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1 Introduction

In daily life, individuals frequently face decision-making situations ranging from simple choices
to complex problems that require systematic evaluation methods. Multi-Criteria Decision-
Making (MCDM) provides structured approaches for addressing such problems and plays an
important role in situations involving multiple, often conflicting, criteria. These methods have
been widely applied in fields such as economics, engineering, environmental studies, and man-
agement science to support decision-makers in selecting the most appropriate alternative among
competing options. Over time, several MCDM techniques have been developed, including
the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) proposed by
Hwang and Yoon [14], the VIKOR method introduced by Opricovic and Tzeng [19], the An-
alytic Hierarchy Process (AHP) developed by Saaty [21], and the ELimination and Choice
Expressing REality (ELECTRE) method proposed by Benayoun et al. [9].

Fuzzy set theory was introduced to address uncertainty, imprecision, and vagueness inher-
ent in real-world data and has found extensive applications in control systems, decision-making,
artificial intelligence, and medical diagnosis. It is particularly effective for modeling linguistic
variables and situations where precise numerical boundaries are difficult to define. To handle
more complex forms of uncertainty, several generalizations of fuzzy sets have been proposed.
Atanassov [3] introduced intuitionistic fuzzy sets (IFS) in 1985 by incorporating both mem-
bership and non-membership degrees. Later, Torra [24] proposed hesitant fuzzy sets (HFS) in
2009, allowing decision-makers to express hesitation by assigning multiple possible member-
ship values rather than a single one.

Among classical MCDM techniques, VIKOR and TOPSIS are well-known methods for
identifying ideal solutions. VIKOR focuses on obtaining a compromise solution in the presence
of conflicting criteria, whereas TOPSIS ranks alternatives based on their relative closeness to
the ideal solution and distance from the negative-ideal solution. Opricovic and Tzeng [19]
compared VIKOR with TOPSIS and ELECTRE, highlighting the advantages and limitations
of each approach and emphasizing the effectiveness of VIKOR in resolving compromise-based
decision problems.

Subsequent research extended thesemethods tomore complex fuzzy environments. Interval-
valued intuitionistic fuzzy and hesitant fuzzy variants of MCDM methods were developed to
address higher levels of uncertainty. Hesitant fuzzy sets, in particular, provide an effective
mechanism for representing vagueness and hesitation in human judgment, although their ap-
plication in MCDM remains comparatively limited. Liao and Xu [15, 16, 17] proposed several
hesitant fuzzy decision-making frameworks, including VIKOR-based approaches, highlight-
ing their effectiveness in handling uncertainty and hesitation. Verma and Sharma [25] intro-
duced new operational laws for HFSs to enhance decision-making capabilities, while Torra and
Narukawa [18] contributed further conceptual developments. Zhang and Wu [29] investigated
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weighted fuzzy sets in MCDM, emphasizing the role of criterion weights in hesitant fuzzy en-
vironments. Hansen and Devlin [13] explored applications of multi-criteria decision analysis
in healthcare, and Garg et al. [12] proposed a hesitant fuzzy decision framework integrating
TOPSIS with the Choquet integral. Zhang and Wei [28] further extended the VIKOR method
for decision-making problems involving HFSs.

Recent theoretical developments have also focused on hesitant fuzzy equations and alge-
braic structures that support advanced modeling of decision uncertainty. Babakordi and Taghi-
Nezhad [5] introduced hesitant fuzzy equations and analyzed market equilibrium prices under
hesitant fuzzy environments. Babakordi and Allahviranloo [4] proposed solution techniques for
hesitant fuzzy systems of linear equations, while Taghi-Nezhad and Babakordi [23] developed
fully hesitant parametric fuzzy equations extending classical fuzzy models. Further analytical
properties of hesitant fuzzy equation systems were studied by Babakordi et al. [6]. Addition-
ally, Babakordi [7, 8] proposed new arithmetic operations on generalized trapezoidal hesitant
fuzzy numbers and introduced new classes of hesitant fuzzy soft sets, contributing to the math-
ematical foundations of hesitant fuzzy theory and enabling more flexible multi-criteria decision
modeling.

In recent years, significant progress has been made in hybrid fuzzy MCDM techniques that
incorporate hesitant fuzzy information to better capture decision uncertainty. Akram and Ali
[2] proposed a hybrid hesitant fuzzy MCDM framework for system selection problems, while
Ferrara, et al. [11] developed a hesitant fuzzy expert-based decision model for analyzing com-
plex financial environments. Abdel-Basset et al. [1] introduced a hybrid fuzzy MCDM scheme
combining MEREC-G and RATMI methods, and Saha et al. [22] proposed a consensus-based
MULTIMOORA framework under a probabilistic hesitant fuzzy environment for manufactur-
ing vendor selection.

The present study compares the TOPSIS and VIKOR methods within a hesitant fuzzy
framework, aiming to systematically analyze their relative methodological behavior under iden-
tical hesitant fuzzy settings and to provide practical guidance for selecting appropriate tech-
niques in real-world MCDM applications, rather than proposing a new theoretical model.

The remainder of this paper is organized as follows. Section 2 introduces the fundamental
concepts of hesitant fuzzy elements. Section 3 describes the HF-VIKOR method and the TOP-
SIS technique for multi-criteria decision-making. Section 4 presents numerical illustrations for
both MCDM techniques. Section 5 provides a comparative analysis of the two MCDM meth-
ods, and Section 6 concludes the paper.
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2 Preliminaries

Before presenting the comparative analysis, it is necessary to outline the fundamental concepts
that form the basis of this study. This section reviews essential definitions and mathematical
formulations related to hesitant fuzzy elements (HFEs), which constitute the core component of
the hesitant fuzzy environment employed throughout the subsequent methodology and analysis.

2.1 Some Basic Definitions

Definition 1. [27] A fuzzy set Ã in a universal set X is defined as

Ã = {(x, µÃ(x)) | x ∈ X},

where µÃ(x) : X → [0, 1] denotes the membership degree of x in Ã.

Definition 2. [10] A fuzzy set Ã on R is called a fuzzy number if

1. Ã is normal, i.e., h(Ã) = 1,

2. for every α ∈ (0, 1], the α-cut of Ã is a closed interval,

3. the support of Ã is bounded.

Definition 3. [3] An intuitionistic fuzzy set (IFS) ÃI on a universal set X is defined as

ÃI = {⟨x, µÃI (x), νÃI (x)⟩ | x ∈ X},

where µÃI (x) and νÃI (x) denote the membership and non-membership degrees, satisfying

0 ≤ µÃI (x) + νÃI (x) ≤ 1.

The hesitation degree is given by

πÃI (x) = 1− µÃI (x)− νÃI (x).

Definition 4. [18, 24] A hesitant fuzzy set (HFS) H̃ on a universal set X is defined as

H̃ = {⟨x, hH(x)⟩ | x ∈ X},

where each hesitant fuzzy element (HFE) is

hH(x) = {γ1, γ2, . . . , γn}, γi ∈ [0, 1].
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Definition 5. [15] For an HFE h, the score function is defined as

s(h) =
1

lh

∑
γ∈h

γ,

where lh denotes the cardinality of h.

Example 1. Let a = (0.1, 0.4, 0.7) and b = (0.7, 0.2). Then

s(a) =
0.1 + 0.4 + 0.7

3
= 0.4, s(b) =

0.7 + 0.2

2
= 0.45.

Since s(a) < s(b), it follows that b > a.

Definition 6. [15] The variance function of an HFE h is defined as

v(h) =
1

lh

√ ∑
γi,γj∈h

(γi − γj)2.

Example 2. Let a = (0.2, 0.3, 0.7) and b = (0.7, 0.2). Then

v(a) =
1

3

√
(0.2− 0.3)2 + (0.2− 0.7)2 + (0.3− 0.7)2 = 0.14,

v(b) =
1

2

√
(0.7− 0.2)2 = 0.25.

Since v(b) > v(a), it follows that a > b.

Definition 7. [15] The Manhattan distance between two HFEs a and b is defined as

d(a, b) =
1

l

l∑
i=1

∣∣∣aσ(i) − bσ(i)
∣∣∣ ,

where aσ(i) and bσ(i) denote the i-th smallest elements and l is the maximum cardinality.

Example 3. Let a = (0.2, 0.3, 0.7) and b = (0.7, 0.8, 0.5). Then

d(a, b) =
1

3

(
|0.2− 0.7|+ |0.3− 0.8|+ |0.7− 0.5|

)
= 0.4.

Definition 8. [26] For two adjusted HFEs a and b, let hj(i) denote the i-th smallest element
of hj , and let l be the maximum cardinality. The hesitant normalized Hamming and Euclidean
distances are defined as

dhnh(a, b) =
1

l

l∑
i=1

∣∣h1(i) − h2(i)
∣∣ ,

dhne(a, b) =

√√√√1

l

l∑
i=1

(
h1(i) − h2(i)

)2
.
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3 Algorithms

This section presents the algorithmic procedures of the HF-VIKOR and TOPSIS methods in
the hesitant fuzzy environment.

3.1 Algorithm to Tackle the Problem Using the Hesitant Fuzzy VIKOR Approach

Building upon the conceptual framework described earlier, this subsection presents the algo-
rithmic procedure of the hesitant fuzzy VIKOR approach for solving multi-criteria decision-
making (MCDM) problems. The stepwise procedure is primarily adapted from the hesitant
fuzzy VIKOR models proposed by Liao and Xu [15] and Zhang and Wei [28].

3.2 Algorithm to Tackle the Problem Using the Hesitant Fuzzy TOPSIS Approach

4 Numerical Examples

This section presents numerical examples to demonstrate the applicability and effectiveness of
the proposed methods

4.1 HF-VIKOR

To further illustrate the practical applicability of the hesitant fuzzy VIKOR methodology de-
scribed in the preceding subsection, this part presents numerical examples that demonstrate its
step-by-step implementation. These examples show how the HF-VIKOR approach is applied
to a multi-criteria decision-making problem and highlight the interpretation of results within a
hesitant fuzzy environment.

Example 4. Consider anMCDM problem with hesitant fuzzy sets, where the set of alternatives
is A = {A1, A2, A3} and the criteria are defined as C = {C1, C2, C3}. The criterion weights are
specified as w = (0.4, 0.3, 0.3), as detailed in the table below.

Step 1: Construct the hesitant fuzzy decision matrixH = [hij ]:
The hesitant fuzzy decision matrix is summarized in Table 1.

Step 2: Compute the average value for every HFE.
The mean value for HFE is given by
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Algorithm 1 Hesitant Fuzzy VIKOR Approach
Input: Alternatives Ai (i = 1, . . . ,m), criteria Cj (j = 1, . . . , n), weights wj (

∑
wj = 1), hesitant fuzzy

evaluationsHij .
Output: Compromise ranking and best alternative(s).

1. Construct the hesitant fuzzy decision matrix [15, 28]. Define Hij = {h1
ij , . . . , h

kij

ij } ⊆ [0, 1] and form
H = (Hij).

2. Compute mean values [15].

hij =
1

kij

kij∑
l=1

hl
ij .

3. Normalize the matrix [28]. Let hminj = mini hij and hmaxj = maxi hij . Then

h′
ij =


hij − hminj

hmaxj − hminj

, benefit,

hmaxj − hij

hmaxj − hminj

, cost.

4. Weighted normalized values [15, 28].
vij = wjh

′
ij .

5. Utility and regret measures [15]. Let

fj =

maxi vij , benefit,

mini vij , cost.

Si =

n∑
j=1

(fj − vij), Ri = max
j

|fj − vij |.

6. Compromise index [15, 28]. Let Smin, Smax, Rmin, Rmax be the extreme values. Then

Qi = v
Si − Smin

Smax − Smin
+ (1− v)

Ri −Rmin

Rmax −Rmin
,

where v ∈ [0, 1] (commonly v = 0.5). Clearly, Qi ∈ [0, 1] and smaller values indicate better performance.

7. Ranking and compromise solution [28]. Rank alternatives increasingly by Qi. The best alternative A1 is
accepted if (i) Q(A2)−Q(A1) ≥ 1

m−1
, (ii) A1 is also top-ranked by Si or Ri.

If one of the above conditions is not satisfied, a set of compromise solutions may be proposed. Sensitivity
analysis with respect to v can also be conducted to examine the robustness of the ranking.
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Algorithm 2 Hesitant Fuzzy TOPSIS Method
Input: Set of alternatives A = {A1, . . . , Am}, set of criteria C = {C1, . . . , Cn}, criteria weights wj (j =

1, . . . , n) with wj ≥ 0 and
∑n

j=1 wj = 1, and hesitant fuzzy evaluationsHij .
Output: Ranking of alternatives.

1. Construct the hesitant fuzzy decision matrix [12]. For each alternativeAi under criterionCj , express the
evaluation as a hesitant fuzzy element

Hij = {h1
ij , h

2
ij , . . . , h

kij

ij },

where hl
ij ∈ [0, 1]. Form the matrixH = (Hij)m×n.

2. Compute the mean score of each hesitant fuzzy element [12]. Transform eachHij into a crisp value by

dij =
1

kij

kij∑
l=1

hl
ij .

Obtain the aggregated decision matrixD = (dij).

3. Normalize the decision matrix [12]. Let

dminj = min
i

dij , dmaxj = max
i

dij .

For benefit criteria,

d′ij =
dij − dminj

dmaxj − dminj

.

For cost criteria,

d′ij =
dmaxj − dij

dmaxj − dminj

.

Denote the normalized matrix byD′ = (d′ij).

4. Construct the weighted normalized matrix [12].

vij = wj d
′
ij .

Form V = (vij).

5. Determine the positive and negative ideal solutions [12].

v+j = max
i

vij , v−j = min
i

vij .

Define
A+ = {v+1 , . . . , v+n }, A− = {v−1 , . . . , v−n }.

6. Compute the separation measures [12].

S+
i =

√√√√ n∑
j=1

(vij − v+j )2, S−
i =

√√√√ n∑
j=1

(vij − v−j )2.

7. Calculate the closeness coefficient [12].

ri =
S−
i

S+
i + S−

i

, i = 1, . . . ,m.

8. Rank the alternatives [12]. Rank alternatives in descending order of ri. The larger ri, the better the
alternative.
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Table 1: Hesitant fuzzy decision matrix.

Alternatives / Criteria C1 C2 C3

A1 {0.5, 0.4, 0.3} {0.6, 0.8} {0.3, 0.6, 0.9}
A2 {0.4, 0.5} {0.7, 0.2, 0.8} {0.5, 0.8, 0.9}
A3 {0.4, 0.8, 0.6} {0.5, 0.7, 0.4} {0.3, 0.6, 0.7}

hij =

∑n
k=1 hk
n

,

where hk are the elements of the hesitant fuzzy set.
For Criteria C1 :

h11 =
0.5 + 0.4 + 0.3

3
= 0.4, h21 =

0.4 + 0.5

2
= 0.45, h31 =

0.4 + 0.8 + 0.6

3
= 0.6.

For Criteria C2 :

h12 = 0.7, h22 = 0.5667, h32 = 0.5333.

For Criteria C3 :

h13 = 0.6, h23 = 0.7333, h33 = 0.5333.

The mean decision matrix is reported in Table 2.

Table 2: Mean decision matrix.

Alternatives C1 C2 C3

A1 0.40 0.70 0.60
A2 0.45 0.5667 0.7333
A3 0.60 0.5333 0.5333

Step 3: Normalize the hesitant decision matrix.
To find the normalized decision matrix, first compute hminj and hmaxj for each criterion Cj ,

j = 1, 2, 3:

hmax1 = 0.6, hmin1 = 0.4, hmax2 = 0.7, hmin2 = 0.5333, hmax3 = 0.7333, hmin3 = 0.5333.

Assuming all criteria are benefit type, the normalized decision matrix is obtained as follows.
For Criteria C1 :

h′11 =
0.4− 0.4

0.6− 0.4
= 0.00, h′21 =

0.45− 0.4

0.6− 0.4
= 0.25, h′31 =

0.6− 0.4

0.6− 0.4
= 1.00.
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For Criteria C2 :

h′12 = 1.00, h′22 = 0.20, h′32 = 0.00.

For Criteria C3 :

h′13 = 0.33, h′23 = 1.00, h′33 = 0.00.

Now, all the HFEs are normalized. The normalized hesitant decision matrix H ′ = [h′ij ] is
shown in Table 3.

Table 3: Normalized decision matrix.

Alternatives C1 C2 C3

A1 0.00 1.00 0.33
A2 0.25 0.20 1.00
A3 1.00 0.00 0.00

Step 4: Find the weighted normalized decision matrix
To obtain the weighted normalized decision matrix, each normalized value is multiplied by

its corresponding criterion weight

wj = (0.4, 0.3, 0.3),

such that
vi1 = 0.4 h′i1, vi2 = 0.3 h′i2, vi3 = 0.3 h′i3, i = 1, 2, 3.

Table 4 displays the weighted normalized decision matrix.

Table 4: Weighted normalized decision matrix.

Alternatives C1 C2 C3

A1 0.00 0.30 0.10
A2 0.10 0.06 0.30
A3 0.40 0.00 0.00

Step 5: Compute the utility and the regret measure values.
The values of Si and Ri are determined using the following formulas:

Si =
m∑
j=1

(fj − vij), Ri = max
j

{|fj − vij |},

where fj represents the ideal value of criterion j. Since the all criteria are of benefit type, so
the ideal values for the criteria are C1 = 0.40, C2 = 0.30, C3 = 0.30 i.e., fj = max

i
vij for

each criterion Cj .
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For alternative A1 :

S1 = (0.4− 0.0) + (0.3− 0.3) + (0.3− 0.1) = 0.60

R1 = max{|0.4− 0.0| , |0.3− 0.3| , |0.3− 0.1|} = 0.4

For alternative A2 :

S2 = (0.4− 0.1) + (0.3− 0.06) + (0.3− 0.3) = 0.54

R2 = max{|0.4− 0.1| , |0.3− 0.06| , |0.3− 0.3|} = 0.3

For alternative A3 :

S3 = (0.4− 0.4) + (0.3− 0.0) + (0.3− 0.0) = 0.60

R3 = max{|0.0− 0.4| , |0.3− 0.0| , |0.3− 0.0|} = 0.3

The Si and Ri for each alternative are reported in Table 5.

Table 5: Utility and regret measures.

Alternative Si Ri

A1 0.60 0.40
A2 0.54 0.30
A3 0.60 0.30

Step 6: Calculate the compromise index Qi.
The compromise index Qi is calculated as

Qi = v · Si − Smin
Smax − Smin

+ (1− v) · Ri −Rmin
Rmax −Rmin

,

where v is the weight assigned to maximum group utility. For this example, take v = 0.5:

Smin = 0.54, Smax = 0.60, Rmin = 0.3, Rmax = 0.4

For alternative A1 :

Q1 = 0.5

(
0.60− 0.54

0.60− 0.54

)
+ 0.5

(
0.4− 0.3

0.4− 0.3

)
= 1.00

For alternative A2 :

Q2 = 0.5

(
0.54− 0.54

0.60− 0.54

)
+ 0.5

(
0.3− 0.3

0.4− 0.3

)
= 0.00

For alternative A3 :

Q3 = 0.5

(
0.60− 0.54

0.60− 0.54

)
+ 0.5

(
0.3− 0.3

0.4− 0.3

)
= 0.50

The compromise index Qi is summarized in Table 6.
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Table 6: Compromise index values.

Alternative Qi

A1 1.00
A2 0.00
A3 0.50

Step 7: Find the rank of alternatives and the compromise solution. From the calculations

Q2 < Q3 < Q1, S2 < S3 < S1, R2 < R3 < R1.

The alternativeA2 with the smallestQ2 is considered as the best choice among alternatives. To
declare A2 as a compromise solution, first check the condition of acceptability:

Q(A3)−Q(A2) ≥ DQ, DQ =
1

m− 1
.

wherem = 3 and Q(A2), Q(A3) represent the alternatives in the first and second positions in
the ranking list, respectively.

Q(A3)−Q(A2) = 0.5 ≥ 0.5, DQ = 0.5.

The condition is satisfied. A2 is considered as compromise solution.

Table 7: Sensitivity analysis of the compromise index Q for selected values of the parameter v in Example 4.

v Q(A1) Q(A2) Q(A3) Ranking (best→ worst)
0.00 1.00 0.00 0.00 A2 ≺ (A3 ∼ A1)

0.25 1.00 0.00 0.25 A2 ≺ A3 ≺ A1

0.50 1.00 0.00 0.50 A2 ≺ A3 ≺ A1

0.75 1.00 0.00 0.75 A2 ≺ A3 ≺ A1

1.00 1.00 0.00 1.00 A2 ≺ (A3 ∼ A1)

From Table 7, it is evident that the ranking of alternatives remains unchanged despite the
change in parameter v. The variation of Qi values for different values of v is illustrated in
Figure 1 and reported in Table 7. The value of A2 remains consistently the lowest, indicating
that it is the best compromise choice under all decision-making settings. When v increases,
the weight given to the group utility rises; therefore, Q(A3) gradually increases while Q(A1)

remains constant. However, no crossover occurs, and A2 continues to outperform both A1 and
A3, demonstrating the robustness of the VIKOR decision in this hesitant fuzzy environment.

Example 5. Consider anMCDMproblemwith a set of four alternatives asA = {A1, A2, A3, A4}
and the criteria are defined as C = {C1, C2, C3}. The criterion weights are specified as
w = (0.1, 0.4, 0.5), as detailed in below.
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Figure 1: Sensitivity analysis of the compromise index (Q) for selected values of the VIKOR parameter (v) in
Example 4.

Step 1: Construct the hesitant fuzzy decision matrixH = [hij ]

The hesitant fuzzy decision matrix is summarized in Table 8.

Table 8: Hesitant fuzzy decision matrix showing the performance of each alternative under criteria C1, C2, and
C3.

Alternatives / Criteria C1 C2 C3

A1 {0.6, 0.7, 0.2} {0.7, 0.5} {0.6, 0.7}
A2 {0.1, 0.5} {0.6, 0.7, 0.8} {0.3, 0.5}
A3 {0.4, 0.8, 0.7} {0.3, 0.6} {0.5, 0.8}
A4 {0.7, 0.4} {0.4, 0.5} {0.5, 0.8, 0.9}

Step 2: Compute the average value for every HFE.
The mean value for HFE is given by

hij =

∑n
k=1 hk
n

,

where hk are the elements of the hesitant fuzzy set.
For Criteria C1 :

h11 =
0.6 + 0.7 + 0.2

3
= 0.5, h21 =

0.1 + 0.5

2
= 0.3,

h31 =
0.4 + 0.8 + 0.7

3
= 0.63, h41 =

0.7 + 0.4

2
= 0.55.
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For Criteria C2 :

h12 = 0.6, h22 = 0.7, h32 = 0.45, h42 = 0.45.

For Criteria C3 :

h13 = 0.65, h23 = 0.40, h33 = 0.65, h43 = 0.73.

The mean decision matrix is shown in Table 9.

Table 9: Mean values computed for the hesitant fuzzy evaluations of all alternatives.

Alternative C1 C2 C3

A1 0.50 0.60 0.65
A2 0.30 0.70 0.40
A3 0.63 0.45 0.65
A4 0.55 0.45 0.73

Step 3: Normalize the hesitant decision matrix.
To find the normalized decision matrix, first determine hminj and hmaxj for each criterion

Cj (j = 1, 2, 3):

hmax1 = 0.63, hmin1 = 0.30, hmax2 = 0.70, hmin2 = 0.45, hmax3 = 0.73, hmin3 = 0.40.

Assuming C1 and C2 are benefit criteria and C3 is a cost criterion, the normalized decision
matrix is obtained as follows.

For Criteria C1 :

h′11 =
0.50− 0.30

0.63− 0.30
= 0.61, h′21 =

0.30− 0.30

0.63− 0.30
= 0.00,

h′31 =
0.63− 0.30

0.63− 0.30
= 1.00, h′41 =

0.55− 0.30

0.63− 0.30
= 0.76.

For Criteria C2 :

h′12 = 0.60, h′22 = 1.00, h′32 = 0.00, h′42 = 0.00.

For Criteria C3 :

h′13 = 0.24, h′23 = 1.00, h′33 = 0.24, h′43 = 0.00.

Now, all the HFEs are normalized. The normalized hesitant decision matrix H ′ = [h′ij ] is
summarized in Table 10.
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Table 10: Normalized decision matrix for Example 5.

Alternative C1 C2 C3

A1 0.61 0.60 0.24
A2 0.00 1.00 1.00
A3 1.00 0.00 0.24
A4 0.76 0.00 0.00

Step 4: Find the weighted normalized decision matrix.
To obtain the weighted normalized decision matrix, each normalized value is multiplied by

its corresponding criterion weight

wj = (0.1, 0.4, 0.5),

such that
vi1 = 0.1h′i1, vi2 = 0.4h′i2, vi3 = 0.5h′i3, i = 1, 2, 3, 4.

Table 11 displays the weighted normalized decision matrix.

Table 11: Weighted normalized decision matrix obtained using the given criteria weights.

Alternative C1 C2 C3

A1 0.061 0.24 0.12
A2 0.000 0.40 0.50
A3 0.100 0.00 0.12
A4 0.076 0.00 0.00

Step 5: Compute the utility and the regret measure values.
The values of Si and Ri are determined using the following formulas:

Si =
m∑
j=1

(fj − vij), Ri = max
j

{|fj − vij |},

where fj represents the ideal value of criterion j. Since the criterion C1 and C2 are of benefit
type and C3 is of cost type. So the ideal values for the criteria are: C1 = 0.10, C2 = 0.40,
C3 = 0.00. That is, fj = max

i
vij for benefit criteria (j = 1, 2) and fj = min

i
vij for the cost

criterion (j = 3).
For alternative A1 :

S1 = (0.100− 0.061) + (0.40− 0.24) + (0.00− 0.12) = 0.076.
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R1 = max{|0.100− 0.061| , |0.40− 0.24| , |0.00− 0.12|} = 0.16.

For alternative A2 :

S2 = (0.10− 0.00) + (0.40− 0.40) + (0.00− 0.50) = −0.40.

R2 = max{|0.10− 0.00| , |0.40− 0.40| , |0.00− 0.50|} = 0.50.

For alternative A3 :

S3 = (0.10− 0.10) + (0.40− 0.00) + (0.00− 0.12) = 0.28.

R3 = max{|0.10− 0.10| , |0.40− 0.00| , |0.00− 0.12|} = 0.40.

For alternative A4 :

S4 = (0.100− 0.076) + (0.40− 0.00) + (0.00− 0.00) = 0.424.

R4 = max{|0.100− 0.076| , |0.40− 0.00| , |0.00− 0.00|} = 0.40

It is noted that the utility measure Si may assume negative values in the presence of cost
criteria, since Si is computed relative to the ideal solution. The Si and Ri for each alternative
are reported in Table 12.

Table 12: Utility (Si) and regret (Ri) measures for each alternative.

Alternative Si Ri

A1 0.076 0.16
A2 -0.40 0.50
A3 0.28 0.40
A4 0.424 0.40

Step 6: Calculate the compromise index Qi.
The compromise index Qi is calculated as

Qi = v · Si − Smin
Smax − Smin

+ (1− v) · Ri −Rmin
Rmax −Rmin

,

where v is the weight assigned to maximum group utility. For this example, take v = 0.5.

Smin = −0.400, Smax = 0.424, Rmin = 0.16, Rmax = 0.50.

For alternative A1 :

Q1 = 0.5

(
0.076 + 0.400

0.424 + 0.400

)
+ 0.5

(
0.16− 0.16

0.50− 0.16

)
= 0.289.
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For alternative A2 :

Q2 = 0.5

(
−0.400 + 0.400

0.424 + 0.400

)
+ 0.5

(
0.50− 0.16

0.50− 0.16

)
= 0.5.

For alternative A3 :

Q3 = 0.5

(
0.280 + 0.400

0.424 + 0.400

)
+ 0.5

(
0.40− 0.16

0.50− 0.16

)
= 0.765.

For alternative A4 :

Q4 = 0.5

(
0.424 + 0.400

0.424 + 0.400

)
+ 0.5

(
0.40− 0.16

0.50− 0.16

)
= 0.853.

The compromise index Qi is summarized in Table 13.

Table 13: Compromise index Qi values for all alternatives.

Alternative Qi

A1 0.289
A2 0.5
A3 0.765
A4 0.853

Step 7: Find the rank of alternatives and the compromise solution.
From the above calculations, the ranking is obtained as

Q1 < Q2 < Q3 < Q4, S2 < S1 < S3 < S4, R1 < R3 = R4 < R2.

The alternative A1 with the smallest Q1 is considered the best choice among A1, A2, A3, A4.
To declare A1 as a compromise solution, we check the acceptable condition:

Q(A2)−Q(A1) ≥ DQ, DQ =
1

m− 1
,

wherem = 4 and Q(A1), Q(A2) represent the alternatives in the first and second positions in
the ranking list, respectively. Substituting the values:

Q(A2)−Q(A1) = 0.211 < 0.33, DQ = 0.33.

Since the condition is not satisfied, the alternatives A1 and A2 are considered the compromise
solutions.

The variation of Qi values for different values of v is illustrated in Figure 2 and reported
in Table 14. The results in Table 14 clearly show that the compromise index Q is sensitive
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Table 14: Sensitivity analysis of the compromise index Q for selected values of the parameter v in Example 5.

v Q(A1) Q(A2) Q(A3) Q(A4) Ranking (best→ worst)
0.00 0.000 1.00 0.706 0.706 A1 ≺ (A3 ∼ A4) ≺ A2

0.25 0.145 0.875 0.736 0.804 A1 ≺ A3 ≺ A4 ≺ A2

0.50 0.289 0.5 0.765 0.853 A1 ≺ A2 ≺ A3 ≺ A4

0.75 0.434 0.125 0.794 0.902 A2 ≺ A1 ≺ A3 ≺ A4

1.00 0.579 0.000 0.824 1.00 A2 ≺ A1 ≺ A3 ≺ A4

to the choice of the parameter v. When v is low, the decision is driven mainly by regret (Ri)

and alternative A2 becomes the preferred option. As v increases, the weight of group utility
(Si) dominates, causing A1 to gradually emerge as the optimal solution. A crossover shift is
observed near v ≈ 0.40, indicating that the final decision strongly depends on the decision
maker’s attitude toward utility versus regret.

Figure 2: Sensitivity analysis of the compromise index (Q) for selected values of the VIKOR parameter (v) in
Example 5.

Example 6. Consider an MCDM problem with set of 3 alternatives as A = {A1, A2, A3}
and the criteria are defined as C = {C1, C2, C3}. The criterion weights are specified as w =

(0.4, 0.35, 0.25), as detailed in below. The hesitant decision matrix is given in Table 15.
Following the same computational steps described in Examples 4 and 5—including ag-

gregation of hesitant fuzzy elements, normalization of benefit and cost criteria, weighting of
criteria, and evaluation of the utility measure Si, regret measure Ri, and compromise index
Qi—the final decision results are obtained.
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Table 15: Hesitant fuzzy decision matrix for Example 6.

Alternatives / Criteria C1 C2 C3

A1 {0.7, 0.8, 0.9} {0.5, 0.6, 0.7} {0.4, 0.5}
A2 {0.6, 0.7} {0.7, 0.8, 0.9} {0.5, 0.6, 0.7}
A3 {0.8, 0.9} {0.6, 0.7} {0.3, 0.4, 0.5}

The computed values of the weighted normalized decision matrix, utility measure Si, regret
measure Ri, and compromise index Qi are summarized in Tables 16–18.

Table 16: Weighted normalized decision matrix produced by combining normalized values with the assigned
criteria weights.

Alternatives / Criteria C1 C2 C3

A1 0.30 0.00 0.188
A2 0.00 0.35 0.00
A3 0.4 0.087 0.25

Table 17: Utility and regret measures for each alternative.

Alternatives Si Ri

A1 0.262 0.35
A2 0.40 0.40
A3 0.013 0.263

Based on the compromise index values, the ranking of alternatives is obtained as

Q3 < Q1 < Q2,

indicating that alternative A3 is the most preferred option.
The acceptable advantage condition is satisfied, and therefore A3 is identified as the com-

promise solution for this decision problem.
To examine the robustness of the ranking results, a sensitivity analysis of the compromise

index Qi with respect to the VIKOR parameter v is conducted. The variation of Qi values for
different values of v is illustrated in Figure 3 and reported in Table 19. The results demonstrate
that although the numerical values of Qi vary slightly with changes in v, the ranking of alter-
natives remains unchanged. This confirms the stability and robustness of the proposed hesitant
fuzzy VIKOR method.

Example 7. Let us consider a real-life MCDM problem under hesitant fuzzy sets, where a
farmer aims to select the most suitable fertilizer for rice cultivation. Let A = {A1, A2, A3}
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Table 18: Compromise index Qi values for all alternatives.

Alternatives Qi

A1 0.6392
A2 1.00
A3 0.00

Figure 3: Sensitivity analysis of the compromise index (Q) for selected values of the VIKOR parameter (v) in
Example 6.

denote the set of alternatives, where A1 represents a urea-based fertilizer, A2 denotes organic
compost, and A3 corresponds to an NPK mixed fertilizer. The criteria set is defined as C =

{C1, C2, C3}, where C1 represents the expected increase in crop yield (benefit criterion), C2

denotes soil health improvement (benefit criterion), andC3 corresponds to application cost (cost
criterion). The criterion weights are assigned by domain experts asw = (0.45, 0.35, 0.20). The
hesitant fuzzy decision matrix reflecting expert evaluations is presented below.

The hesitant fuzzy decision matrix constructed based on expert evaluations is reported in
Table 20.

Following the same HF–VIKOR computational procedure described in Example 4 - includ-
ing mean aggregation of hesitant fuzzy elements, normalization, weighting, and computation
of the utility measure Si, regret measure Ri, and compromise index Qi—the final results are
obtained.
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Table 19: Sensitivity analysis of the compromise index Q for selected values of the parameter v Example 6.

v Q(A1) Q(A2) Q(A3) Ranking (best→ worst)
0.00 0.6350 1.00 0.00 A3 ≺ A1 ≺ A2

0.25 0.6372 1.00 0.00 A3 ≺ A1 ≺ A2

0.50 0.6392 1.00 0.00 A3 ≺ A1 ≺ A2

0.75 0.6415 1.00 0.00 A3 ≺ A1 ≺ A2

1.00 0.6439 1.00 0.00 A3 ≺ A1 ≺ A2

Table 20: Hesitant fuzzy decisionmatrix showing the interval-valued performance of each alternative under criteria
C1, C2, C3.

Alternatives / Criteria C1 C2 C3

A1 {0.6, 0.7, 0.8} {0.4, 0.5, 0.6} {0.6, 0.7}
A2 {0.7, 0.8, 0.9} {0.7, 0.8} {0.3, 0.4}
A3 {0.5, 0.6} {0.6, 0.7, 0.8} {0.4, 0.5, 0.6}

Table 21 reports the compromise index values for all alternatives. The ranking obtained is

Q2 < Q1 < Q3,

indicating that alternative A2 (organic compost) is the most preferred option.
The acceptable advantage condition is satisfied, and therefore A2 is identified as the com-

promise solution.
To examine the robustness of the decision, a sensitivity analysis of the compromise indexQi

with respect to the VIKOR parameter v is performed. The variation of Qi values is illustrated
in Figure 4 and summarized in Table 22. The results show that A2 consistently achieves the
minimum Qi value for all values of v ∈ [0, 1], confirming the stability and robustness of the
proposed hesitant fuzzy VIKOR decision outcome.

4.2 HF-TOPSIS

To demonstrate the practical implementation of the hesitant fuzzy TOPSIS methodology dis-
cussed in the previous subsection, this part provides illustrative numerical examples. These
examples show how the TOPSIS approach is applied to an MCDM problem under hesitant
fuzzy information and help interpret and validate the obtained rankings.

Example 8. Let us consider the MCDM problem hesitant fuzzy sets, let A = {A1, A2, A3}
denotes the set of alternatives and C = {C1, C2, C3} represents the criteria and consider the
criterion weights w = (0.4, 0.3, 0.3) with the information given below.



In
Pr
es
s

22 Comparison of MCDMMethods under HFS

Table 21: Compromise index Qivalues for all alternatives.

Alternatives Qi

A1 0.80
A2 0.00
A3 0.925

Figure 4: Sensitivity analysis of the compromise index (Q) for selected values of the VIKOR parameter (v) in
Example 7.

Step 1: Hesitant fuzzy decision matrix.
The hesitant fuzzy decision matrix is denoted byH = [hij ] and is given in Table 23.

Step 2: Mean value of hesitant fuzzy elements
The mean value of each hesitant fuzzy element (HFE) is computed as

dij =
1

n

n∑
k=1

hk,

where hk are the elements of the corresponding hesitant fuzzy set.
For C1 :

d11 = 0.40, d21 = 0.45, d31 = 0.60,

For C2 :
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Table 22: Sensitivity analysis of the compromise index Qi with respect to parameter v Example 7.

v Q(A1) Q(A2) Q(A3) Ranking (best→ worst)
0.00 0.60 0.00 1.00 A2 ≺ A1 ≺ A3

0.25 0.70 0.00 0.962 A2 ≺ A1 ≺ A3

0.50 0.80 0.00 0.925 A2 ≺ A1 ≺ A3

0.75 0.90 0.00 0.887 A2 ≺ A1 ≺ A3

1.00 1.00 0.00 0.849 A2 ≺ A3 ≺ A1

Table 23: Hesitant fuzzy decision matrix for the set of alternatives and criteria.

Alternatives / Criteria C1 C2 C3

A1 {0.5, 0.4, 0.3} {0.6, 0.8} {0.3, 0.6, 0.9}
A2 {0.4, 0.5} {0.7, 0.2, 0.8} {0.5, 0.8, 0.9}
A3 {0.4, 0.8, 0.6} {0.5, 0.7, 0.4} {0.3, 0.6, 0.7}

d12 = 0.70, d22 = 0.5667, d32 = 0.5333,

For C3 :

d13 = 0.60, d23 = 0.7333, d33 = 0.5333.

The mean value decision matrix is presented in Table 24.

Table 24: Mean values of hesitant fuzzy elements for each criterion.

Alternatives / Criteria C1 C2 C3

A1 0.4 0.7 0.6
A2 0.45 0.5667 0.7333
A3 0.6 0.5333 0.5333

Step 3: Normalization of the decision matrix
The minimum and maximum values for each criterion are
For C1 :

dmin1 = 0.40, dmax1 = 0.60,

For C2 :

dmin2 = 0.5333, dmax2 = 0.70,

For C3 :

dmin3 = 0.5333, dmax3 = 0.7333.

Since all criteria are benefit criteria, min–max normalization is applied:
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d′ij =
dmaxj − dij

dmaxj − dminj

.

For C1 :

d′11 = 1.00, d′21 = 0.75, d′31 = 0.00,

For C2 :

d′12 = 0.00, d′22 = 0.81, d′32 = 1.00,

For C3 :

d′13 = 0.33, d′23 = 1.00, d′33 = 0.00.

The normalized decision matrix is reported in Table 25.

Table 25: Normalized hesitant fuzzy decision matrix.

Alternatives / Criteria C1 C2 C3

A1 1.00 0.00 0.33
A2 0.75 0.81 1.00
A3 0.00 1.00 0.00

Step 4: Weighted normalized decision matrix
The weighted normalized values are obtained as

vij = wj d
′
ij .

vi1 = 0.4 d′i1, vi2 = 0.3 d′i2, vi3 = 0.3 d′i3, i = 1, 2, 3.

The weighted normalized decision matrix is presented in Table 26.

Table 26: Weighted normalized decision matrix.

Alternatives / Criteria C1 C2 C3

A1 0.40 0.00 0.099
A2 0.30 0.243 0.30
A3 0.00 0.30 0.00

Step 5: Ideal solutions

A+ = {0.40, 0.30, 0.30}, A− = {0.00, 0.00, 0.00}.
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Step 6: Separation measures

S+
i =

√√√√ 3∑
j=1

(vij − d+j )
2, S−

i =

√√√√ 3∑
j=1

(vij − d−j )
2.

For A1 :

S+
1 = 0.3611, S−

1 = 0.4121,

For A2 :

S+
2 = 0.1149, S−

2 = 0.4889,

For A3 :

S+
3 = 0.50, S−

3 = 0.30.

The separation measure is reported in Table 27.

Table 27: Separation measures for the alternatives.

Alternatives S+
i S−

i

A1 0.3611 0.4121
A2 0.1149 0.4889
A3 0.50 0.30

Step 7: Relative closeness.

ri =
S−
i

S+
i + S−

i

.

r1 = 0.533, r2 = 0.810, r3 = 0.375.

The closeness degree is shown in Table 28.

Table 28: Relative closeness values of the alternatives.

Alternatives ri (Relative closeness)
A1 0.533
A2 0.81
A3 0.375

Thus, the ranking is
A3 < A1 < A2,

and A2 is the best alternative.

Example 9. Let us consider the MCDM problem hesitant fuzzy sets, letA = {A1, A2, A3, A4}
denotes the set of alternatives and C = {C1, C2, C3} represents the criteria and consider the
criterion weights w = (0.1, 0.4, 0.5) with the information given below.
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Step 1: Hesitant fuzzy decision matrix.
The hesitant fuzzy decision matrix is denoted byH = [hij ], and is presented in Table 29.

Table 29: Hesitant fuzzy decision matrix for the set of alternatives and criteria.

Alternatives / Criteria C1 C2 C3

A1 {0.6, 0.7, 0.2} {0.7, 0.5} {0.6, 0.7}
A2 {0.1, 0.5} {0.6, 0.7, 0.8} {0.3, 0.5}
A3 {0.4, 0.8, 0.7} {0.3, 0.6} {0.5, 0.8}
A4 {0.7, 0.4} {0.4, 0.5} {0.5, 0.8, 0.9}

Step 2: Mean value of hesitant fuzzy elements.
The mean value of each hesitant fuzzy element (HFE) is computed as

dij =
1

n

n∑
k=1

hk,

where hk are the elements of the corresponding hesitant fuzzy set.
For criterion C1 :

d11 = 0.50, d21 = 0.30, d31 = 0.63, d41 = 0.55,

For criterion C2 :

d12 = 0.60, d22 = 0.70, d32 = 0.45, d42 = 0.45,

For criterion C3 :

d13 = 0.65, d23 = 0.40, d33 = 0.65, d43 = 0.73.

The resulting mean value decision matrix is shown in Table 30.

Table 30: Mean values of hesitant fuzzy elements for each criterion.

Alternatives / Criteria C1 C2 C3

A1 0.50 0.60 0.65
A2 0.30 0.70 0.40
A3 0.63 0.45 0.65
A4 0.55 0.45 0.73
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Step 3: Normalization of the decision matrix.
The minimum and maximum values for each criterion are computed as follows:
For C1:

dmin1 = 0.30, dmax1 = 0.63,

For C2:
dmin2 = 0.45, dmax2 = 0.70,

For C3:
dmin3 = 0.40, dmax3 = 0.73.

Assume that C1 and C2 are benefit criteria, while C3 is a cost criterion. Using min–max nor-
malization, the normalized decision matrix is obtained as:

For criterion C1 :

d′11 = 0.39, d′21 = 1.00, d′31 = 0.00, d′41 = 0.24,

For criterion C2 :

d′12 = 0.40, d′22 = 0.00, d′32 = 1.00, d′42 = 1.00,

For criterion C3 :

d′13 = 0.76, d′23 = 0.00, d′33 = 0.76, d′43 = 1.00.

The normalized hesitant fuzzy decision matrixH ′ = [d′ij ] is provided in Table 31.

Table 31: Normalized hesitant fuzzy decision matrix.

Alternatives / Criteria C1 C2 C3

A1 0.39 0.40 0.76
A2 1.00 0.00 0.00
A3 0.00 1.00 0.76
A4 0.24 1.00 1.00

Step 4: Weighted normalized decision matrix.
The weighted normalized values are computed by vij = wj d

′
ij where w = (0.1, 0.4, 0.5).

vi1 = 0.1 d′i1, vi2 = 0.4 d′i2, vi3 = 0.5 d′i3, i = 1, 2, 3, 4.

The weighted normalized decision matrix is reported in Table 32.
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Table 32: Weighted normalized decision matrix.

Alternatives / Criteria C1 C2 C3

A1 0.039 0.16 0.38
A2 0.10 0.00 0.00
A3 0.00 0.40 0.38
A4 0.024 0.40 0.5

Step 5: Positive and negative ideal solutions.
The positive ideal solution (PIS) and negative ideal solution (NIS) are defined as

A+ = {d+1 , d
+
2 , d

+
3 }, A

− = {d−1 , d
−
2 , d

−
3 }.

Accordingly,

A+ = {0.10, 0.40, 0.00}, A− = {0.00, 0.00, 0.50}.

Step 6: Separation measures.
The separation distances from the ideal and negative ideal solutions are computed as

S+
i =

√√√√ 3∑
j=1

(vij − d+j )
2, S−

i =

√√√√ 3∑
j=1

(vij − d−j )
2.

For A1 :

S+
1 = 0.4536, S−

1 = 0.2037,

For A2 :

S+
2 = 0.4536, S−

2 = 0.5099,

For A3 :

S+
3 = 0.3929, S−

3 = 0.4176,

For A4 :

S+
4 = 0.5057, S−

4 = 0.4007.

The separation measures are summarized in Table 33.

Step 7: Relative closeness coefficient.
The relative closeness degree of each alternative is calculated as

ri =
S−
i

S+
i + S−

i

, i = 1, 2, 3, 4.
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Table 33: Separation measures for the alternatives.

Alternatives S+
i S−

i

A1 0.4536 0.2037
A2 0.40 0.5099
A3 0.3929 0.4176
A4 0.5057 0.400

Table 34: Relative closeness values of the alternatives.

Alternatives ri (Relative closeness)
A1 0.3099
A2 0.5603
A3 0.5152
A4 0.4420

r1 = 0.3099, r2 = 0.5603, r3 = 0.5152, r4 = 0.4420.

The closeness coefficients are reported in Table 34.
Based on the descending order of ri, the ranking of alternatives is

A2 > A3 > A4 > A1.

Hence, A2 is identified as the best alternative.

Example 10. Let us consider the MCDM problem hesitant fuzzy sets, let A = {A1, A2, A3}
denotes the set of alternatives and C = {C1, C2, C3} represents the criteria and consider the
criterion weights w = (0.4, 0.35, 0.25) with the information given below.

The hesitant decision matrix is given in Table 35 Following the same computational proce-

Table 35: Hesitant fuzzy decision matrix for the set of alternatives and criteria.

Alternatives / Criteria C1 C2 C3

A1 {0.7, 0.8, 0.9} {0.5, 0.6, 0.7} {0.4, 0.5}
A2 {0.6, 0.7} {0.7, 0.8, 0.9} {0.5, 0.6, 0.7}
A3 {0.8, 0.9} {0.6, 0.7} {0.3, 0.4, 0.5}

dure described in Examples 8 and 9, the hesitant fuzzy elements are first transformed into their
mean values, normalized using the min–max approach, and subsequently weighted according
to the criterion weights. For brevity, intermediate computational steps are omitted.

The resulting positive and negative ideal solutions are obtained as

A+ = {0.40, 0.35, 0.00}, A− = {0.00, 0.00, 0.25}.
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The separation measures and relative closeness coefficients are summarized in Table 36.

Table 36: Separation measures for the alternatives.

Alternatives S+
i S−

i

A1 0.3064 0.4095
A2 0.4301 0.40
A3 0.4095 0.3625

The computed closeness degrees are

r1 = 0.57, r2 = 0.48, r3 = 0.47.

Hence, the ranking of the alternatives is

A3 < A2 < A1,

indicating that A1 is the most preferred alternative.

Example 11. Let us consider a real-life MCDM problem under hesitant fuzzy sets, where a
farmer aims to select the most suitable fertilizer for rice cultivation. Let A = {A1, A2, A3}
denote the set of alternatives, where A1 represents a urea-based fertilizer, A2 denotes organic
compost, and A3 corresponds to an NPK mixed fertilizer. The criteria set is defined as C =

{C1, C2, C3}, where C1 represents the expected increase in crop yield (benefit criterion), C2

denotes soil health improvement (benefit criterion), andC3 corresponds to application cost (cost
criterion). The criterion weights are assigned by domain experts asw = (0.45, 0.35, 0.20). The
hesitant fuzzy decision matrix reflecting expert evaluations is presented below.

The hesitant decision matrix is given by Table 37.

Table 37: Hesitant fuzzy decision matrix for the set of alternatives and criteria.

Alternatives / Criteria C1 C2 C3

A1 {0.6, 0.7, 0.8} {0.4, 0.5, 0.6} {0.6, 0.7}
A2 {0.7, 0.8, 0.9} {0.7, 0.8} {0.3, 0.4}
A3 {0.5, 0.6} {0.6, 0.7, 0.8} {0.4, 0.5, 0.6}

Applying the same hesitant fuzzy TOPSIS procedure detailed in Examples 8 and 9, the
mean value transformation, normalization, weighting, and distance calculations are carried out
without repeating intermediate derivations.

The positive and negative ideal solutions are obtained as

A+ = {0.45, 0.35, 0.00}, A− = {0.00, 0.00, 0.20}.
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The resulting relative closeness coefficients are reported in Table 38 and are given by

r1 = 0.537, r2 = 0.259, r3 = 0.605.

Table 38: Relative closeness values of the alternatives.

Alternatives ri (Relative closeness)
A1 0.537
A2 0.259
A3 0.605

Accordingly, the ranking of the fertilizer alternatives is

A2 < A1 < A3,

which indicates that the NPK mixed fertilizer (A3) is the most suitable option for rice cultiva-
tion.

5 Comparison of the TOPSIS and the VIKOR Methods

This section presents a systematic comparison of the TOPSIS and VIKOR methods within the
hesitant fuzzy sets (HFS) framework. Although both approaches are widely used MCDM tech-
niques capable of handling uncertainty and hesitation, they differ fundamentally in their deci-
sion philosophies and ranking behaviors. The comparison is conducted not only at a theoretical
level but also through measurable quantitative indicators, including ranking differences, corre-
lation measures, and compromise behavior. The analysis is based on four independent numer-
ical examples involving varying degrees of hesitation and conflicting criteria. The theoretical
comparison is represented in Table 39.

To ensure a measurable and objective comparison, several quantitative indicators are em-
ployed. These include the rank-difference metric

∑
|rT − rV |, Kendall’s rank correlation co-

efficient (τ ), and an examination of compromise solutions generated by VIKOR. The rank-
difference metric captures the extent of divergence between ranking lists, while Kendall’s τ
measures ordinal consistency. In cases where VIKOR does not yield a strict ranking due to
unmet acceptable advantage conditions, compromise solutions are explicitly reported and ana-
lyzed. This comparison is presented in Table 40.

The results demonstrate that TOPSIS consistently produces stable and complete rankings
across all examples, owing to its distance-based aggregation mechanism. In contrast, VIKOR
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Table 39: Theoretical comparison of HF-TOPSIS and HF-VIKOR

Feature TOPSIS VIKOR
Decision philosophy Selects the alternative closest

to the positive ideal and far-
thest from the negative ideal

Identifies a compromise solu-
tion by balancing group util-
ity and individual regret

Ideal reference Uses both positive and nega-
tive ideal solutions

Uses best and worst criterion
values

Aggregation mechanism Distance-based aggregation Utility (Si) and regret (Ri)
based aggregation

Ranking output Produces a complete and
strict ranking

May produce multiple com-
promise solutions when con-
ditions are not satisfied

Sensitivity to conflict Less sensitive to individual
criterion conflict

Highly sensitive to conflict-
ing criteria and extreme re-
gret values

Table 40: Quantitative comparison of TOPSIS and VIKOR rankings (Examples 4–11)

Example
∑

|rT − rV | Kendall τ Key Observation
Examples 4 and 8 0 1.00 Identical rankings
Examples 5 and 9 – – Multiple compromise solutions

in VIKOR
Examples 6 and 10 2 0.67 Rank reversal due to regret dom-

inance
Examples 7 and 11 2 0.67 Sensitivity to hesitant fuzzy dis-

persion

exhibits flexible ranking behavior, particularly in the presence of conflicting criteria and high
hesitation. Example 5 illustrates VIKOR’s compromise-seeking nature, where multiple al-
ternatives satisfy decision conditions rather than enforcing a strict order. The observed rank
differences and Kendall correlation values confirm that divergences between the two methods
increase with criterion conflict and hesitant fuzzy dispersion. These findings indicate that TOP-
SIS is preferable when ranking clarity is required, whereas VIKOR is more suitable for decision
environments emphasizing negotiation and compromise.

Extracted quantitative insights. Based on the numerical results summarized in Table 40,
several generalizable observations can be made.
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1. When hesitant fuzzy evaluations are moderately dispersed and criteria are weakly con-
flicting (Examples 4 and 8), TOPSIS and VIKOR produce identical rankings, reflected
by a zero rank difference and perfect Kendall correlation (τ = 1.00).

2. In the presence of strong criterion conflict and closely competing alternatives (Exam-
ples 5 and 9), VIKOR does not enforce a strict ranking and instead identifies multiple
compromise solutions, whereas TOPSIS yields a complete ordering.

3. As hesitation dispersion and regret dominance increase (Examples 6, 7, 10 and 11), rank-
ing divergence becomes more pronounced, with rank-difference values increasing to 2
and Kendall’s τ decreasing to 0.67, indicating reduced ordinal agreement.

6 Conclusions

This study conducted a systematic and quantitative comparison of the TOPSIS and VIKOR
methods within the hesitant fuzzy sets framework, focusing on ranking behavior, interpretabil-
ity, and sensitivity to hesitation and criterion conflict. Unlike purely descriptive comparisons,
the analysis employed measurable indicators such as rank-difference metrics, Kendall’s rank
correlation, and compromise solution identification across four independent numerical exam-
ples.

The comparative results demonstrate that TOPSIS and VIKOR differ not only in formu-
lation but also in their practical decision outcomes. TOPSIS consistently produces stable and
strict rankings, making it particularly suitable for applications where a clear ordering of alter-
natives is required. Its distance-based aggregation reduces sensitivity to local deviations in hes-
itant fuzzy evaluations. In contrast, VIKOR exhibits greater sensitivity to individual criterion
performance through its regret measure. As a result, VIKOR may yield multiple compromise
solutions when acceptable advantage or stability conditions are not met, especially in problems
with conflicting criteria or closely competing alternatives.

The numerical comparisons across several examples confirm that ranking divergence be-
tween the two methods increases with higher hesitation levels and stronger conflicts among
criteria. These findings highlight that TOPSIS favors decisiveness, while VIKOR supports
negotiation-oriented decision-making by emphasizing balanced solutions. Therefore, nei-
ther method can be regarded as universally superior; instead, their suitability depends on the
decision-maker’s priorities and the underlying problem structure.

From an application perspective, TOPSIS is well suited for domains such as supplier se-
lection, performance evaluation, and project prioritization, where unambiguous rankings are
desirable. VIKOR is more appropriate for complex decision environments such as policy anal-
ysis, disaster management, and sustainability assessment, where compromise solutions are of-
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ten preferred. Future research may focus on hybrid approaches, sensitivity analysis of hesitant
fuzzy elements, and robustness evaluation under varying decision-maker preferences to further
enhance the applicability of hesitant fuzzy MCDM methods.

Key quantitative insights. The comparative experiments lead to the following concrete
findings:

1. Under low hesitation and weak criterion conflict, TOPSIS and VIKOR exhibit high rank-
ing consistency, as evidenced by zero rank-difference and perfect Kendall correlation
(τ = 1.00).

2. VIKOR demonstrates higher sensitivity to conflicting criteria through its regret measure,
frequently yielding multiple compromise solutions when acceptable advantage or stabil-
ity conditions are not satisfied, whereas TOPSIS always produces a strict ranking.

3. Ranking divergence between the two methods increases with greater hesitant fuzzy dis-
persion and regret dominance, with Kendall’s τ decreasing to 0.67 and rank-difference
values increasing to 2 in more complex scenarios.

4. From a practical standpoint, TOPSIS favors decisiveness and ranking stability, while
VIKOR supports negotiation-oriented decision-making by explicitly accounting for in-
dividual regret.

Appendix A

This appendix presents the basic arithmetic operations on hesitant fuzzy elements used in the
proposed methods.

A.1 Arithmetic Operations on Hesitant Fuzzy Elements [15]

Let a, a1, and a2 be hesitant fuzzy elements (HFEs), and let γ, γ1, γ2 ∈ [0, 1] denote member-
ship degrees. The basic arithmetic operations on HFEs are defined as follows.

1. Lower limit
a− = min

γ∈a
γ.

2. Upper limit
a+ = max

γ∈a
γ.
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3. Complement
ac =

⋃
γ∈a

{1− γ}.

4. Union
a1 ∪ a2 =

⋃
γ1∈a1, γ2∈a2

{max(γ1, γ2)}.

5. Intersection
a1 ∩ a2 =

⋃
γ1∈a1, γ2∈a2

{min(γ1, γ2)}.

6. Power operation (λ > 0)

aλ =
⋃
γ∈a

{γλ}.

7. Scalar multiplication (λ > 0)

λa =
⋃
γ∈a

{1− (1− γ)λ}.

8. Sum
a1 ⊕ a2 =

⋃
γ1∈a1, γ2∈a2

{γ1 + γ2 − γ1γ2}.

9. Product
a1 ⊗ a2 =

⋃
γ1∈a1, γ2∈a2

{γ1γ2}.
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