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1 Introduction

In healthcare facility design, the development of optimal layouts plays a crucial role in enhanc-
ing organizational efficiency and improving the quality of patient care. Recent advances in
computational methods have provided designers with powerful tools to generate and evaluate
layout alternatives with unprecedented accuracy and flexibility. This study explores gener-
ative layout design for hospital facilities, with a particular emphasis on the implementation
and assessment of a graph-theoretic approach to address complex spatial planning challenges.
Healthcare environments, including hospitals and clinics, require careful optimization to im-
prove operational performance, patient satisfaction, and overall service quality. In this context,
multi-objective modeling has become an effective framework, allowing the simultaneous con-
sideration of multiple criteria, such as minimizing travel distances and maximizing desirable
departmental adjacencies.

Section 2 presents a review of the relevant literature, including medical facility planning
(Subsection 2.1) and applications of graph theory (Subsection 2.2). Subsection 2.4 identifies
existing research gaps, while Subsection 2.5 outlines the main contributions of this study. Sec-
tion 3 describes the proposed methodology, including the notation system, dataset description,
mathematical formulation, and evaluation procedures. Section 4 illustrates the application of
one selected strategy, and Section 5 presents the comprehensive results of the case study. Sec-
tion 6 discusses the implications of the findings, and Section 7 concludes the paper and suggests
directions for future research.

The complete input datasets and additional generated layout strategies are provided in Ap-
pendix A, Appendix B, and Appendix C.

2 Literature Review

2.1 General Healthcare Facility Layout Problems

Over the past five decades, optimization-based approaches have played a central role in address-
ing healthcare facility layout problems. One of the earliest formal definitions of the hospital
layout problem was introduced by Elshafei [7], who formulated it as a cost–flow Quadratic As-
signment Problem (QAP). This pioneering work laid the theoretical foundation for numerous
subsequent studies adopting QAP-based models.

Extending this framework, Yeh and Lin [27] investigated the layout design of a hospital
comprising 28 facilities. Their study emphasized spatial proximity, available space constraints,
and relative positioning among departments. By modeling the problem as a QAP and solving
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it through a simulated annealing-based neural network, they demonstrated the applicability of
metaheuristic techniques to large-scale healthcare layouts.

Recognizing the hierarchical structure of complex medical centers, Helber et al. [15] pro-
posed a two-stage hierarchical modeling approach. In the first stage, departments are allocated
to locations within a QAP framework using a fix-and-optimize heuristic while considering
transportation flows and adjacency constraints. The second stage refines the spatial config-
uration by incorporating detailed space requirements of a major healthcare facility.

Similarly, Cubukcuoglu et al. [5] developed a QAP-based methodology specifically tai-
lored to existing hospitals. Their formulation models internal logistics interactions as a space
allocation problem with the objective of minimizing transportation activities and improving
operational performance.

Moving beyond single-objective QAP formulations, Huo et al. [18] introduced a double-
row layout model solved using the NSGA-II algorithm. Their multi-objective framework si-
multaneously minimizes patients’ actual travel distances and maximizes desirable interdepart-
mental adjacencies. This study illustrates how evolutionary algorithms can effectively integrate
logistical and relational considerations within complex hospital environments.

Recent contributions have further expanded healthcare layout research beyond classical
QAP structures. Terán et al. [25] proposed a sequential space–syntax approach for rehabilita-
tion hospitals. Their two-phase methodology first quantifies accessibility and proximity using
space syntax metrics, then applies a tabu search with nested-bay encoding to generate block
layouts, followed by corridor network optimization to reduce travel distance and congestion.

In a computational design context, Cubukcuoglu et al. [6] introduced an integrated toolkit
combining graph theory, operations research, computational design workflows, and computa-
tional intelligence. Their framework evaluates key performance indicators such as wayfinding
efficiency, staff walking times, and workflow suitability, supporting both hospital renovation
and new design projects.

From a digital twin perspective, Jia et al. [19] developed a Hospital Configuration Model
(HCM) embedded within a hospital design support system. By integrating geometric, topo-
logical, semantic, and operational data into a machine-readable structure, their model enables
simulation-based optimization and prediction of metrics such as crowding levels, waiting times,
and walking distances.

Finally, Fattahi et al. [8] presented an AI-driven hospital design process based on neuro-
symbolic strategies. Their hybrid framework combines symbolic reasoning with neural net-
works to autonomously generate optimized hospital layouts with minimal human intervention,
underscoring the growing role of artificial intelligence in automating complex healthcare design
decisions.
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2.2 The Graph Theory Approach in Healthcare Facility Layout Problems

The application of graph-theoretic concepts to facility layout problems can be traced back to
the work of Foulds and Robinson [9], who introduced graph-based heuristics as an alternative
strategy for solving classical Quadratic Assignment Problems (QAPs). Their approach demon-
strated how adjacency relationships could be explicitly modeled through graph structures, pro-
viding intuitive and computationally efficient heuristics for layout optimization.

From a geometric and combinatorial perspective, Rosenstiehl and Tarjan [24] developed a
linear-time algorithm for generating rectilinear planar layouts based on bipolar orientations of
planar graphs. Their method represents vertices as horizontal line segments and edges as ver-
tical segments with integer coordinates, producing compact and interlocking graph representa-
tions. This theoretical foundation established important links between planar graph theory and
space-efficient layout generation.

In healthcare-specific applications, Assem et al. [3] applied graph-theoretic principles
to optimize operating theatre (OT) layouts. Their methodology focused on facility layout
planning through adjacency modeling and block layout optimization. Using heuristic graph-
based strategies, they reassigned functional spaces to improve operational efficiency. The re-
ported improvements—an 18.5% increase in layout score in one hospital and 45% in another—
demonstrate the practical effectiveness of graph-based planning in real healthcare environ-
ments.

Arnolds and Nickel [2] emphasized the communicative advantages of graph-theoretical ap-
proaches compared to purely mathematical optimization models. They argued that graph-based
representations are particularly useful when collaborating with architects and healthcare pro-
fessionals who may not be familiar with formal optimization formulations, as graphs provide
an intuitive visualization of adjacency and flow relationships while still supporting analytical
rigor.

Building upon this perspective, Lather et al. [21] proposed a computational framework for
generating and evaluating hospital layouts based on departmental adjacency ratings obtained
from domain experts. An optimal adjacency graph was constructed, and layouts were generated
under discrete structural constraints. Each alternative was evaluated using a distance-weighted
scoring mechanism. Notably, healthcare planning experts consistently preferred layouts with
higher computed scores, supporting the validity of graph-based generative evaluation.

In a subsequent study, Lather et al. [22] further explored generative layout methods in
a real hospital project. Using a graph-theoretical framework grounded in distance-weighted
adjacency scores, they produced optimal and near-optimal design alternatives. Expert feedback
indicated that such generative methods expanded the design space, reduced cognitive bias, and
facilitated more informed decision-making. Later, Lather and Harms [20] extended this line of
research by introducing sparsity constraints in graphical networks at both macro- and micro-
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scales. By reducing unnecessary connections while preserving planarity and critical adjacency
relations, their method improved resource flow efficiency and clarified spatial hierarchy within
hospital departments.

Beyond healthcare-specific studies, Bisht et al. [4] introduced G2PLAN, a mathematically
rigorous graph-based floorplan generation method. Unlike learning-based systems, G2PLAN
guarantees satisfaction of user-defined adjacency and dimensional constraints through graph-
theoretic and linear optimization techniques. The system can generate thousands of topolog-
ically distinct floorplans within milliseconds, demonstrating scalability, reliability, and high
computational efficiency. By extending its predecessor GPLAN, G2PLAN expands adjacency
handling and dimensional customization capabilities, showcasing the robustness of graph-
theoretic formulations in automated spatial design.

More recent research has shifted toward graph-informed evaluation and decision-support
systems. Hassanain et al. [14] integrated entropy-based performance indicators with graph-
heuristic concepts to evaluate healthcare building performance, enabling the quantification of
connectivity, organizational clarity, and spatial efficiency beyond simple distance metrics. In a
related redesign-focused study, Hassanain et al. [13] combined graph-heuristic modeling with
fuzzy TOPSIS multicriteria decision-making to rank healthcare facility redesign alternatives
under conflicting performance criteria. These works reflect a broader movement toward ex-
plainable, graph-aware assessment frameworks in healthcare design.

Finally, Alavi et al. [1] integrated particle swarm optimization (PSO) with Building Infor-
mationModeling (BIM) and digital twin technologies to create anAI-driven layout optimization
framework. Their system generates optimized two-dimensional layouts using PSO, converts
them into three-dimensional BIM representations through visual programming, and provides
stakeholders with interactive virtual environments for performance evaluation. This integra-
tion of graph-informed optimization with AI and digital modeling technologies illustrates the
continuing evolution of intelligent, data-driven hospital layout design methodologies.

Collectively, these studies demonstrate the versatility of graph-theoretic approaches in
healthcare facility layout problems, ranging from heuristic optimization and generative design
to evaluation frameworks and AI-integrated decision-support systems. Such developments pro-
vide a strong foundation for graph-based representations that preserve meaningful adjacency
structures while accommodating practical architectural and operational constraints.

2.3 Comparative Synthesis and Critical Positioning

To move beyond a purely chronological review, Table 1 provides a structured comparison of
representative studies according to: (i) problem formulation and spatial representation (QAP,
metaheuristics, graph-theoretic or generative models), (ii) objective coverage (flow-distance,
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adjacency/closeness, wayfinding, accessibility/entrance logic), (iii) solution methodology, and
(iv) validation context (real hospital case versus benchmark or synthetic instances).

This synthesis reveals two recurring structural limitations in the literature. First, many
QAP-based and metaheuristic formulations prioritize flow-distance minimization but do not
explicitly enforce planar realizability of the resulting topology. Consequently, the optimized
adjacency matrices often require substantial geometric post-processing to obtain physically fea-
sible corridor-based layouts. Second, entrance accessibility and external interface logic are
frequently omitted or treated only indirectly through generalized flow metrics. In high-traffic
healthcare environments, however, entrance proximity plays a critical operational role and can-
not be reduced solely to interdepartmental distance minimization.

These observations motivate the methodological stance of the present study: the adoption
of a planarity-preserving Planar Adjacency Graph (PAG) representation combined with explicit
entrance-gate modeling to ensure both topological feasibility and operational relevance.

2.4 Gaps in the Literature

Although a substantial body of research addresses healthcare facility layout optimization through
QAP-based formulations, these approaches predominantly focus on minimizing interdepart-
mental travel distances. While effective from a cost-flow perspective, such formulations rarely
guarantee that the resulting adjacency structures can be embedded in a planar layout without
edge crossings. The geometric feasibility of the final design is therefore often deferred to a
secondary design stage.

Graph-theoretic approaches offer a more interpretable representation of spatial relation-
ships; however, their application to real hospital case studies remains limited. Moreover,
many existing graph-based models adopt single-objective formulations, typically emphasizing
distance-weighted adjacency without systematically integrating multiple operational priorities.

A further gap concerns the treatment of entrance accessibility. Most existing models do not
explicitly incorporate entrance-gate logic as a structural component of the adjacency represen-
tation. In practice, departments with higher patient inflow—such as emergency or outpatient
services—should be positioned strategically relative to the entrance. Neglecting this factor may
lead to layouts that are mathematically optimized yet operationally suboptimal.

These limitations indicate the need for a graph-based, multi-objective framework that si-
multaneously enforces planar realizability and integrates entrance accessibility as an explicit
design variable.
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2.5 Contributions

This study advances the existing literature by directly addressing the topological and opera-
tional limitations of conventional QAP and metaheuristic formulations. While QAP models
are effective for minimizing flow-distance costs, they frequently generate adjacency structures
that are not inherently planar and therefore require complex geometric adjustments before im-
plementation.

By adopting a Planar Adjacency Graph (PAG) framework, the proposed methodology en-
sures that generated adjacencies are realizable on a two-dimensional plane without edge cross-
ings, thereby reducing post-processing requirements and improving geometric feasibility.

The main contributions of this study are summarized as follows:

1. Development and comparative evaluation of five distinct layout strategies (S1–S5) that
balance patient flow intensity and clinical relationship requirements within a unified
graph-based framework.

2. Formal integration of entrance-gate logic (Department X) into the adjacency graph struc-
ture, enabling explicit optimization of external accessibility—an aspect largely neglected
in traditional departmental interaction models.

3. A rigorous multi-objective assessment demonstrating that a hybrid weighting strategy
(α = 0.75) achieves superior performance compared to pure-flow, pure-relationship,
benchmark QAP, and Genetic Algorithm solutions, particularly in terms of solution sta-
bility as measured by the Coefficient of Variation.

3 Methodology

This section presents the proposed methodology for generating healthcare department lay-
outs using planar adjacency graphs (PAGs). The core idea is to model spatial relationships
among hospital departments through graph-theoretic principles, enabling a structured and
optimization-driven layout generation process.

Each department is represented as a node in a graph, and edges indicate desired spatial
adjacencies. By restricting the graph to be planar, the resulting adjacency structure becomes
geometrically realizable without edge crossings, thereby ensuring feasibility at the conceptual
layout level. This representation extends classical facility layout graph modeling approaches,
such as those described in [16], where adjacency relationships are first visualized graphically
and later refined into detailed layouts. In contrast to traditional trial-and-error or designer-
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driven refinement, the proposed approach embeds planarity and quantitative evaluation directly
into the optimization framework.

The methodology integrates multiple criteria, including patient flow intensity, departmental
relationship weights, spatial area requirements, and entrance accessibility. These factors are
incorporated into a multi-objective evaluation structure. A deterministic greedy planarization
mechanism is employed to construct feasible adjacency graphs, followed by iterative evaluation
and comparison of alternative assignment strategies.

Overall, the proposed framework enables systematic, data-driven generation and assess-
ment of healthcare layouts while explicitly enforcing planar realizability and balancing flow
efficiency, relational priorities, and spatial utilization.

3.1 Notations

Table 2 summarizes all symbols and indices used throughout the mathematical formulation.

Table 2: Summary of indices, parameters, and decision-related quantities used in the model

Symbol Description

i, k Departments, {A,B, . . . , L}
j, l Areas, {1, 2, . . . , 12}
s Layout strategies, {S1, S2, S3, S4, S5}
Fik Patient flow from department i to department k
Rik Closeness relationship score between departments i and k
Djl Rectilinear distance between the centers of areas j and l (m)
Si Number of patients admitted to department i
Ei Entrance accessibility weight of department i
DEj Rectilinear distance between area j and the nearest entrance gate (m)
Aj Area size of location j (m2)
di Required area of department i (m2)
TDi Area satisfaction level of department i
TDO(s) Average area satisfaction under strategy s
Mijkl Walking distance from department i in area j to department k in area l
Mijkl(s) Total inter-department walking distance under strategy s
RVijkl Distance-weighted relationship value between assigned departments
RVijkl(s) Total relationship value under strategy s
g1, g2, g3 Normalized objective values
α Weight coefficient of patient flow
Z Final planar adjacency matrix
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3.2 Input Data

The primary dataset is adopted from [10] and is provided in Appendix A. The entrance ac-
cessibility parameters Ei and the distance matrix DEj are generated hypothetically to reflect
dual-gate hospital access.

Since the hospital contains two entrance gates (X1 andX2), the effective distance between
area j and the entrance is defined as the minimum rectilinear distance to either gate:

DEj = min{distX1,j , distX2,j}.

For example, if area 1 is located 10meters fromX2 and 12meters fromX1, thenDE1 = 10.
The generated hypothetical datasets are reported in Appendix B.

The arrangement of the rooms is shown in Figure 1, and the names of the departments along
with their abbreviations are also in Table 3. We use the information in Table 4 to transform the
relationship matrix.

Table 3: Department names and corresponding notations used in the study.

Department Notation
Internal Medicine A
Cardiology B
Pulmonology C
Dermatology D
Psychiatry E
Neurology F
General Surgery G
Neurosurgery H
Plastic Surgery I
Orthopedics J
Urology K
Otolaryngology (ENT) L

3.3 Mathematical Model

The graph-theoretic approach looks at the profit that results from placing each pair of facilities
next to one another. It then looks for facility pairings that will maximize the total profit. It
locates the maximum planar graph where the weights’ total is maximized. Themaximum planar
graph’s arcs indicate which pairs of facilities are to be next to one another. A designer can
then use these adjacencies to create a workable plan that satisfies the constraints for shape and



In
Pr
es
s

Amiri Chimeh & Javadi 11

Figure 1: Layout of the healthcare areas.

Table 4: Closeness relationship categories and corresponding quantitative scores.

Closeness Category Symbol Score

Too Close A 10

Closer E 7

Close I 5

Far O 3

Further U 1

Far-off / Never Close X -9

space while placing facility pairs with high interaction next to one another. The graph-theoretic
method alone aims to maximize the total of the weights of nearby facilities; it does not take into
account the weights of non-neighboring facilities.

The key to solving layout problems with a planar adjacency network efficiently is to rep-
resent the graph effectively and utilize algorithms to find the best layout. Adjacency lists and
adjacency matrices are two data structures that can be used to represent planar adjacency graphs
and help in layout optimization.

3.3.1 Conversion

The first step in generating the adjacency matrix is to consolidate the data from the input ma-
trices (Fik in Table 8, Rik in Table 9, and Djl in Table 10). These tables are already presented
in an upper triangular format. To ensure a single, comprehensive value for each pair-wise in-
teraction (e.g., combining flow from i to k and from k to i), we define the new matrices F ′

ik,
R

′
ik, andD′

jl. These matrices, defined in Equations (1)-(3), create a new set of upper triangular
matrices where each element represents the total combined interaction between two entities.
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F
′
ik =

Fik + Fki, if i < k,

0, otherwise,
(1)

R
′
ik =

Rik +Rki, if i < k,

0, otherwise,
(2)

D
′
jl =

Djl +Dlj , if j < l,

0, otherwise.
(3)

3.3.2 Expansion

The original department set has size n (here n = 12). To incorporate entrance accessibility,
we augment the department set with a pseudo-department X , yielding an expanded set of size
n+1. Accordingly, the flow and relationship matrices expand from Rn×n to R(n+1)×(n+1) by
appending one row/column that encodes interactions between each department and the entrance
node. Similarly, the area-distance matrix expands fromRm×m toR(m+1)×(m+1) by adding one
row/column for distances between candidate areas and the entrance.

The patient’s entry flow is an important factor. Thus, it is assumed that a new department,
namedX , is constituted by the hospital’s entrance gate. The inclusion of Si (patient admission
in Table 11) into F

′
ik, Ei (closeness to the entrance gate in Table 14) into R

′
ik, and DEj (dis-

tance between area j and the entrance gate in Table 15) into D′
jl is necessitated. The resulting

expanded matrices, F ′′
ik, R

′′
ik, and D

′′
jl, will all be used in the evaluation section.

F
′′
ik =

[
F

′
ik ST

i

0 0

]
,

R
′′
ik =

[
R

′
ik ET

i

0 0

]
,

D
′′
jl =

[
D

′
jl DET

j

0 0

]
.

3.3.3 Normalization

Both the F ′′
ik andR

′′
ik matrices should be normalized. This will scale both matrices in the range

of zero to one.

F̃ik =
F

′′
ik

max F ′′ ,
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R̃ik =
R

′′
ik −R

′′
minik

R
′′
maxik

−R
′′
minik

,

wheremax F
′′ is the maximum value in the F ′′

ik matrix. In Equation (3.3.3), R
′′
max and R

′′
min

represent the maximum and minimum values in the entire R′′
ik matrix, respectively. This min-

max normalization scales all relationship values to the range [0, 1].

3.3.4 Calculate the Adjacency Matrix

The adjacency matrix is calculated by the equation below.

Zik = αF̃ik + (1− α) R̃ik, α ∈ [0, 1].

3.3.5 Planar Subgraph Selection (PAG Extraction)

Let V denote the set of departments augmented with the entrance nodeX , and letGc = (V,Ec)

be the complete undirected graph induced by the weighted adjacency matrix Z, where each
candidate edge (i, k) ∈ Ec has weight wik = Zik.

We select a planar subset of edges by introducing a binary decision variable yik ∈ {0, 1}
indicating whether edge (i, k) is included in the planar adjacency graph (PAG). The selection
problem can be stated as:

max
y

∑
(i,k)∈Ec

wik yik,

subject to
G(y) = (V,E(y)) is planar, E(y) = {(i, k) ∈ Ec | yik = 1},

yik ∈ {0, 1}, ∀(i, k) ∈ Ec.

In many layout settings, we additionally seek a maximal planar solution (i.e., no further
edge can be added without violating planarity). For |V | ≥ 3, any maximal planar graph has at
most 3|V | − 6 edges; thus the procedure stops once |E(y)| = 3|V | − 6 is reached. Because
the maximum-weight planar subgraph problem is NP-hard, we use a deterministic greedy edge-
addition procedure that guarantees planarity by construction and yields a maximal planar sub-
graph; global optimality is not guaranteed because maximum-weight planar subgraph selection
is NP-hard.

3.3.6 Deterministic Greedy Planarization and Complexity

We construct the PAG using greedy edge addition: all candidate edges are sorted in non-
increasing order of weight, and an edge is added if and only if the resulting graph remains
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planar. Planarity is checked using a linear-time planarity test (as implemented in standard
planarity-check routines).

Letn = |V | and |Ec| = n(n−1)
2 . Sorting edges costsO(|Ec| log |Ec|) = O(n2 logn). In the

worst case, planarity is tested for many candidate edges. If a planarity test runs in Tp(n) time,
the worst-case complexity of the greedy step isO(|Ec| ·Tp(n)), i.e.,O(n2 ·Tp(n)); with linear-
time planarity testing, this is O(n3) in the worst case. Since a maximal planar graph contains
at most 3n− 6 edges, the number of accepted edges isO(n), and the method is efficient for the
problem sizes typical in department-layout design.

3.3.7 Problem Formulation

The layout problem is formulated as a Multi-Objective Optimization Problem (MOOP).
Let n be the number of departments and xij be a binary decision variable such that xij = 1

if department i is assigned to area j, and xij = 0 otherwise.
The objective is to minimize the vector function G(x) = [g1(x), g2(x), g3(x)]

T , defined
as:

Maximize g1 =
1

n

n∑
i=1

min

(
1,

∑m
j=1Ajxij

di

)
,

Minimize g2 =
n∑

i=1

n∑
k=1

m∑
j=1

m∑
l=1

F
′′
ikD

′′
jlxijxkl,

Minimize g3 =
n∑

i=1

n∑
k=1

m∑
j=1

m∑
l=1

R
′′
ikD

′′
jlxijxkl,

subject to assignment constraints:

m∑
j=1

xij = 1, ∀i ∈ {1, . . . , n},

n∑
i=1

xij ≤ 1, ∀j ∈ {1, . . . ,m},

xij ∈ {0, 1}.

In this study we do not run a continuous multi-objective solver over (g1, g2, g3). Instead,
we generate a small set of candidate layouts by varying the weighting parameter α (Strategies
S1–S5) in the PAG construction, and we then evaluate and rank these candidate solutions using
normalized, unitless scores (Section 3.5).
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3.4 Strategy Development

In this study, five different strategies are evaluated.

Strategy S1 : The patient flow as well as the departmental relationship are considered equally
significant in this strategy. (α = 0.5)

Strategy S2 : In this strategy, all concerns have been paid to arranging the departments based
on their patient flow. Hence, the departments with the most patient flow are placed next to
each other. The relationship between departments is not significant in this case. (α = 1)

Strategy S3 : In contrast with the previous strategy, this strategy organizes departments ac-
cording to their proximity value. Consequently, departments with the highest relational
value are positioned adjacent to each other. The flow of patients between departments is
deemed insignificant within this context. (α = 0)

Strategy S4 : In this approach, the main focus is on arranging the departments according to
their patient flow rather than the departmental relationship. (α = 0.75)

Strategy S5 : This method places more emphasis on departmental relationships than patient
flow when organizing the departments. (α = 0.25)

3.5 Evaluation Methods

Objectives g2 (walking-distance) and g3 (relationship-distance) are costs where smaller values
indicate better layouts. For ease of comparison across strategies, we report normalized satis-
faction scores g2(s) and g3(s) in [0, 1] using monotone transformations so that larger is better.
This normalization is used for post hoc comparison and ranking of the candidate strategies and
does not alter the underlying cost definitions. To choose the best one among the strategies and
evaluate the output layout, three criteria must be calculated for each strategy. To do so, the fi-
nal patient flow, relationship values, and area distances (F ′′

ik, R
′′
ik, and D

′′
ik obtained in Section

3.3.2) are used. At last, we compare the attractiveness of each criterion for all strategies.

3.5.1 Area satisfaction level (g1)

Higher values of g1 indicate better satisfaction of departmental area requirements; g1 = 1

means that all departments meet (or exceed) their required area, while values below 1 reflect
area shortfalls for one or more departments. Aj (Table 13) must satisfy the area satisfaction of
di (Table 12).
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TDi =


Aj

di
, if Aj

di
< 1,

1, otherwise,

TDO (s) =

n∑
i=1

TDi

n
,

g1 =
TDO (s)

maxTDO (s)
.

3.5.2 Total walking distance of patients (g2)

The target is to reach nearly 1 for the value of g2. LetAs(i) be the area j assigned to department
i under a given strategy s (s = S1, . . . , S5). The total walking distance for strategy s, M(s),
is a scalar value calculated by summing the patient flow (F ′′

ik) multiplied by the corresponding
distance (D′′

As(i),As(k)
) for all pairs of departments.

Mijkl = F
′′
ikD

′′
jl,

M(s) =
n∑

i=1

n∑
k=1

(
F

′′
ik ×D

′′

As(i),As(k)

)
.

The quantityM(s) is a walking-distance cost; therefore, smaller values indicate better lay-
outs. To report this objective on a common larger-is-better scale in [0, 1], we define the nor-
malized score: To normalize this objective, we compare it against the minimum total walking
distance found among all strategies,Mmin.

g2(s) =
Mmin

M(s)
where Mmin = min

s′∈{S1...S5}
M(s′).

3.5.3 Relationship-distance satisfaction level (g3)

Along with the previous two objectives, g3 must be closer to 1 for greater satisfaction.
Similarly, the total distance relationship score for strategy s, RV (s), is a scalar value

calculated by summing the relationship value (R′′
ik) multiplied by the corresponding distance

(D′′

As(i),As(k)
) for all pairs.

RVijkl = R
′′
ikD

′′
jl,

RV (s) =

n∑
i=1

n∑
k=1

(
R

′′
ik ×D

′′

As(i),As(k)

)
.
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This value is then normalized against the minimum score found among all strategies,
RVmin.

g3(s) =
RVmin

RV (s)
where RVmin = min

s′∈{S1...S5}
RV (s′)

4 Implementation

This section presents the complete procedure for implementing the proposed solution approach.
The following steps correspond to Strategy S1; the other strategies follow an identical imple-
mentation framework.

To ensure computational efficiency and numerical accuracy, the solution procedure was
implemented using the Python programming language [26]. Several scientific computing li-
braries were employed, including NumPy [12] for numerical operations, Pandas [23] for data
manipulation, Matplotlib [17] for visualization, and NetworkX [11] for graph-based modeling
and analysis.

It is worth emphasizing that the proposed PAG pipeline is fully deterministic. For a fixed
input instance, the generated planar subgraph, the corresponding dual graph, and the final ob-
jective function values remain exactly reproducible across multiple executions.

4.1 Adjacency Matrix

The adjacency matrix (Zik) corresponding to Strategy S1, presented in Table 5, is derived di-
rectly from the mathematical formulations introduced in Section 3.3. The matrix entries quan-
tify the normalized interaction strength between department pairs under the defined relationship
structure.

4.2 Planar Adjacency Graph

The concepts of planar graph and maximum planar graph must first be understood in order
to comprehend the graph-theoretic approach. If a network can be drawn in two dimensions
without any arc crossing another, it is said to be planar. A planar graph consists of a nonempty,
finite collection of nodes and an unordered set of arcs. An adjacency graph is known as a planar
adjacency graph (PAG) if it is planar. A PAG is considered maximum if it is maximally planar.
The theory of the maximum planar graph and our presentation of the graph-theoretic approach
may indicate to the reader that the method is concerned with identifying a maximal PAG in
which the sum of the weights of the edges is maximized.
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Table 5: The calculated adjacency matrix of strategy S1

Zik A B C D E F G H I J K L X

A – 0.438 0.378 0.435 0.285 0.360 0.529 0.000 0.266 0.283 0.374 0.363 1.000

B 0.438 – 0.519 0.000 0.296 0.357 0.266 0.266 0.266 0.269 0.266 0.277 0.694

C 0.378 0.519 – 0.320 0.276 0.266 0.289 0.000 0.000 0.355 0.000 0.371 0.801

D 0.435 0.000 0.320 – 0.291 0.266 0.352 0.000 0.535 0.352 0.274 0.277 0.312

E 0.285 0.296 0.276 0.291 – 0.526 0.000 0.271 0.274 0.274 0.266 0.283 0.569

F 0.360 0.357 0.266 0.266 0.526 – 0.269 0.655 0.266 0.294 0.283 0.355 0.870

G 0.529 0.266 0.289 0.352 0.000 0.269 – 0.274 0.288 0.349 0.377 0.283 0.644

H 0.000 0.266 0.000 0.000 0.271 0.655 0.274 – 0.277 0.452 0.269 0.377 0.604

I 0.266 0.266 0.000 0.535 0.274 0.266 0.288 0.277 – 0.529 0.274 0.285 0.576

J 0.283 0.269 0.355 0.352 0.274 0.294 0.349 0.452 0.529 – 0.000 0.280 0.803

K 0.374 0.266 0.000 0.274 0.266 0.283 0.377 0.269 0.274 0.000 – 0.000 0.593

L 0.363 0.277 0.371 0.277 0.283 0.355 0.283 0.377 0.285 0.280 0.000 – 0.807

X 1.000 0.694 0.801 0.312 0.569 0.870 0.644 0.604 0.576 0.803 0.593 0.807 –

The adjacencymatrixZik (Table 5) represents a complete weighted graph, where every node
is connected to every other node with a specific weight. However, a physical layout cannot have
every department adjacent to every other department. The goal of the graph-theoretic approach
is to find the maximal planar subgraph of this complete graph. This is a standard optimization
problem where we select a subset of edges (adjacencies) such that:

1. The sum of the weights of the selected edges is maximized.

2. The resulting graph is planar (it can be drawn on a 2D plane with no edges crossing).

This conversion from the complete weighted matrix (Zik) to the final planar graph (Figure
2) is a key step handled by algorithms within the NetworkX package. The resulting graph is pla-
nar by definition, a deterministic greedy edge-addition procedure that guarantees planarity by
construction and yields a maximal planar subgraph; global optimality is not guaranteed because
maximum-weight planar subgraph selection is NP-hard.

Figure 2 is the output of the Python code that shows the PAG for Strategy S1.

4.3 Dual Graph of PAG

By adding a point inside each face and connecting the points to encompass all nodes, which
correlate to the outside boundary, we can create the layout that corresponds to this PAG. From
these two, a reasonably basic arrangement can be drawn.



In
Pr
es
s

Amiri Chimeh & Javadi 19

Figure 2: The planar adjacency graph for Strategy S1 (α = 0.5).

The dual graph of the planar graph for Strategy S1 is shown in Figure 3. For instance, it is
apparent that facility J would be better off being close to facilities H , L, and X (the entrance
gate), or it makes sense for facilities I , E, andK to be farther away from the entrance gate.

Figure 3: The dual graph for Strategy S1 (α = 0.5).

4.4 Final Layout

The facility designer must now create a layout with sufficient detail using the data mentioned
earlier. This step involves a human designer translating the topological dual graph (Figure 3)
into a concrete block layout, which is a common practice in this heuristic approach. The ’trial
and error’ refers to the manual adjustment process, which is guided by three main criteria:
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1. Adjacency Maintenance: The final layout must respect the adjacencies specified in the
dual graph (e.g., in Figure 3, department J must be adjacent to H, L, and X).

2. Area Requirements: Each department block must be scaled to meet its specific area
expectation (di from Table 12).

3. Building Constraints: The entire layout must fit within the existing building shell and
area locations (Figure 1).

The appropriate layout (Figure 4) is the one that best satisfies these three constraints by
adjusting the shapes and relative positions of the department blocks.

Figure 4: Final layout for Strategy S1 (α = 0.5).

5 Results

The implementation steps of Section 4 have been completed for all strategies. According to
the final layout of Strategy S1 in the previous section and other strategies (Strategies S2–S5)
that are included in Appendix C (Figures 7–14), we will evaluate these strategies using the
mathematical formulation of Section 3.5.

The normalized satisfaction values of the g1, g2, and g3 objectives for all strategies are
displayed in Table 6.

Figure 5 demonstrates that Strategy S3 has the highest value of the g1 objective criteria,
while Strategy S4 has the highest values of g2 and g3. Furthermore, it is evident that hybrid
strategies S1, S4, and S5 have the lowest standard deviation values.

The best appropriate strategy for the problem is the one that has the highest mean and the
lowest standard deviation in the objective. In some cases, a strategy may have the highest aver-
age but not the lowest standard deviation or a strategy may have the lowest standard deviation
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Table 6: Evaluation results for all strategies

g1 g2 g3 Mean Std CV

S1 0.9190 0.9030 0.7817 0.8679 0.0751 0.0865

S2 0.9540 0.9548 0.7643 0.8910 0.1098 0.1232

S3 1.0000 0.8940 0.6646 0.8529 0.1714 0.2010

S4 0.9540 1.0000 1.0000 0.9847 0.0266 0.0270

S5 0.9478 0.8773 0.8646 0.8966 0.0448 0.0500

Figure 5: The visual results of objectives for all strategies.

but not the highest average. To solve this problem, we need to use the coefficient of variation
(CV) ratio.

The reported Mean, Std, and CV in Table 6 are computed across the three normalized ob-
jectives (g1, g2, g3) for each strategy, and therefore quantify the balance of a solution across ob-
jectives (objective-dispersion), not run-to-run variability from repeated algorithm executions.

CVi =
Std (Si)

Mean (Si)
.

As can be seen in Figure 6, Strategy S4 has the lowest CV and also has the highest mean and
lowest standard deviation. Therefore, the optimal layout arrangement for this problem is the
solution of Strategy S4, where α = 0.75. This suggests that the primary arrangement should
concentrate on patient flow while also taking the relationship value between departments into
consideration.
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Figure 6: The final result using CV.

6 Discussion

The results demonstrate that Planar Adjacency Graphs (PAGs) offer an effective and practical
framework for generating layout topologies that simultaneously satisfy patient-flow efficiency
and departmental adjacency requirements under planarity constraints.

The comparative evaluation of the five strategies (S1–S5), introduced in Section 3.4, reveals
a clear trade-off between patient flow (α = 1 in S2) and departmental relationships (α = 0 in
S3). As reported in Table 6, strategies that exclusively prioritize a single objective tend to
underperform with respect to the neglected criterion. In particular, S3—focused solely on rela-
tional proximity—achieves the lowest relationship–distance satisfaction score (g3 = 0.6646).
This suggests that emphasizing adjacency preferences alone may inadvertently increase travel
distances, thereby reducing operational efficiency.

In contrast, Strategy S4 (α = 0.75) provides a well-balanced solution. By assigning greater
weight to patient flowwhile still incorporating departmental relationships, S4 achieves themax-
imum score in both distance-based performance indicators (g2 = 1.00 and g3 = 1.00). This
outcome indicates that the two objectives are not inherently conflicting and, when properly
weighted, can be optimized concurrently. The corresponding layout (Figure 12) demonstrates
both operational efficiency and adherence to critical clinical adjacencies. Furthermore, the
highest mean performance (0.9847) combined with the lowest coefficient of variation (CV =
0.0270) confirms the robustness and stability of this strategy.
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A key strength of the proposed methodology lies in its capacity to integrate multiple ob-
jectives within a unified optimization framework. The approach minimizes travel distances for
patients and staff while ensuring that functionally related departments remain in close proxim-
ity. This dual consideration reduces inefficiencies, enhances interdepartmental coordination,
and supports smoother clinical workflows. The case study results clearly identify Strategy S4
as the most effective compromise solution across all evaluated metrics.

From a practical perspective, the proposed framework provides hospital administrators and
facility planners with a systematic decision-support tool for layout design. By balancing opera-
tional efficiency with clinical adjacency requirements, the method has the potential to improve
workflow performance, patient experience, and overall service quality. The successful imple-
mentation in the case study further demonstrates the applicability of the proposed model in
real-world healthcare settings.

6.1 Comparative Analysis

To assess the effectiveness of the proposed graph-theoretic heuristic (PAG), a comprehensive
computational comparison was conducted against the benchmark approaches reported by [10],
namely the Genetic Algorithm (GA) and the Quadratic Assignment Problem (QAP) model.

Table 7 summarizes the performance of all strategies across the three methods. Each strat-
egy is evaluated based on the three satisfaction objectives—g1 (area utilization), g2 (walking
distance), and g3 (relationship–distance)—and ranked according to the Coefficient of Variation
(CV). The CV serves as the primary ranking criterion due to its suitability for multi-objective
evaluation, as it captures the relative dispersion of performance by normalizing the standard
deviation with respect to the mean. Hence, lower CV values indicate more stable and well-
balanced solutions.

The comparative results clearly demonstrate the superiority of the proposed approach. PAG
Strategy 4 achieves the top overall ranking among all 19 evaluated strategies, with a CV of
0.0270. This value is substantially lower than those of the best-performing benchmark strate-
gies, GA-6 (CV = 0.0331) and QAP-6 (CV = 0.0491), indicating improved robustness and
balance.

The superior performance of PAG-S4 can be attributed to two main factors:

1. It attains the highest mean satisfaction score (0.985), reflecting outstanding overall per-
formance across all objectives. Notably, it achieves perfect scores in both the walking-
distance (g2) and relationship–distance (g3) criteria.
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2. It maintains an exceptionally low standard deviation (0.027), surpassed only marginally
by GA-6. This confirms that the solution does not favor a single objective but instead
delivers consistently high performance across all evaluation metrics.

Although GA-6 and QAP-6 also produce relatively stable solutions, their mean satisfaction
scores (0.847 and 0.855, respectively) remain considerably lower. Therefore, the proposed PAG
framework not only ensures stability but also achieves superior overall solution quality. These
findings substantiate the effectiveness of the graph-theoretic heuristic in identifying robust,
high-quality, and well-balanced layouts for complex multi-objective healthcare facility design
problems.

Table 7: Full computational comparison of GA, QAP, and PAG strategies (Std and CV indicate dispersion across
g1, g2, and g3).

Method Strategy g1 g2 g3 Mean Std CV Rank

GA

1 0.818 0.743 0.982 0.848 0.122 0.1439 8

2 1.000 0.640 0.696 0.779 0.194 0.2490 19

3 0.712 0.995 0.719 0.809 0.161 0.1990 15

4 0.779 0.695 1.000 0.825 0.158 0.1915 14

5 0.911 0.681 0.914 0.835 0.133 0.1593 12

6 0.818 0.874 0.851 0.847 0.028 0.0331 2

7 0.829 0.623 0.989 0.814 0.184 0.2260 18

QAP

1 0.770 0.704 0.939 0.805 0.121 0.1503 10

2 1.000 0.682 0.718 0.800 0.174 0.2175 17

3 0.870 1.000 0.739 0.870 0.130 0.1494 9

4 0.804 0.635 0.869 0.769 0.121 0.1573 11

5 0.938 0.734 0.832 0.835 0.102 0.1222 6

6 0.885 0.807 0.872 0.855 0.042 0.0491 3

7 0.787 0.681 0.980 0.816 0.152 0.1863 13

PAG

1 0.919 0.903 0.782 0.868 0.075 0.0865 5

2 0.954 0.955 0.764 0.891 0.110 0.1232 7

3 1.000 0.894 0.665 0.853 0.171 0.2010 16

4 0.954 1.000 1.000 0.985 0.027 0.0270 1

5 0.948 0.877 0.865 0.897 0.045 0.0500 4
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6.2 Run-to-Run Variability and Robustness

The CV-based ranking reported in Tables 6 and 7 serves as an indicator of multi-objective bal-
ance. Specifically, the Mean, Standard Deviation (Std), and Coefficient of Variation (CV)
are computed across the three objective values (g1, g2, g3) for each individual strategy. These
statistics therefore quantify how evenly a given strategy performs across objectives. Impor-
tantly, they do not reflect variability arising from repeated algorithmic executions.

6.2.1 Run-to-Run Variance (Proposed Method)

The proposed PAG framework is fully deterministic for a fixed input instance. The procedure
consists of: (i) deterministic construction of the weighted adjacency matrix Z, (ii) greedy edge
insertion following a fixed ordering with deterministic tie-breaking rules, and (iii) a planarity
verification step that introduces no stochastic components. Consequently, repeated executions
on the same instance yield identical planar subgraphs, dual graphs, and objective values. In
other words, the PAG method exhibits zero run-to-run variance under identical inputs.

6.2.2 Baseline Methods (GA/QAP)

The GA and QAP results presented in Table 7 are reproduced directly from [10]. Readers
are referred to that study for detailed descriptions of baseline experimental settings, parameter
calibration, and any reported stochastic variability. The primary contribution of the present
work lies in the development of the PAG-based methodology and its deterministic evaluation
under the same objective definitions used for comparison.

6.2.3 Robustness and Sensitivity Analysis

Robustness in this study is examined through sensitivity analysis with respect to the objective-
weighting parameter α. Strategies S1–S5 correspond to α ∈ {0, 0.25, 0.5, 0.75, 1}, thereby
spanning the full spectrum from relationship-dominant to flow-dominant preferences. This
design enables assessment of whether the preferred layout remains stable under meaningful
shifts in decision priorities.

The findings indicate that the hybrid configuration α = 0.75 (Strategy S4) consistently
delivers the most balanced performance across objectives, as evidenced by the lowest objective-
dispersion CV.

For further validation, a standard input-perturbation analysis may be conducted by introduc-
ing small variations to the flow matrix F , relationship matrix R, and entrance-related parame-
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ters, followed by re-execution of the deterministic pipeline. A detailed perturbation protocol is
provided in the supplementary material to ensure reproducibility.

7 Conclusion

In this study, we applied a graph-theoretic approach to design a hospital healthcare facility
layout. This method is highly effective for generating a strong initial solution, particularly when
department locations and areas are not yet fixed. By visualizing and optimizing the closeness
and adjacency of facilities, this strategy is one of the best options for minimizing flow distances.
This study successfully bridges the gap between theory and practice by applying the planar
adjacency graph (PAG) approach to a real-world case study, providing validated results and
actionable insights for facility planners.

Future studies could extend this research by addressing the following limitations:

• This study focused on a single-floor layout. Future work could introduce constraints for
multi-story hospital design.

• A patient reception department, which serves as a central hub for all incoming patients,
could be explicitly modeled as a high-flow department with unique relationships to all
other units.

• The distances used in the base article were rectilinear. For greater accuracy, Euclidean
distances could be implemented.

• The model could be expanded to include more complex entrance gate logic, such as sep-
arate entrance and exit gates or specialized access points (e.g., for emergencies).
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Appendix

A Case Study Data

Table 8: Interdepartmental estimated annual patient transfer volumes (Fik)

Fik A B C D E F G H I J K L

A – 100 90 96 32 64 156 0 4 28 84 68
B – 142 0 48 60 4 4 4 8 4 20
C – 6 18 4 38 0 0 56 0 80
D – 40 4 52 0 164 52 16 20
E – 152 0 12 16 16 4 28
F – 8 224 4 44 28 56
G – 16 36 48 88 28
H – 20 120 8 88
I – 156 16 32
J – 0 24
K – 0
L –

Table 9: Qualitative interdepartmental relationships (Rik)

Rik A B C D E F G H I J K L

A – I O I U O E X U U O O
B – E X U O U U U U U U
C – O U U U X X O X O
D – U U O X E O U U
E – E X U U U U U
F – U A U U U O
G – U U O O U
H – U I U O
I – E U U
J – X U
K – X
L –
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Table 10: Rectilinear distances between the centroids of areas j and l (in meters), denoted byDjl

Djl 1 2 3 4 5 6 7 8 9 10 11 12

1 0 20 33.75 47.5 17.5 25 40 50 55 60 65 70
2 20 0 16.25 35 37.5 45 30 40 45 50 55 60
3 33.75 16.25 0 18.75 51.25 58.75 36.25 23.75 28.75 33.75 38.75 43.75
4 47.5 35 18.75 0 65 72.5 50 37.5 32.5 27.5 22.5 25
5 17.5 37.5 51.25 65 0 7.5 32.5 42.5 47.5 52.5 57.5 62.5
6 25 45 58.75 72.5 7.5 0 25 35 40 45 50 55
7 40 30 36.25 50 32.5 25 0 12.5 17.5 22.5 27.5 32.5
8 50 40 23.75 37.5 42.5 35 12.5 0 5 10 15 20
9 55 45 28.75 32.5 47.5 40 17.5 5 0 5 10 15
10 60 50 33.75 27.5 52.5 45 22.5 10 5 0 5 10
11 65 55 38.75 22.5 57.5 50 27.5 15 10 5 0 5
12 70 60 43.75 25 62.5 55 32.5 20 15 10 5 0

Table 11: Patient demand for each department, denoted by Si

Si A B C D E F G H I J K L

Demand 722 394 434 450 366 648 474 492 452 552 248 444

Table 12: Expected area requirements of departments (in square meters), denoted by di

di A B C D E F G H I J K L

Area (m2) 336 36 36 72 36 192 72 84 72 180 36 36

Table 13: Existing areas and their corresponding sizes (in square meters), denoted by Aj

Aj 1 2 3 4 5 6 7 8 9 10 11 12

Area (m2) 336 72 192 180 72 72 84 36 36 36 36 36

B Generated Hypothetical Data

Table 14: Qualitative relationships between each department i and the entrance gate, denoted by Ei

Ei A B C D E F G H I J K L

Relationship Code A E A X O E O U U E E A
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Table 15: Rectilinear distance between each area j and the entrance gate (in meters), denoted byDEj

DEj 1 2 3 4 5 6 7 8 9 10 11 12

Distance (m) 30 35 25 12 10 5 8 30 26 21 16 12

C Results of Strategies

Figure 7: The dual graph for Strategy S2 (α = 1).

Figure 8: Final layout for Strategy S2 (α = 1).

Figure 9: The dual graph for Strategy S3 (α = 0).
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Figure 10: Final layout for Strategy S3 (α = 0).

Figure 11: The dual graph for Strategy S4 (α = 0.75).

Figure 12: Final layout for Strategy S4 (α = 0.75).

Figure 13: The dual graph for Strategy S5 (α = 0.25).
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Figure 14: Final layout for Strategy S5 (α = 0.25).
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