In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 damghan university

2 Damghan University

3 University of Valladolid

Abstract

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using a numerical method‎. ‎To do that‎, ‎a modified version of two famous evolutionary genetic algorithm (GA) and particle swarm optimization (PSO) to obtain Pareto optimal solutions of the problem is employed‎. ‎Numerical examples are presented to show the efficiency of the given approach.

Keywords

Main Subjects

[1] Agnieszka‎ ‎B‎. ‎M.‎, ‎Delfim F‎. ‎M‎. ‎T‎. ‎ (2007) " ‎Nonessential functionals in multi-objective optimal control problems‎ ", ‎Proceedings of the Estonian Academy of Sciences‎, ‎series Physics and Mathematics and Chemistry‎, ‎56‎, ‎336-346‎.
[2] Ahmad ‎I.‎, ‎Sharma ‎S‎. ‎(2010) " ‎Sufficiency and duality for multi-objective variational control problems with generalized $(F,alpha‎ ,‎rho‎ ,‎theta )$-V-convexity‎ ", ‎Nonlinear Analysis‎, ‎72‎, ‎2564-2579‎.
[3] Andersson ‎J. (2000) " ‎A survey of multi-objective optimization in engineering design‎ ", ‎Technical report LiTH-IKP-R-1097‎, ‎Department of Mechanical Engineering‎, ‎Linkِping University‎, ‎Linkِping‎, ‎Sweden‎.
[4] Bonnel ‎H.‎, ‎YalçnKaya‎ ‎C. (2010) " ‎Optimization over the efficient set of multi-objective convex optimal control problems"‎, ‎Journal of Optimization‎: ‎Theory and Applications‎, ‎147‎, ‎93-112‎.
[5] Coello ‎C‎. ‎A.‎, ‎Lechuga ‎M.S. (2002) " ‎MOPSO‎: ‎A proposal for multiple objective particle swarm optimization‎ ", ‎In Proceeding Congress on Evolutionary Computation (CEC'2002)‎, ‎Honolulu‎, ‎HI.‎, ‎1‎, ‎1051-1056‎.
[6] Dahleh ‎M‎. ‎A.‎, ‎Diaz-Bobillo‎ ‎I‎. ‎J. (1995) " ‎Control of uncertain systems‎: ‎A linear programming approach‎ ", ‎Englewood Cliffs‎, ‎NJ.‎: ‎Prentice-Hall‎.  
[7] Deb ‎K.‎, ‎Pratap ‎A.‎, ‎Agarwal‎ ‎S.‎, ‎Meyarivan ‎T. (2002) " ‎A fast and elitist multi-objective genetic algorithm‎: ‎NSGA-II‎ ", ‎Transactions on Evolutionary Computation‎, ‎6‎.
[8] Eberhart ‎R.C.‎, ‎Simpson ‎P.‎, ‎Dobbins ‎R. (1996) " ‎Computational intelligence PC tools‎ ", ‎Academic Press Professional‎, ‎San Diego‎, ‎CA.‎, ‎212-226‎.
[9] El-Kady‎ ‎M‎. ‎M.‎, ‎Salim‎ ‎M‎. ‎S.‎, ‎El-Sagheer ‎A‎. ‎M. (2003) " ‎Numerical treatment of multi-objective optimal control problems‎ ", ‎Automatica‎, ‎39‎, ‎47--55‎.
[10] Gambier‎ ‎A.‎, ‎Bareddin ‎E. (2007) " ‎Multi-objective optimal control‎: ‎An overview‎ ", ‎IEEE Conference on Control Applications‎, ‎CCA.‎, ‎Singapore‎, ‎170-175‎‎.
[11] Gambier ‎A.‎, ‎Jipp ‎M. (2011) " ‎Multi-objective optimal control‎: ‎An introduction‎ ", ‎Proceedings of the 8th Asian Control Conference (ASCC'11)‎, ‎Kaohsiung‎, ‎Taiwan‎, ‎15-18‎.
[12] Guzma'n ‎M‎. ‎A.‎, ‎Delgado ‎A.‎, ‎Carvalho ‎J‎. ‎D. (2010) "‎A novel multi-objective optimization algorithm based On bacterial chemotaxis‎ ", ‎Engineering Applications of Artificial Intelligence‎, ‎23‎, ‎292-301‎‎.
[13] Hiroyasu ‎T.‎, ‎Miki ‎M.‎, ‎Kamiura ‎J.‎, ‎Watanabe ‎S.‎, ‎Hiroyasu ‎H. (2002) " ‎Multi-objective optimization of Diesel engine emissions and fuel economy using genetic algorithms and phenomenological model‎ ", ‎Society of Automotive Engineer Inc.‎, ‎1-12‎‎.
[14] Hu‎, ‎Z.‎, ‎Salcudean‎ ‎S‎. ‎E.‎, ‎Loewen ‎D. (1998) "‎A Numerical solution of multi-objective control problems‎ ", ‎Journal of Optimal Control Applications and Methods‎, ‎19‎, ‎411-422‎.
[15] Kennedy ‎J.‎, ‎Eberhart ‎R‎. ‎C. (1995) " ‎Particle swarm optimization‎ ", ‎Proceedings of 4th IEEE International Conference on Neural Networks‎. ‎Journal of IEEE‎, ‎Piscataway‎, ‎NJ.‎, ‎1942-1948‎.
[16] Knowles ‎J‎. ‎D.‎, ‎Corne ‎D.W. (2000) " ‎Approximating the non-dominated front using the Pareto archived evolution strategy‎ ", ‎Journal of Evolutionary Computation‎, ‎8‎, ‎149-172‎.
[17] Kumar ‎A‎.‎, ‎Vladimirsky ‎A. (2010) " ‎An efficient method for multi-objective optimal control and optimal control subject to integral constraints‎ ", ‎Journal of Computational Mathematics‎, ‎28‎, ‎517-551‎.
[18] Kundu‎ ‎D.‎, ‎Suresh ‎K.‎, ‎Ghosh ‎S.‎, ‎Das ‎S.‎, ‎Panigrahi‎ ‎B‎. ‎K. (2011) " ‎Multi-objective optimization with artificial weed colonies‎ ", ‎Journal of Information Science‎, ‎181‎, ‎2441-2454‎.
[19] Lin ‎J‎. ‎G. (1976) " ‎Multi-objective problems‎: ‎Pareto-optimal solutions by method of proper equality constraints‎ ", ‎IEEE Transactions on Automatic Control‎, ‎21‎, ‎641-650‎.
[20] Liu ‎G‎. ‎P.‎, ‎Yang ‎J‎. ‎B.‎, ‎Whidborne‎ ‎J‎. ‎F. (2003) " ‎Multi-objective optimization and control‎ ", ‎Research Studies Press Ltd.‎, ‎Exeter‎.
[21] Lozovanu ‎D.‎, ‎Pickl ‎S. (2007) " ‎Algorithms for solving multi-objective discrete control problems and dynamic c-games on networks‎ ", ‎Journal of Discrete Applied Mathematics‎, ‎155‎, ‎1846-1857‎.
[22] Maity‎ ‎k.‎, ‎Maiti‎ ‎M‎. ‎ (2005) " ‎Numerical approach of multi-objective optimal control problem in imprecise environment‎ ", ‎Fuzzy Optimization and Decision Making‎, ‎4‎, ‎313-330‎.
[23] Milano ‎F.‎, ‎Caٌizares ‎C‎. ‎A.‎, ‎Invernizzi ‎M‎. ‎ (2003) " ‎Multi-objective optimization for pricing system security in electricity markets‎ ", ‎IEEE Transactions on Power Systems,18‎, ‎596-604‎.
[24] Rangan‎ ‎S.‎, ‎Poolla ‎K‎. ‎ (1997) " ‎Weighted optimization for multi-objective full information control problems‎ ", ‎Journal of Systems and Control Letters‎, ‎31‎, ‎207-213‎.
[25] Shi ‎Y.‎, ‎Eberhart‎ ‎R‎. ‎C. (1998) " ‎A modified particle swarm optimizer‎ ", ‎in Proceedings of IEEE International Conference on Evolutionary Computation‎, ‎Piscataway‎, ‎NJ.‎, ‎69-73‎.
[26] Srinivas‎ ‎N.‎, ‎Deb ‎K. (1995) " ‎Multi objective function optimization using non-dominated sorting genetic algorithms‎ ", ‎Journal of Evolutionary Computation‎, ‎2‎, ‎221-248‎.  
[27] Wajge ‎R‎. ‎M.‎, ‎Gupta ‎S‎. ‎K. (1994) " ‎Multi-objective dynamic optimization of a nonvaporizing nylon 6 batch reactor‎ ", ‎Polymer Engineering and Science‎, ‎34‎, ‎1161-1174‎.
[28] Wang ‎N‎. ‎F.‎, ‎Tai ‎K. (2010) " ‎Target matching problems and an adaptive constraint strategy for multi-objective design optimization using genetic algorithms‎ ", ‎Journal of Computers Structures‎, ‎88‎, ‎1064‎- ‎1076‎.
[29] Zarei‎ ‎H.‎, ‎Kamyad‎ ‎A‎. ‎V.‎, ‎Effati‎ ‎S. (2010) " ‎Multi-objective optimal control of HIV dynamics‎ ", ‎Journal of Mathematical Problems in Engineering‎, ‎1-15‎.
[30] Zitzler‎ ‎E.‎, ‎Deb ‎K.‎, ‎Thiele ‎L. (2000) " ‎Comparison of multi-objective evolutionary algorithms‎: ‎Empirical results‎ ", ‎Journal of Evolutionary Computation‎, ‎8‎, ‎173-195‎.
[31] Zitzler ‎E.‎, ‎Laumanns ‎M.‎, ‎Thiele ‎L. (2001) " ‎SPEA2‎: ‎Improving the strength Pareto evolutionary algorithm‎ ", ‎Zurich‎, ‎Switzerland‎: ‎Swiss Federal Institute Technology‎.
[32] Zitzler ‎E.‎, ‎Thiele ‎L. (1999) " ‎Multi-objective evolutionary algorithms‎: ‎A comparative case study and the strength Pareto approach‎ ", ‎IEEE Transactions on Evolutionary Computation‎, ‎3‎, ‎257-271‎.