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Abstract.

situations characterized by uncertainty, ambiguity, and vagueness.

Multi-criteria decision-making (MCDM) often involves

To address such complexities, MCDM techniques play a crucial
role. This paper presents a comparative analysis of two widely used
methods—Technique for Order Preference by Similarity to Ideal So-
lution (TOPSIS) and VlseKriterijumska Optimizacija I Kompromisno
Resenje (VIKOR)—within a hesitant fuzzy environment. Hesitant
fuzzy sets allow decision-makers to express hesitation by assigning
multiple possible membership values to an element rather than a single
value. In this framework, the TOPSIS ranks alternatives based on their
closeness to the positive and negative ideal solutions, while the VIKOR
identifies a compromise solution by balancing individual and collective
regret measures. The effectiveness of the comparison is demonstrated
through illustrative numerical examples. Moreover, some real life

applications of these methods are discussed.
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2 Comparison of MCDM Methods under HFS

1 Introduction

In daily life, individuals frequently face decision-making situations ranging from simple choices
to complex problems that require systematic evaluation methods. Multi-Criteria Decision-
Making (MCDM) provides structured approaches for addressing such problems and plays an
important role in situations involving multiple, often conflicting, criteria. These methods have
been widely applied in fields such as economics, engineering, environmental studies, and man-
agement science to support decision-makers in selecting the most'appropriate alternative among
competing options. Over time, several MCDM techniques have been developed, including
the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) proposed by,
Hwang and Yoon [14], the VIKOR method introduced by Opricovic and Tzeng [19], the An-
alytic Hierarchy Process (AHP) developed by Saaty [21];-and the ELimination and Choice
Expressing REality (ELECTRE) method proposed by Benayoun. etal. [9].

Fuzzy set theory was introduced to address uncertainty, imprecision, and vagueness inher-
ent in real-world data and has found extensive applications in control systems, decision-making,
artificial intelligence, and medical diagnosis. It is particularly effective for modeling linguistic
variables and situations where precise numerical boundaries are difficult to define. To handle
more complex forms of uncertainty; several generalizations of fuzzy sets have been proposed.
Atanassov [3] introduced intuitionistic fuzzy sets (IFS) in 1985 by incorporating both mem-
bership and non-membership degrees. Later, Torra [24] proposed hesitant fuzzy sets (HFS) in
2009, allowing decision-makers to express.hesitation by assigning multiple possible member-
ship values rather than a single one.

Among classical MCDM techniques, VIKOR and TOPSIS are well-known methods for
identifying ideal solutions. VIKOR focuses on obtaining a compromise solution in the presence
of conflicting criteria, whereas TOPSIS ranks alternatives based on their relative closeness to
the ideal solution and distance from the negative-ideal solution. Opricovic and Tzeng [19]
compared VIKOR with TOPSIS and ELECTRE, highlighting the advantages and limitations
of each approach and emphasizing the effectiveness of VIKOR in resolving compromise-based
decision problems.

Subsequent research extended these methods to more complex fuzzy environments. Interval
valued intuitionistic fuzzy and hesitant fuzzy variants of MCDM methods were developed to
address higher levels of uncertainty. Hesitant fuzzy sets, in particular, provide an effective
mechanism for representing vagueness and hesitation in human judgment, although their ap-
plication in MCDM remains comparatively limited. Liao and Xu [15, 16, 17] proposed several
hesitant fuzzy decision-making frameworks, including VIKOR-based approaches, highlight-
ing their effectiveness in handling uncertainty and hesitation. Verma and Sharma [25] intro-

duced new operational laws for HFSs to enhance decision-making capabilities, while Torra and

[Narukawa [18] contributed further conceptual developments. Zhang and Wu [29] investigated
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weighted fuzzy sets in MCDM, emphasizing the role of criterion weights in hesitant fuzzy en-
vironments. Hansen and Devlin [13] explored applications of multi-criteria decision analysis
in healthcare, and Garg et al. [12] proposed a hesitant fuzzy decision framework integrating
TOPSIS with the Choquet integral. Zhang and Wei [28] further extended the VIKOR method
for decision-making problems involving HFSs.

Recent theoretical developments have also focused on hesitant fuzzy equations and alge-
braic structures that support advanced modeling of decision uncertainty. Babakordi and Taghi-
INezhad [5] introduced hesitant fuzzy equations and analyzed market equilibrium prices under
hesitant fuzzy environments. Babakordi and Allahviranloo [4] proposed solution techniques for]
hesitant fuzzy systems of linear equations, while Taghi-Nezhad and Babakordi [23] developed
fully hesitant parametric fuzzy equations extending classical fuzzy models. Further analytical
properties of hesitant fuzzy equation systems were studied by Babakordi et al. [6]. Addition-
ally, Babakordi [7, 8] proposed new arithmetic operations/on generalized trapezoidal hesitant
fuzzy numbers and introduced new classes of hesitant fuzzy soft sets, contributing to the math-
ematical foundations of hesitant fuzzy theory and enabling more flexible multi-criteria decision|

modeling.

In recent years, significant progress has been made in hybrid fuzzy MCDM techniques that
incorporate hesitant fuzzy information to better capture decision uncertainty. Akram and Ali
[2] proposed a hybrid hesitant fuzzy MCDM framework for system selection problems, while
Ferrara, et al. [11] developed a hesitant fuzzy expert-based decision model for analyzing com-
plex financial environments. Abdel-Basset et al. [1] introduced a hybrid fuzzy MCDM scheme
combining MEREC-G and RATMI methods, and Saha et al. [22] proposed a consensus-based|
MULTIMOORA framework under a probabilistic hesitant fuzzy environment for manufactur-

ing vendor selection.

The present study compares the: TOPSIS and VIKOR methods within a hesitant fuzzy|
framework, aiming to systematically analyze their relative methodological behavior under iden-
tical hesitant fuzzy settings and to provide practical guidance for selecting appropriate tech-

niques in real-world MCDM applications, rather than proposing a new theoretical model.

The remainder of this paper is organized as follows. Section 2 introduces the fundamental
concepts of hesitant fuzzy elements. Section 3 describes the HF-VIKOR method and the TOP-
SIS technique for multi-criteria decision-making. Section 4 presents numerical illustrations for|

both MCDM techniques. Section 5 provides a comparative analysis of the two MCDM meth-

ods, and Section 6 concludes the paper.
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2 Preliminaries

Before presenting the comparative analysis, it is necessary to outline the fundamental concepts
that form the basis of this study. This section reviews essential definitions and mathematical
formulations related to hesitant fuzzy elements (HFEs), which constitute the core component of]
the hesitant fuzzy environment employed throughout the subsequent methodology and analysis.

2.1 Some Basic Definitions

Definition 1. [27] A fuzzy set A in a universal set X is defined as
A={(z,pz(2)) |z € X},
where 11 ;(x) : X — [0, 1] denotes the membership degree of  in A.
Definition 2. [10] A fuzzy set AonRiscalleda fuzzy number if
1. Ais normal, i.c., h(fl) =1,
2. for every a € (0, 1], the acut of A'is a closed interval,
3. the support of A is bounded.

Definition 3. [3] An intuitionistic fuzzy set (IFS) A’ on a universal set X is defined as

A= {(@, 130 ()30 (@) | 2 € X,
where 1 5, (x) and v 3, () denote the membership and non-membership degrees, satisfying
0= pan(z) +vi(e) <1
The hesitation degree is given by
Ti(r) =1—piu(x) —vi(z).
Definition 4. [18, 24] A hesitant fuzzy set (HFS) H on a universal set X is defined as
H = {{z,hg(z)) |z € X},

where each hesitant fuzzy element (HFE) is

hg(x) ={vi, v Yo ts i €10, 1]

7 i % T T
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Definition 5. [15] For an HFE h, the score function is defined as
3
weh

where [;, denotes the cardinality of h.

Example 1. Leta = (0.1,0.4,0.7) and b = (0.7,0.2). Then

0.140.4+0.7 0.740.2
s(a) = +3—+ =04, s(b)= 202 45,

Since s(a) < s(b), it follows that b > a.

Definition 6. [15] The variance function of an HFE £ is defined as

2. 0

ViV €h

Example 2. Leta = (0.2,0.3,0.7) and b = (0.7,0.2). Then

1
~V/(02-0.3)2+(02=0.7)2 + (0.3 —0.7)2 = 0.14,

v(a) = 3

o(b) & %\/(0.7 ~0.2)% =0.25.

Since v(b) > v(a), it follows that a >b.

Definition 7. [15] The Manhattan distance between two HFEs a and b is defined as

i

where () and b°(?) denote the i-th smallest elements and [ is the maximum cardinality.

o(i)

N‘}—‘

Example 3. Leta = (0.2,0.3,0.7) and b = (0.7,0.8,0.5). Then
1
d(a,b) = §(|0'2 = 0.7/ + 0.3 - 0.8/ + /0.7 — 0.5]) =

Definition 8. [26] For two adjusted HFEs a and b, let ;) denote the i-th smallest element
of h;, and let [ be the maximum cardinality. The hesitant normalized Hamming and Euclidean

distances are defined as
l

1
dpnn(a,b) = Z\hl — hy(;

=1

dhne(a7 b) = \ 7 Z hl h2 z)
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3 Algorithms

This section presents the algorithmic procedures of the HF-VIKOR and TOPSIS methods in
the hesitant fuzzy environment.

3.1 Algorithm to Tackle the Problem Using the Hesitant Fuzzy VIKOR Approach

Building upon the conceptual framework described earlier, this subsection presents the algo-
rithmic procedure of the hesitant fuzzy VIKOR approach for solving multi-criteria decision-
making (MCDM) problems. The stepwise procedure is primarily adapted from the hesitant
fuzzy VIKOR models proposed by Liao and Xu [15] and Zhang and Wei [28].

3.2 Algorithm to Tackle the Problem Using the Hesitant Fuzzy TOPSIS Approach
4 Numerical Examples

This section presents numerical examples to demonstrate the applicability and effectiveness of
the proposed methods

4.1 HF-VIKOR

To further illustrate the practical applicability of the hesitant fuzzy VIKOR methodology de-
scribed in the preceding subsection, this part presents numerical examples that demonstrate its
step-by-step implementation.. These examples show how the HF-VIKOR approach is applied
to a multi-criteria decision-making problem and highlight the interpretation of results within a

hesitant fuzzy environment.

Example 4. Consider an MCDM problem with hesitant fuzzy sets, where the set of alternatives
is A= {A, A2, A3} and the criteria are defined as C = {C, Cy, C3}. The criterion weights are
specified as w = (0.4, 0.3, 0.3), as detailed in the table below.

Step 1:  Construct the hesitant fuzzy decision matrix H = [h;;]:

The hesitant fuzzy decision matrix is summarized in Table 1.

Step 2: Compute the average value for every HFE.

The mean value for HFE is given by
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Algorithm 1 Hesitant Fuzzy VIKOR Approach

Input: Alternatives A; (¢ = 1,...,m), criteria C; (j = 1,...,n), weights w; (3, w; = 1), hesitant fuzzy

evaluations H;;.

Output: Compromise ranking and best alternative(s).

1.

Construct the hesitant fuzzy decision matrix [15, 28]. Define H;; = {hjji- .., hf;j } € [0, 1] and form|
H = (H;j).

Compute mean values [15].

1 &
hiy = — > hi.

=1

Normalize the matrix [28]. Let 2™ = min; h;; and hJ*' = max; h;;. Then

hij — o
J
hij - h]max ]7:7
j
T — cost.

max __ j,min’
hj hj

‘Weighted normalized values [15, 28].

’
Vis = wjhij.

. Utility and regret measures [15]. Let

f max; vi;, benefit,
j =

min; v;5, cost.

n

S7= Z(f] — vi5), R; = m]aX|f_7' — vij.

j=1
Compromise index [15, 28]. Let Smin, Smax; Fmin, Rmax be the extreme values. Then

Si - Smin RL - Rmin

Qi - Usmax - Smin v) Rmax - Rmin7

+(1-

where v € [0, 1] (commonly v = 0:5). Clearly, Q; € [0, 1] and smaller values indicate better performance.

Ranking and compromise solution [28]. Rank alternatives increasingly by @Q);. The best alternative A; is
accepted if (i) Q(Az2) — Q(A1) > 15, (ii) Ay is also top-ranked by S; or R;.

If one of the above conditions is not satisfied, a set of compromise solutions may be proposed. Sensitivity|

analysis with respect to v can also be conducted to examine the robustness of the ranking.
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Algorithm 2 Hesitant Fuzzy TOPSIS Method

L,...,n) withw; > 0and 3°7_, w; = 1, and hesitant fuzzy evaluations H;;.
Output: Ranking of alternatives.

evaluation as a hesitant fuzzy element
Hij = {hij;, h} h
i; = {hij hijy. .. h

(Y ERASYE) > Y45 ’

where hl; € [0, 1]. Form the matrix H = (H;;)mxn.

1

Ay
Obtain the aggregated decision matrix D = (d;;).
3. Normalize the decision matrix [12]. Let
d‘}ﬁn = rniin dij, d;* = max di;.

For benefit criteria, :

d/_y b dij _ d;pm

1] - n "
dr]pax _ d;]_‘nn

For cost criteria,

A Ml

ij X in *
s —
Denote the normalized matrix by D" = (dj;).

4. Construct the weighted normalized matrix [12].
v = wj diy.
Form V' = (vy;).
5. Determine the positive and negative ideal solutions [12].

+_ - T min.
v} —mzaxv”, v; —ml_lnvu.

Define

6. Compute the separation measures [12].

7. Calculate the closeness coefficient [12].

rp= ot i=1,....,m.

T SS+s

alternative.

Input: Set of alternatives A = {A1,..., An}, set of criteria C = {C4,...,Cy}, criteria weights w; (j =

1. Construct the hesitant fuzzy decision matrix [12]. For each alternative A; under criterion C}, express the

2. Compute the mean score of each hesitant fuzzy element [12]. Transform each Hj; into a crisp value by

A= {uf vt AT = {or ok

8. Rank the alternatives [12]. Rank alternatives in descending order of r;.

The larger r;, the better the
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Table 1: Hesitant fuzzy decision matrix.

Alternatives / Criteria 1 Cy Cs
Aq {0.5,0.4,0.3} {0.6,0.8} {0.3,0.6,0.9}
Ay {0.4,0.5} {0.7,0.2,0.8} {0.5,0.8,0.9}
As {0.4,0.8,0.6} {0.5,0.7,0.4} {0.3,0.6,0.7}
hij = i hk,
n

where hj, are the elements of the hesitant fuzzy set.
For Criteria C; :

. 440. 440. 44 0. .
05—1—03 +03:O.4, h21:O 42—05:0.457%1:0 +O38+06:

For Criteria C5 :

h11 = 0.6.
hio = 0.7, hgo = 0.5667, hsgs=10.5333.

For Criteria Cj :
his = 0.6,/ hos = 0.7333, hssz = 0.5333.

The mean decision matrix is reported in Table 2.

Table 2: Mean decision matrix.

Alternatives Cy Cs

Ay 040 0.70 0.60
Ay 0.45 0.5667 0.7333
As 0.60 0.5333 0.5333

Step 3: Normalize the hesitant decision matrix.

To find the normalized decision matrix, first compute h;"i“ and h;“a" for each criterion C},
) =1,2,3:

R — (0.6, KN = 0.4, R — 0.7, h3in = 0.5333, R = (.7333, AN = 0.5338.

Assuming all criteria are benefit type, the normalized decision matrix is obtained as follows.
For Criteria C; :

04-04 0.45—-04 0.6 -04
=" =000, hy =——"5=025hy=_—"—— =1.00.
U.0 — 0.4 U.0o— 0.4 U.0 —U.4
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For Criteria C5 :
19 =1.00, hby =0.20, hjy = 0.00.

For Criteria Cf :
f5 =0.33, b5 = 1.00, 45 = 0.00.

Now, all the HFEs are normalized. The normalized hesitant decision matrix H' = [h;;] is

shown in Table 3.

Table 3: Normalized decision matrix.

Alternatives (] Cy Cs

Ay 0.00 1.00 .0:33
Aa 0.25 0.20 1.00
As 1.00 0.00 0.00

Step 4: Find the weighted normalized decision matrix
To obtain the weighted normalized decision matrix, each normalized value is multiplied by

its corresponding criterion weight
w; = (0.4, 0.3, 0.3),

such that
vi1r = 0.4 hly, wvie =03hly, wi=03hl;, i=1,23.

Table 4 displays the weighted normalized decision matrix.

Table 4: Weighted normalized decision matrix.

Alternatives C} Cy Cs

Ay 0.00 0.30 0.10
As 0.10 0.06 0.30
As 0.40 0.00 0.00

Step 5: Compute the utility and the regret measure values.
The values of S; and R; are determined using the following formulas:

m

Sz:Z(f] _Uij)a RZ :m]ax{‘fj_vw‘}7

j=1

where f; represents the ideal value of criterion j. Since the all criteria are of benefit type, so

the ideal values for the criteria are C7 = 0.40, C3 = 0.30, C3 = 0.30 i.e., f; = max v;; for
(2

each criterion Cj
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For alternative Ay :
S1=1(04-0.0)+(0.3—-10.3) 4+ (0.3 —-0.1) = 0.60
R; = max{|0.4 — 0.0], [0.3—-0.3|, [0.3—0.1]} =0.4
For alternative Ao :
S2 = (0.4—-0.1) + (0.3 —0.06) + (0.3 — 0.3) = 0.54
Ry = max{]0.4 — 0.1], 0.3 — 0.06], 0.3 — 0.3} = 0.3
For alternative Ag :
S3 =(0.4—-0.4) + (0.3 —0.0) + (0.3 —0.0) = 0.60
R3 = max{]|0.0 — 0.4], [0.3 —0.0], |0.3—0.0]} =0.3
The S; and R; for each alternative are reported in Table 5.

Table S: Utility and regret measures.

Alternative  S; R;

Ay 0.60. 0.40
As 0.540.30
As 0.60 0.30

Step 6: Calculate the compromise index Q);.
The compromise index @); is calculated as
. Sz - Smin . Rz - Rmin
Smax - Smin Rmax - Rmin7

where v is the weight assigned to maximum group utility. For this example, take v = 0.5:

Qi=v +(1—-w)

Smin= 0.54,  Smax = 0.60, Rpin =0.3, PRmax =04
0.60 — 0.54 0.4-0.3
S| S|l——=]) =1
05(0.60—0.54) +05 <O.4—0.3> 00

0.54 — 0.54 0.3—-0.3
0-5 (0.60 - 0.54) 05 (0.4 - 0.3> =000

For alternative Ay :

o)

For alternative A, :

Q2

For alternative Ag :

0.60 — 0.54 03-03
@5 =05 (0.60 - 0.54) 05 (0.4 - 0.3> =050

The compromise index ), is summarized in Table 6
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Table 6: Compromise index values.

Alternative @),

Aq 1.00
As 0.00
As 0.50

Step 7: Find the rank of alternatives and the compromise solution. From the calculations
Q2 <Q3<Qr, S2<853<S51, Ry<R3<Rp

The alternative Ay with the smallest (0 is considered as the best choice'among alternatives. To

declare A- as a compromise solution, first check the conditionof acceptability:

1

Q(AS) - Q(AQ) Z DQ7 DQ — m

where m = 3 and Q(A2), Q(As) represent the alternatives in the first and second positions in
the ranking list, respectively.

Q(A3) — Q(A2) =052 0.5, Dg = 0.5.
The condition is satisfied. Ay is considered as compromise solution.

Table 7: Sensitivity analysis of the compromise index @ for selected values of the parameter v in Example 4.

v Q(A1) Q(A2) Q(As) Ranking (best — worst)

0.00 1.00 0.00 0.00 Ag < (As ~ Ay)
0.25 1.00 0.00 0.25 Ar < A3 < Ay
0.50 1.00 0.00 0.50 As < A3 < Ay
0.75 1100 0.00 0.75 As < A3 < Ay
1.00 1.00 0.00 1.00 Ag < (Asz ~ Ay)

From Table 7, it is evident that the ranking of alternatives remains unchanged despite the
change in parameter v. The variation of (); values for different values of v is illustrated in
Figure 1 and reported in Table 7. The value of A, remains consistently the lowest, indicating
that it is the best compromise choice under all decision-making settings. When v increases,
the weight given to the group utility rises; therefore, QQ(As) gradually increases while Q (A1)
remains constant. However, no crossover occurs, and Ao continues to outperform both A; and

As, demonstrating the robustness of the VIKOR decision in this hesitant fuzzy environment.

Example 5. Consider an MCDM problem with a set of four alternatives as A = {41, As, A3, A
and the criteria are defined as C' = {C1,C,C3}. The criterion weights are specified as
w = (0.1,0.4,0.5), as detailed in below.
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1.0

o o
o ©

Compromise index Q
I
N

0.2 1
—_— A

Az
— A5

0.0

0.0 0.2 0.4 0.6 0.8 1.0
VIKOR weight v

[Figure 1: Sensitivity analysis of the compromise index (@) for selected values of the VIKOR parameter (v) in
[Example 4.

Step 1:
The hesitant fuzzy decision matrix is summarized in Table §.

Construct the hesitant fuzzy decision matrix H = [h;;]

Table 8: Hesitant fuzzy decision matrix/showing the performance of each alternative under criteria C1, C4, and

Cs.

Alternatives / Criteria 1 Cy Cs
Ay {0.6,0.7,0.2} {0.7,0.5} {0.6,0.7}
As {0.1,0.5} {0.6,0.7,0.8} {0.3,0.5}
As {0.4,0.8,0.7} {0.3,0.6} {0.5,0.8}
Ay {0.7,0.4} {0.4,0.5} {0.5,0.8,0.9}
Step 2: Compute the average value for every HFE.
The mean value for HFE is given by
n
where hy, are the elements of the hesitant fuzzy set.
For Criteria C; :
0.6+0.7+0.2 0.1+0.5
hiy = 0T EDE g5 py = 2T g,
3 2
04+0.8+0.7 0.7+0.4
hay = oo OS T T 063, hy = j = 0.55.
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For Criteria C5 :
hig = 0.6, hoo =0.7, hza =045, hyo = 0.45.
For Criteria C'5 :
h13 = 0.65, ho3 =0.40, hsz =0.65, hys=0.73.

The mean decision matrix is shown in Table 9.

Table 9: Mean values computed for the hesitant fuzzy evaluations.of all alternatives.

Alternative C4 Cy Cs

Ay 0.50 0.60" 0.65
As 0.30 0.70 040
Az 0.63 045 0.65
Ay 0.55 1045 0.73

Step 3: Normalize the hesitant decision matrix.
To find the normalized decision matrix, first determine h?ﬁn and h?m for each criterion
Cj (=1,2.3)

A — 0.63, AN = 0.30, AP™'=0.70, AT" =0.45, AT™ = (.73, K" = 0.40.

Assuming C and C5 are benefit criteria and (C5 is a cost criterion, the normalized decision|
matrix is obtained as follows.
For Criteria C; :

. 0:50 — 0.30 . 0.30—10.30

_ 2R U9 6l — 2 _0.00

700,63 —0.30 2T 063 - 0.30 ’
0:63 — 0.30 0.55 — 0.30

L= O 100, by = —— = (.76.
317063 —0.30 T 063 —0.30

For Criteria C5 :

his = 0.60, hb =1.00, hiy =0.00, hly = 0.00.
For Criteria Cy :

hi3 =024, hi =1.00, his =024, hl;=0.00.

Now, all the HFEs are normalized. The normalized hesitant decision matrix H' = [hl.] is

summarized in Table 10
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Table 10: Normalized decision matrix for Example 5.

Alternative Cy Cs

Ay 0.61 0.60 0.24
Ao 0.00 1.00 1.00
As 1.00 0.00 0.24
Ay 0.76 0.00 0.00

Step 4: Find the weighted normalized decision matrix.
To obtain the weighted normalized decision matrix, each normalized value is multiplied by,

its corresponding criterion weight
w; = (0.1, 0.4, 0.5),

such that
Vi1 = 0.1 h;l, Vi2 = 0.4 hQQ, Vi3 = 05 h;3, 1= 1, 2, 3,4.

Table 11 displays the weighted normalized decision matrix.

Table 11: Weighted normalized decision'matrix obtained using the given criteria weights.

Alternative  C} (s Cs

Ay 0.061 024 0.12
As 0.000. 0.40 0.50
As 0.100  0.00 0.12
Ay 0.076 0.00 0.00

Step 5: Compute the utility and the regret measure values.
The values of iS; and R; are determined using the following formulas:
m
Si = Y (= vig), Ri:mj?‘xﬂfj — v},
j=1
where f; represents the ideal value of criterion j. Since the criterion C and Cs are of benefit
type and C’ is of cost type. So the ideal values for the criteria are: C; = 0.10, Cy = 0.40,
C3 = 0.00. That is, f; = maxv;; for benefit criteria (j = 1,2) and f; = minw;; for the cost
criterion (j = 3). l I
For alternative Ay :

S = (0.100 — 0.061) + (0.40 — 0.24) + (0.00 — 0.12) = 0.076.
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Ry = max{|0.100 — 0.061|, [0.40 — 0.24], |0.00 — 0.12|} = 0.16.
For alternative Ay :
Sy = (0.10 — 0.00) + (0.40 — 0.40) + (0.00 — 0.50) = —0.40.

Ry = max{|0.10 — 0.00|, ]0.40 — 0.40|, [0.00 — 0.50|} = 0.50.

For alternative Ag :
S3 = (0.10 — 0.10) + (0.40 — 0.00) + (0.00 ~ 0.12)= 0.28.

Rs = max{|0.10 — 0.10|, ]0.40 — 0.00], [0:00 — 0.12]} ="0.40.
For alternative Ay :

Sy = (0.100 — 0.076) + (0.40 — 0.00) + (0.00 =0.00) = 0.424.

Ry = max{|0.100 — 0.076/, [0.40 —0.00|, |0.00 — 0.00|} = 0.40

It is noted that the utility measure S5; may assume negative values in the presence of cost
criteria, since 5; is computed relative to the ideal solution. The S; and R; for each alternative
are reported in Table 12.

Table 12: Utility (.S;) and regret (R;) measures for each alternative.

Alternative S; R;

Ay 0.076 0.16
Ag -0.40 0.50
As 0.28 0.40
Ay 0.424 0.40

Step 6: Calculate the compromise index Q);.
The compromise index @); is'calculated as

S; — Smin
. 1 —9)-
Qz v Smax - Smin * ( U)

Ri - Rmin
Rmax - Rmin7

where v is the weight assigned to maximum group utility. For this example, take v = 0.5.
Smin = —0.400,  Shax = 0.424, Rupin = 0.16,  Rpax = 0.50.

For alternative Aj :

0.076+0.400\ (o 16 — 0 16)
@1 =05 <0424w400/ +05 \ 0.50 — 0.16/ = 0.289.
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For alternative A, :

—0.400 + 0.400 0.50 — 0.16
— 05— ) 405 ~o——— ) =0.5.
@2 ( 0.424 4 0.400 > + (0.50 - 0.16)

For alternative As :

0.280 + 0.400 0.40 — 0.16
@3 =05 (0.424 + 0.400) 0 <0.50 — 0.16> = 0765
For alternative Ay :
0.424 + 0.400 0.40 — 0.16
@1=05 <o.424 n o.400> ' <o.50 — 0.16> = &y

The compromise index (; is summarized in Table 13.

Table 13: Compromise index Q; values for all alternatives.

Alternative Q)

Ay 0.289
Ao 0.5

As 0.765
Ay 0.853

Step 7: Find the rank of alternatives and the compromise solution.
From the above calculations, the ranking is obtained as

Q1 <Q2<Q3<Qa, S2<8 <8<8;, Ri<Rs3=Ry<Rs.

The alternative A; with the smallest ()1 is considered the best choice among A1, Ao, As, A4,

To declare A; as a'compromise solutions we check the acceptable condition:

1

Q)= Q(A1) 2 Do, Do =——.

where m = 4 and Q(A;), Q(As2) represent the alternatives in the first and second positions in
the ranking list, respectively. Substituting the values:

Q(A;) — Q(A1) =0.211 < 0.33, D¢ = 0.33.

Since the condition is not satisfied, the alternatives A; and Ao are considered the compromise
solutions.

The variation of (); values for different values of v is illustrated in Figure 2 and reported

in_ Table 14. The results in Table 14 clearly show that the compromise index () is sensitive
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Table 14: Sensitivity analysis of the compromise index @ for selected values of the parameter v in Example 5.

v QA1) Q(A2) Q(As) Q(A4) Ranking (best — worst)
0.00 0.000 1.00 0.706  0.706 A; < (A3 ~ Ay) < As
025 0.145 0875 0.736  0.804 A; < A3 <Ay <A,
0.50 0.289 0.5 0.765 0.853 A; <Ay < A3 <Ay
0.75 0434 0.125 0.794 0902 Ay <A; <A3 <A,
1.00  0.579 0.000 0.824 1.00 Ay < A; < A3 < Ay

to the choice of the parameter v. When v is low, the decision is driven mainly by regret (R;)
and alternative Ay becomes the preferred option. As v increases, the weight of group utility,
(S;) dominates, causing A; to gradually emerge as the optimal solution. A crossover shift ig
observed near v ~ (.40, indicating that the final decision strongly’depends on the decision|

maker’s attitude toward utility versus regret.

1.0 1

o
©
|

o
o
)

[=}
IS
L

/

0.0 02 0.4 0.6 0.8 1.0
VIKOR weight v

Compromise index Q

©
[N}

0.0

— A Ay = Ay —— Ay

[Figure 2: Sensitivity analysis of the compromise index (Q) for selected values of the VIKOR parameter (v) in

Example 5.

Example 6. Consider an MCDM problem with set of 3 alternatives as A = {A;, Ag, A3}
and the criteria are defined as C' = {C4, Cy, C3}. The criterion weights are specified as w =
(0.4,0.35,0.25), as detailed in below. The hesitant decision matrix is given in Table 15.

Following the same computational steps described in Examples 4 and 5—including ag-
gregation of hesitant fuzzy elements, normalization of benefit and cost criteria, weighting of

criteria, and evaluation of the utility measure .5;, regret measure R;, and compromise index

();—the final decision results are obtained
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Table 15: Hesitant fuzzy decision matrix for Example 6.

Alternatives / Criteria 1 Cy Cs

Aq {0.7,0.8,0.9} {0.5,0.6,0.7} {0.4,0.5}
Ay {0.6,0.7} {0.7,0.8,0.9} {0.5,0.6,0.7}
As {0.8,0.9} {0.6,0.7} {0.3,0.4,0.5}

The computed values of the weighted normalized decision matrix, utility measure .S;, regret

measure R;, and compromise index (); are summarized in Tables/16—18.

Table 16: Weighted normalized decision matrix produced by combining normalized values with the assigned
criteria weights.

Alternatives / Criteria C4 Cy Cs

Ay 0.30 ©0.00 0.188
Ag 0.000 035 0.00
As 04 0.087 0.25

Table 17: Utility and regret measures for each alternative.

Alternatives S; R;

Ay 0.262 0.35
Ay 0.40, 0.40
As 0.013 0.263

Based on the compromise index values, the ranking of alternatives is obtained as

Q3 < Q1 <Q2,

indicating that alternative As is the most preferred option.
The acceptable advantage condition is satisfied, and therefore A; is identified as the com-
promise solution for this decision problem.
To examine the robustness of'the ranking results, a sensitivity analysis of the compromise
index (); with respect to the VIKOR parameter v is conducted. The variation of (); values for]
different values of v is illustrated in Figure 3 and reported in Table 19. The results demonstrate
that although the numerical values of (); vary slightly with changes in v, the ranking of alter-
natives remains unchanged. This confirms the stability and robustness of the proposed hesitant
fuzzy VIKOR method.

Example 7. Let us consider a real-life MCDM problem under hesitant fuzzy sets, where a

farmer aims to select the most suitable fertilizer for rice cultivation. Let A = {A;, As, A3}
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Table 18: Compromise index @Q; values for all alternatives.

Alternatives Qi

Ay 0.6392
As 1.00
As 0.00

1.04

0.9

0.8 1

0.7 4

0.6 1

0.5 4

Q (lower is better)

0.4+

0.3

0.2

0.14

0.00 0.25 0.50 0.75 1.00
v (VIKOR weight)

—— A Az —— Az

[Figure 3: Sensitivity analysis of the compromise index (Q) for selected values of the VIKOR parameter (v) in|
[Example 6.

denote the set of alternatives, where Aj represents a urea-based fertilizer, As denotes organic
compost, and/A3 corresponds to an NPK mixed fertilizer. The criteria set is defined as C' =
{C1,Cs,C3}, where Oy represents the expected increase in crop yield (benefit criterion), Co
denotes soil health improvement (benefit criterion), and C5 corresponds to application cost (cost
criterion). The criterion weights are assigned by domain experts as w = (0.45,0.35,0.20). The
hesitant fuzzy decision matrix reflecting expert evaluations is presented below.

The hesitant fuzzy decision matrix constructed based on expert evaluations is reported in
Table 20.

Following the same HF—VIKOR computational procedure described in Example 4 - includ-
ing mean aggregation of hesitant fuzzy elements, normalization, weighting, and computation|

of the utility measure S;, regret measure R;, and compromise index ();—the final results are

obtained
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Table 19: Sensitivity analysis of the compromise index @ for selected values of the parameter v Example 6.

v QA1) Q(A2) Q(As) Ranking (best — worst)
0.00 0.6350 1.00 000 A3 <A; <A
0.25 0.6372  1.00 0.00 A3 <A; <A
0.50 0.6392 1.00 0.00 A3 <A <A
0.75 0.6415 1.00 0.00 A3 <A; <A
1.00 0.6439  1.00 0.00 A3 <A1 <A

Table 20: Hesitant fuzzy decision matrix showing the interval-valued performance of €ach alternative under criteria

Cq,C2,Cs.
Alternatives / Criteria &) Cy Cs
Aq {0.6,0.7,0.8} {0.4,0.5,0.6} {0.6,0.7}
Ay {0.7,0.8,0.9} {0.7,0.8} {0.3,0.4}
Asg {0.5,0.6} {0.6,0.7,0.8} {0.4,0.5,0.6}

Table 21 reports the compromise index values for all alternatives. The ranking obtained is

Q2 < Q1 < @3,

indicating that alternative Ay (organic compost) is the most preferred option.

The acceptable advantage condition is satisfied, and therefore A is identified as the com-
promise solution.
To examine the robustness of the decision, a sensitivity analysis of the compromise index Q);
with respect to the VIKOR parameter v is performed. The variation of (Q; values is illustrated
in Figure 4 and summarized in Table 22. The results show that Ao consistently achieves the
minimum @); value for all values of v € [0, 1], confirming the stability and robustness of the
proposed hesitant fuzzy VIKOR decision outcome.

4.2 HF-TOPSIS

To demonstrate the practical implementation of the hesitant fuzzy TOPSIS methodology dis-
cussed in the previous subsection, this part provides illustrative numerical examples. These
examples show how the TOPSIS approach is applied to an MCDM problem under hesitant
fuzzy information and help interpret and validate the obtained rankings.

Example 8. Let us consider the MCDM problem hesitant fuzzy sets, let A = {A;, A, A3}

denotes the set of alternatives and C' = {C, Cq, C3} represents the criteria and consider the

criterion weights w = (0.4, 0.3, 0.3) with the information given below.
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Table 21: Compromise index Q;values for all alternatives.

Alternatives  Q;

Ay 0.80
Ao 0.00
As 0.925
1.0
0.9 4
0.8 1
0.7 4
g 0.6 1
K]
K
T 0.5
s
(o4
0.4
0.3 4
0.2 4
0.14
0.0 T T T
0.00 0.25 0.50 0.75 1.00
v (VIKOR weight)
—— A A —h— A

[Figure 4: Sensitivity analysis of the compromise index (Q) for selected values of the VIKOR parameter (v) in
Example 7.

Step 1: Hesitant fuzzy decision matrix.

The hesitant fuzzy decision matrix is denoted by H = [h;;] and is given in Table 23.

Step 2: Mean value of hesitant fuzzy elements

The mean value of each hesitant fuzzy element (HFE) is computed as

1 n
dij = — Z b,
k=1

where hy, are the elements of the corresponding hesitant fuzzy set.
For C :
di1 = 0.40, doy = 0.45, ds; = 0.60,

For (5 :
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Table 22: Sensitivity analysis of the compromise index Q; with respect to parameter v Example 7.

v QA1) Q(A2) Q(As) Ranking (best — worst)
0.00 0.60 0.00 1.00 Ay < Ay < A3
0.25 0.70 0.00 0962 A < A; < A3
0.50 0.80 0.00 0925 As < A; < A;
0.75 090 0.00 0.887 Ay <A < A3
1.00  1.00 0.00 0.849 Ay < A3z < Aj

Table 23: Hesitant fuzzy decision matrix for the set of alternatives-and criteria.

Alternatives / Criteria 1 Cy Cs

Ay {0.5,0.4,0.3} {0.6,0.8} {0.3,0.6,0.9}
Ay {0.4,0.5} {0.7,0.2,0.8} {0:5,0.8,0.9}
As {0.4,0.8,0.6} {0:5,0.7,0.4} {0.3,0.6,0.7}

di2 = 0.70, doo = 0.5667, d32 = 0.5333,

For Cs :
di13 = 0.604das = 0.7333, dsz = 0.5333.

The mean value decision matrix is‘presented in Table 24.

Table 24: Mean values of hesitant fuzzy elements for each criterion.

Alternatives / Criteria Cy Cs
Aq 0.4 0.7 0.6
Ao 0.45 0.5667 0.7333
As 0.6 0.5333 0.5333

Step 3: Normalization of the decision matrix

The minimum and maximum values for each criterion are

For C :
dMin = 0.40, d™ = 0.60,
For C, :
din = 0.5333, dF*™ = 0.70,
For Cs :

din = 0.5333, dF™ = 0.7333.

Since all criteria are benefit criteria, min—max normalization is applied:
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d. — AT~ diy
v qmax _ dmin'
J J
For C; :
diy = 1.00, dy, =0.75, dj, = 0.00,
For Cy :
1o = 0.00, dby = 0.81, di, = 1.00,
For C} :

"5 = 0.33, dy3 = 1.00, ds; = 0.00.
The normalized decision matrix is reported in Table 25.

Table 25: Normalized hesitant fuzzy decision matrix.

Alternatives / Criteria (C Cy Cs

Ay 1.00._0.00 0.33
Ag 0.75 0.81 1.00
As 0.00 1.00 0.00

Step 4: Weighted normalized decision matrix

The weighted normalized values are obtained/as

Vij = wj dyj.

vi1 = 0.4dly, vin=03d,, vs=03ds i=123.
The weighted normalized decision matrix is presented in Table 26.

Table 26: Weighted normalized decision matrix.

Alternatives / Criteria (4 Cy Cs

Ay 0.40 0.00 0.099
As 0.30 0.243 0.30
As 0.00 030 0.00

Step 5: Ideal solutions

At = {0.40, 0.30, 0.30}, A~ = {0.00, 0.00, 0.00}
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Step 6: Separation measures

For A; :

S =0.3611, S; = 0.4121,
For As :

Sy =0.1149, S, = 0.4889,
For As :

S$ =0.50, S; =0.30.
The separation measure is reported in Table 27.

Table 27: Separation measures forthe alternatives.

Alternatives SZ-+ S
Ay 0.3611 04121
Ao 0.1149 0.4889
As 0.50 0.30
Step 7: Relative closeness.
_ e,
TSRS

ry = 0.533, 12 =0.810, rs3=0.375.
The closeness degree is shown/in Table 28.

Table 28: Relative closeness values of the alternatives.

Alternatives  7; (Relative closeness)

Ay 0.533
Ao 0.81
As 0.375
Thus, the ranking is
A3 < Al < AQ,

and A is the best alternative.

criterion weights w = (0.1, 0.4, 0.5) with the information given below.

Example 9. Let us consider the MCDM problem hesitant fuzzy sets, let A = { A7, Ag, Az, Ay}

denotes the set of alternatives and C' = {C, Cq, C3} represents the criteria and consider the
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Step 1: Hesitant fuzzy decision matrix.

The hesitant fuzzy decision matrix is denoted by H = [h;;], and is presented in Table 29.

Table 29: Hesitant fuzzy decision matrix for the set of alternatives and criteria.

Alternatives / Criteria &) Cy Cs

Aq {0.6,0.7,0.2} {0.7,0.5} {0.6,0.7}
Ay {0.1,0.5} {0.6,0.7,0.8} {0.3,0.5}
As {0.4,0.8,0.7} {0.3,0.6} {0.5,0.8}
Ay {0.7,0.4} {0.4,0.5} {0.5,0.8,0.9}

Step 2: Mean value of hesitant fuzzy elements.

The mean value of each hesitant fuzzy element (HFE) is computed as

1 n
dij = 1 Z i,
k=1

where hj, are the elements of the corresponding hesitant fuzzy set.

For criterion C' :

di1 = 0.50, dg; =0.30, d3; = 0.63, dq; = 0.55,
For criterion Cs :

d12 =0:60, doo = 0.70, d3o = 0.45, dy2 = 0.45,
For criterion Cf :

dyz = 0.65, do3 = 0.40, d33 = 0.65, dy3 = 0.73.

The resulting mean value decision matrix is shown in Table 30.

Table 30: Mean values of hesitant fuzzy elements for each criterion.

Alternatives / Criteria (4 Cy Cs

Ay 0.50 0.60 0.65
Ao 0.30 0.70 0.40
As 0.63 0.45 0.65

Ay 0.55 045 0.73
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Step 3: Normalization of the decision matrix.

The minimum and maximum values for each criterion are computed as follows:
For Ci:

din = 0.30, dF™ = 0.63,

For Csy:
d3in = 0.45, d™ = 0.70,

For Cjs:
dM = 0.40, d™ = 0.73.

Assume that C; and C5 are benefit criteria, while C's is a cost criterion. Using min—max nor-
malization, the normalized decision matrix is obtained as:

For criterion ] :
1, = 0.39, dy = 1.00, diy, =0.00, d; =0.24,
For criterion C :
1y = 0.40, dyy =000, djy = 1:00, ), = 1.00,
For criterion C'5 :
1y = 0.76, djs = 0.00, dyg = 0.76, dg = 1.00.
The normalized hesitant fuzzy decision matrix H' = [d;;] is provided in Table 31.

Table 31: Normalized hesitant fuzzy decision matrix.

Alternatives / Criteria C4 Cy Cs

Ay 0.39 040 0.76
As 1.00 0.00 0.00
As 0.00 1.00 0.76
Ay 024 1.00 1.00

Step 4:  Weighted normalized decision matrix.

The weighted normalized values are computed by v;; = w; d;; where w = (0.1, 0.4,0.5).

Vi1 = 0.1 d;la Vi = 0.4 dgg, Vi3 = 0.5 dég, 1= 1, 2, 3,4.

The weighted normalized decision matrix is reported in Table 32
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Table 32: Weighted normalized decision matrix.

Alternatives / Criteria Cy Cs

Ay 0.039 0.16 0.38
Ag 0.10 0.00 0.00
As 0.00 040 0.38
Ay 0.024 040 05

Step 5: Positive and negative ideal solutions.

The positive ideal solution (PIS) and negative ideal solution (NIS) are defined as
At ={df,dy,di}, A” ={d] ., d; ,d3 }:
Accordingly,

At ={0.10, 0.40, 0.00}, A~ = {0.00, 0.00, 0.50}.

Step 6: Separation measures.

The separation distances from the ideal and negative ideal solutions are computed as

For A; :

S =0.4536, S; = 0.2037,
For As :

Sy =10.4536, S, = 0.5099,
For As :

S5 =0.3929, S5 = 0.4176,
For Ay :

S} =0.5057, S; = 0.4007.

The separation measures are summarized in Table 33.

Step 7: Relative closeness coefficient.
The relative closeness degree of each alternative is calculated as
_ 5

- SF+ST

Ty

i=1,2,3,4.
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Table 33: Separation measures for the alternatives.

Alternatives S f S,

Aq 0.4536 0.2037
Ay 0.40  0.5099
As 0.3929 0.4176
Ay 0.5057 0.400

Table 34: Relative closeness values of the alternatives.

Alternatives  r; (Relative closeness)

Ay 0.3099
Ao 0.5603
As 0.5152
Ay 0.4420

r1 = 0.3099, r2 =0.5603, rg=0.5152; 74 = 0.4420.

The closeness coefficients are reported in Table 34.

Based on the descending order of #j, the ranking of alternatives is
A2>A3>A4>A1.
Hence, As is identified as the best alternative.

Example 10. Let us consider the MCDM problem hesitant fuzzy sets, let A = {A;, Ag, A3}
denotes the set of alternatives and C' = {C, C2, C3} represents the criteria and consider the
criterion weights w = (0.4, 0.35,0.25) with the information given below.

The hesitant decision matrix is given in Table 35 Following the same computational proce-

Table 35: Hesitant fuzzy decision matrix for the set of alternatives and criteria.

Alternatives / Criteria 1 Cy Cs

Ay {0.7,0.8,0.9} {0.5,0.6,0.7} {0.4,0.5}
Ay {0.6,0.7} {0.7,0.8,0.9} {0.5,0.6,0.7}
As {0.8,0.9} {0.6,0.7} {0.3,0.4,0.5}

dure described in Examples 8 and 9, the hesitant fuzzy elements are first transformed into thein
mean values, normalized using the min—max approach, and subsequently weighted according
to the criterion weights. For brevity, intermediate computational steps are omitted.

The resulting positive and negative ideal solutions are obtained as

At = {0.40, 0.35, 0.00} A~ = {0.00, 0.00, 0.25}
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The separation measures and relative closeness coefficients are summarized in Table 36.

Table 36: Separation measures for the alternatives.

Alternatives  S;" S,
Ay 0.3064  0.4095
Ag 0.4301  0.40
As 0.4095 0.3625

The computed closeness degrees are
r1 = 0.57, ro = 0.48, rg = 0.47.
Hence, the ranking of the alternatives is
Az < Ay < Ay,
indicating that A; is the most preferred alternative.

Example 11. Let us consider a real-life MCDM problem under hesitant fuzzy sets, where a
farmer aims to select the most suitable fertilizer for rice cultivation. Let A = {43, Ao, A3}
denote the set of alternatives, where A; represents a urea-based fertilizer, Ay denotes organic
compost, and A3 corresponds to an NPK mixed fertilizer. The criteria set is defined as C' =
{C1,C4,C3}, where Cy represents the expected increase in crop yield (benefit criterion), Co
denotes soil health improvement (benefit criterion), and C5 corresponds to application cost (cost
criterion). The criterion weights are assigned by domain experts as w = (0.45,0.35,0.20). The
hesitant fuzzy decision matrix reflecting expert evaluations is presented below.

The hesitant decision matrix is given-by Table 37.

Table 37: Hesitant fuzzy decision matrix for the set of alternatives and criteria.

Alternatives / Criteria C1 Cy Cs

Aq {0.6,0.7,0.8} {0.4,0.5,0.6} {0.6,0.7}
Ao {0.7,0.8,0.9} {0.7,0.8} {0.3,0.4}
As {0.5,0.6} {0.6,0.7,0.8} {0.4,0.5,0.6}

Applying the same hesitant fuzzy TOPSIS procedure detailed in Examples 8 and 9, the
mean value transformation, normalization, weighting, and distance calculations are carried out
without repeating intermediate derivations.

The positive and negative ideal solutions are obtained as

At = {0.45, 0.35, 0.00} A~ = {0.00, 0.00, 0.20}
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The resulting relative closeness coefficients are reported in Table 38 and are given by

r=0537,  15=0259,  r3=0.605.

Table 38: Relative closeness values of the alternatives.

Alternatives  7; (Relative closeness)

Ay 0.537
As 0.259
Az 0.605

Accordingly, the ranking of the fertilizer alternatives is
A2 < Al < Ag,

which indicates that the NPK mixed fertilizer (A3) is the most suitable option for rice cultiva-

tion.

5 Comparison of the TOPSIS and the VIKOR Methods

This section presents a systematic comparison of the TOPSIS and VIKOR methods within the
hesitant fuzzy sets (HFS) framework. Although both approaches are widely used MCDM tech-
niques capable of handling uncertainty and hesitation, they differ fundamentally in their deci-
sion philosophies and ranking behaviors: The comparison is conducted not only at a theoretical
level but also through measurable quantitative indicators, including ranking differences, corre-
lation measures, and compromise behavior. The analysis is based on four independent numer-
ical examples involving varying degrees of hesitation and conflicting criteria. The theoretical
comparison is represented in Table 39.

To ensure a measurable and objective comparison, several quantitative indicators are em-
ployed. These include the rank-difference metric > [rp — ry/|, Kendall’s rank correlation co-
efficient (7), and an examination of compromise solutions generated by VIKOR. The rank-
difference metric captures the extent of divergence between ranking lists, while Kendall’s 7
measures ordinal consistency. In cases where VIKOR does not yield a strict ranking due to
unmet acceptable advantage conditions, compromise solutions are explicitly reported and ana-
lyzed. This comparison is presented in Table 40.

The results demonstrate that TOPSIS consistently produces stable and complete rankings

across all examples, owing to its distance-based aggregation mechanism. In contrast, VIKO
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Table 39: Theoretical comparison of HF-TOPSIS and HF-VIKOR
Feature TOPSIS VIKOR
Decision philosophy Selects the alternative closest Identifies a compromise solu-

Ideal reference

Aggregation mechanism

Ranking output

Sensitivity to conflict

to the positive ideal and far-
thest from the negative ideal
Uses both positive and nega-
tive ideal solutions

Distance-based aggregation

Produces a complete and

strict ranking

Less sensitive to individual

criterion conflict

tion by balancing group util-
ity and individual regret
Uses best and worst criterion
values

Utility (S;).and regret (R;)
based aggregation

May produce multiple com-
promise solutions when con-
ditions are not satisfied
Highly sensitive to conflict-
ing criteria and extreme re-

gret values

Table 40: Quantitative comparison of TOPSIS and VIKOR rankings (Examples 4-11)

Example > |lre—rv| Kendall 7 ° Key Observation

Examples 4 and 8 0 1.00 Identical rankings

Examples 5 and 9 - — Multiple compromise solutions
in VIKOR

Examples 6 and 10 2 0.67 Rank reversal due to regret dom-
inance

Examples 7 and 11 2 0.67 Sensitivity to hesitant fuzzy dis-

persion

exhibits flexible ranking behavior, particularly in the presence of conflicting criteria and high
hesitation. Example 5 illustrates VIKOR’s compromise-seeking nature, where multiple al-
ternatives satisfy decision conditions rather than enforcing a strict order. The observed rank
differences and Kendall correlation values confirm that divergences between the two methods
increase with criterion conflict and hesitant fuzzy dispersion. These findings indicate that TOP-
SIS is preferable when ranking clarity is required, whereas VIKOR is more suitable for decision

environments emphasizing negotiation and compromise.

Extracted quantitative insights. Based on the numerical results summarized in Table 40,

several generalizable observations can be made




Kaur & Sidhu 33

1. When hesitant fuzzy evaluations are moderately dispersed and criteria are weakly con-
flicting (Examples 4 and 8), TOPSIS and VIKOR produce identical rankings, reflected

by a zero rank difference and perfect Kendall correlation (7 = 1.00).

2. In the presence of strong criterion conflict and closely competing alternatives (Exam-
ples 5 and 9), VIKOR does not enforce a strict ranking and instead identifies multiple

compromise solutions, whereas TOPSIS yields a complete ordering.

3. As hesitation dispersion and regret dominance increase (Examples 6, 7, 10 and 11), rank-
ing divergence becomes more pronounced, with rank-difference values increasing to 2

and Kendall’s 7 decreasing to 0.67, indicating reduced ordinal agreement.

6 Conclusions

This study conducted a systematic and quantitative comparison/of the TOPSIS and VIKOR|
methods within the hesitant fuzzy sets framework, focusing on ranking behavior, interpretabil-
ity, and sensitivity to hesitation and criterion conflict. Unlike purely descriptive comparisons,
the analysis employed measurable indicators such as rank-difference metrics, Kendall’s rank
correlation, and compromise solution identification across four independent numerical exam-
ples.

The comparative results demonstrate that TOPSIS and VIKOR differ not only in formu-
lation but also in their practical decision outcomes. TOPSIS consistently produces stable and
strict rankings, making it particularly suitable for’applications where a clear ordering of alter-
natives is required. Its distance-based aggregation reduces sensitivity to local deviations in hes-
itant fuzzy evaluations. In contrast, VIKOR exhibits greater sensitivity to individual criterion|
performance through its regret measure. As a result, VIKOR may yield multiple compromise
solutions when acceptable advantage or stability conditions are not met, especially in problems|
with conflicting criteria or closely competing alternatives.

The numerical comparisons across several examples confirm that ranking divergence be-
tween the two methods increases with higher hesitation levels and stronger conflicts among
criteria. These findings highlight that TOPSIS favors decisiveness, while VIKOR supports
negotiation-oriented decision-making by emphasizing balanced solutions. Therefore, nei-
ther method can be regarded as universally superior; instead, their suitability depends on the
decision-maker’s priorities and the underlying problem structure.

From an application perspective, TOPSIS is well suited for domains such as supplier se-
lection, performance evaluation, and project prioritization, where unambiguous rankings are

desirable. VIKOR is more appropriate for complex decision environments such as policy anal-

ysis, disaster management, and sustainability assessment, where compromise solutions are of-
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ten preferred. Future research may focus on hybrid approaches, sensitivity analysis of hesitant
fuzzy elements, and robustness evaluation under varying decision-maker preferences to further
enhance the applicability of hesitant fuzzy MCDM methods.

Key quantitative insights. The comparative experiments lead to the following concrete

findings:

1. Under low hesitation and weak criterion conflict, TOPSIS and VIKOR exhibit high rank-
ing consistency, as evidenced by zero rank-difference and perfect Kendall correlation|
(7 = 1.00).

2. VIKOR demonstrates higher sensitivity to conflicting criteria through its regret measure,
frequently yielding multiple compromise solutions when.-acceptable advantage or stabil-
ity conditions are not satisfied, whereas TOPSIS always produces a strict ranking.

3. Ranking divergence between the two methods increases with greater hesitant fuzzy dis-
persion and regret dominance, with Kendall’s 7 decreasing to 0.67 and rank-difference

values increasing to 2 in more complex scenarios.

4. From a practical standpoint, TOPSIS favors decisiveness and ranking stability, while
VIKOR supports negotiation-oriented decision-making by explicitly accounting for in-
dividual regret.

Appendix A

This appendix presents the basic arithmetic operations on hesitant fuzzy elements used in the
proposed methods.

A.1 Arithmetic Operations on Hesitant Fuzzy Elements [15]

Let a, aj, and ay be hesitant fuzzy elements (HFEs), and let -y, v1, 72 € [0, 1] denote member-

ship degrees. The basic arithmetic operations on HFEs are defined as follows.

1. Lower limit

a” = min~.
yE€a

2. Upper limit

a” = max-~.

YET
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3. Complement

o

a® = J{1 -}

YEQ
Union
ajUag = U {max(vy1,72)}.
Y1€a1,72€02
. Intersection

ai Nag = U {min(vy1,72)}.
Y1€a1,v2€a2

Power operation (A > 0)

a* = {7}

YE€a

Scalar multiplication (A > 0)

Aa = U{l ~(1—9)"}.

YEQ
Sum
a1 B ay = U {m+ 7 — 72}
Y1€a1,y2€a2
Product
a1 Q@ ag = U {772}
Yy1€a1,v2€0a2
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