
m+n, y

0
m+n, α

1
1, . . . , α

m+n
1

)
(18)

denote the number of uncovered nodes. The objective is to determine the sector centers (x0k, y0k)
and orientations αk

1 (with αk
2 = αk

1 + 60◦) such that
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f = 0.

If this condition cannot be achieved, the function

f
(
x01, y

0
1, . . . , x

0
m+n, y

0
m+n, α

1
1, . . . , α

m+n
1

)
(19)

is minimized. If the resulting minimum is unsatisfactory, further improvement can be obtained
by increasing the number of sectors, i.e., the number of barrier stations.

Before analyzing the algorithm for solving the discrete optimization problem, we first de-
scribe the procedure for constructing the setD∗.

Let xi, i = 0, . . . , l, be the discretized coordinates along the x-axis. For each fixed xi, we
consider the straight line parallel to the y-axis that intersects the domain D. Clearly, this line
intersects D∗ at least at two points. Denote the lowest and highest such points by (xi, yib) and
(xi, yis), respectively. By determining and connecting these points for all indices satisfying
0 < ib ≤ i ≤ is < l, we obtain the boundary of the discrete domain D∗, which is denoted by
∂D∗. More precisely,

∂D∗ =

{(xi, yt) | ib ≤ t ≤ is, (xi, yib), (xi, yis) ∈ D∗, (xi, yib−1), (xi, yis+1) /∈ D∗, a ≤ i ≤ µ} .

Accordingly, the set D∗ can be represented as

D∗ = {(xi, yj) ⊂ Q∗ | a < i < µ, ib < j < is} . (20)

Next, we determine the setDp. From relation (17), a point belongs toDp if and only if it is
contained in at least one of the setsD∗

k. Therefore, to identify the points ofDp, we consider all
points ofD∗ defined by (20) and verify whether they are contained in any sector Pk. If a point
does not belong to any sector Pk, it is excluded from Dp. The number of uncovered points is
given by

n (D∗ \Dp) = n(D∗)− n(Dp),

and complete coverage of D∗ is achieved if and only if this quantity is equal to zero.
We now describe the conditions under which a node zij = (xi, yj) ∈ D∗ belongs to a

sector Pk. Let z0k = (x0k, y
0
k) be the center of the circle corresponding to Pk, and let αk

1 and
αk
2 = αk

1 + 60◦ denote the azimuth angles defining the sector. First, we verify the distance
condition

∥zij − z0k∥ ≤ r,

where r = r1 for k = 1, . . . ,m and r = r2 for k = m+ 1, . . . ,m+ n. If this condition holds,
the point lies within the corresponding circle.

To determine whether zij lies inside the sector Pk, we compute the azimuth angle of the ray
originating from z0k and passing through zij . First, we evaluate
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arctan
(
yj − y0k
xi − x0k

)
,

and convert it to degrees using

α =
180◦

π
arctan

(
yj − y0k
xi − x0k

)
. (21)

The azimuth angle α(
−−→
z0kzij) is then defined as

α(
−−→
z0kzij) =



α, xi > x0k, yj > y0k,

180◦ + α, xi < x0k, yj > y0k,

180◦ + α, xi < x0k, yj < y0k,

360◦ + α, xi > x0k, yj < y0k.

The point zij belongs to the sector Pk if

αk
1 ≤ α(

−−→
z0kzij) ≤ αk

2 .

In the special case where αk
1 < 360◦ and αk

2 > 360◦, the above condition is replaced by

αk
1 ≤ α(

−−→
z0kzij) ≤ 360◦ or 0◦ ≤ α(

−−→
z0kzij) ≤ αk

2 − 360◦.

If either condition holds, the point zij is considered an interior point of the sector.
Consequently, for given centers (x0k, y0k) and azimuths αk

1 , k = 1, . . . ,m + n, the set Dp

can be constructed and the value n(D∗ \ Dp) can be evaluated. If this value is zero, then the
sectors Pk with αk

2 = αk
1 + 60◦ provide a complete covering of D∗, that is,

D∗ ⊂
m+n⋃
k=1

Pk.

Otherwise, the parameters (x0k, y0k) and αk
1 must be adjusted so that n(D∗ \Dp) is minimized,

which corresponds to solving the discrete optimization problem (5).
The centers (x0k, y0k) are required to satisfy

2 ≤ d
(
(x0k, y

0
k), D

∗) ≤ 3, k = 1, . . . ,m,

5 ≤ d
(
(x0k, y

0
k), D

∗) ≤ 7, k = m+ 1, . . . ,m+ n. (22)

To minimize the objective function (19), we initially select centers satisfying (22). If a se-
lected center violates these constraints, it is replaced by a neighboring node until the conditions
are met. Afterward, the set Dp and the value n(D∗ \Dp) are computed, yielding the value of
the objective function f defined in (18). This procedure naturally leads to Algorithm 1, which
is proposed for solving the discrete optimization problem (19).
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Algorithm 1 Discrete optimization algorithm for optimal sector covering
Input. Set i = 0. Choose initial nodal points z0k = (x0k, y

0
k) and azimuth angles αk

1 , k =

1, . . . ,m+ n, such that z0k ∈ Q∗ \D∗.

Step 1. If for some k the point z0k does not satisfy condition (22), replace it with a neighboring
nodal point that does not belong to D∗ and satisfies (22).

Step 2. Evaluate
f0 = f(x01, y

0
1, . . . , x

0
m+n, y

0
m+n, α

1
1, . . . , α

m+n
1 )

using (18).

Step 3. For each k = 1, . . . ,m+ n, generate the neighboring candidates

(x0k ± hx, y
0
k), (x0k, y

0
k ± hy), αk

1 ±∆α,

and evaluate the corresponding objective function values

fx+
k , fx−

k , fy+
k , fy−

k , fα+
k , fα−

k .

Step 4. Compute

fmin = min
k=1,...,m+n

{
fx+
k , fx−

k , fy+
k , fy−

k , fα+
k , fα−

k

}
.

Step 5. Update only the coordinate or azimuth corresponding to fmin, obtaining a new nodal
configuration (x1k, y1k, αk

1).

Step 6. If fmin = 0, terminate the algorithm.

Step 7. If fmin ≤ f0, set f0 = fmin, increment i = i+ 1, and return to Step 1.

Output. The value fmin and the corresponding nodal configuration, which represents a local
minimum of (19).

First, choose the points (x0k, y0k) that satisfy the conditions (22). If condition (22) is not
satisfied for a given k, then a neighboring nodal point (x1k, y1k) of (x0k, y0k) is selected such that
condition (22) holds. By moving to neighboring points, the distances d

(
(x1k, y

1
k), D

∗) appear-
ing in (9) can either increase or decrease. Repeating this procedure a finite number of times
guarantees that condition (22) is satisfied.

After this adjustment, the setDp is constructed and the value n(D∗\Dp) is computed. This
value coincides with the objective function f defined in (18). Note that n(D∗ \Dp) can also be
computed by checking each point zij ∈ D∗. If a point zij does not belong to any of the sectors
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Pk, then it is counted as an element ofD∗ \Dp. By examining all points inD∗ in this manner,
the total number of uncovered points is obtained.

Based on the above discussion, we propose Algorithm 1 for solving the discrete optimiza-
tion problem (19).

The proposed algorithm minimizes the objective function (19) by successively moving to
neighboring nodal points until a local minimum is reached.

Example 1. Consider a square regionD (Figure 5, left) with two types of devices: four devices
with radius R = 40 km and sector angle α = 60◦, and thirteen devices with radius R = 10 km
and sector angleα = 60◦. In this example, we investigate themaximum coverage of the domain
D using Algorithm 1.

Figure 5: Initial configuration (left) and intermediate configuration (right).

By applying Algorithm 1 and iterating through its steps, the devices gradually move toward
the coverage area and their penetration angles are adjusted so as to cover increasing portions of
D (Figure 5, right). By performing additional iterations of the algorithm, the devices eventually
achieve complete coverage of the desired region (Figure 6).

More precisely, in the initial configuration there are 64 nodal points within the square do-
mainD to be covered (Figure 5, left). After several iterations, an intermediate configuration is
obtained (Figure 5, right), in which 46 nodal points are covered by the devices. Upon full and
accurate execution of the algorithm, the remaining 18 uncovered nodal points are also covered,
resulting in complete coverage of the square domainD (Figure 6).

5 Conclusion

This paper proposes a new algorithm for solving discrete optimization problems arising in cov-
ering a planar domain by sectors. The proposed algorithm enables maximal coverage of a given
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Figure 6: Final configuration corresponding to complete coverage of the domainD.

domain D using a minimum number of devices with radii 40 km and 10 km and a fixed sector
angle of 60◦. Moreover, the algorithm minimizes the associated objective function by sequen-
tially moving to neighboring nodal points. The developed approach is applicable to various
practical problems, including military applications such as multilayer target coverage during
missile launch operations. From a theoretical perspective, the algorithm can be extended to
higher-dimensional covering problems, which will be investigated in future work.
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