In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Author

University of Houston

Abstract

In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations‎. ‎One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach‎. ‎Each of methods showed fast convergence in special problems and slow convergence in other ones; we try to categorize these problems and find out that which method has better numerical behavior‎. ‎The robustness of methods is demonstrated by numerical experiments.

Keywords

Main Subjects

[1] Bellavia‎ ‎S.‎, ‎Macconi‎ ‎M.‎, ‎Morini‎, ‎B. (2004)‎ " ‎STRSCNE‎: ‎A scaled trust region solver for constrained nonlinear equations ''‎, ‎Computational Optimization and Applications‎, ‎28‎, ‎31-50‎.
[2] Bellavia‎ ‎S.‎, ‎Macconi‎ ‎M.‎, ‎Morini‎ ‎B‎. ‎ (2013)‎ " ‎An affine scaling trust-region method approach to bound-constrained nonlinear systems ''‎, ‎Applied Numerical Mathematics‎, ‎44‎, ‎257-280‎.
[3] Fletcher‎ ‎R. (1987)‎ " ‎Practical methods of optimizations ''‎, ‎New York‎: ‎John wiley & sons‎.
[4] Fletcher‎ ‎R. (1980)‎ " ‎Practical method of optimization‎, ‎unconstrained Optimization ''‎, ‎Vol‎. ‎1‎, ‎John Wiley‎, ‎New York‎.
[5] Floudas‎ ‎C‎. ‎A.‎, ‎Pardalos‎ ‎P‎. ‎M.‎, ‎Adjiman‎ ‎C.‎, ‎Esposito‎ ‎W‎. ‎R.‎, ‎Gümüs‎ ‎Z‎. ‎H.‎, ‎Harding‎ ‎S‎. ‎T.‎, ‎Klepeis‎ ‎J‎. ‎L.‎, ‎Meyer‎ ‎C‎. ‎A.‎, ‎Schweiger‎ ‎C‎. ‎A‎. ‎(1991)‎ " ‎Handbook of test problems in local and global optimization‎, ‎nonconvex optimization and its applications‎ ", ‎Vol‎. ‎33‎, ‎Kluwer Academic‎, ‎Dordrecht‎.
[6] Hong-Wei‎ ‎L‎. ‎ (2011)‎ " ‎A non-monotone adaptive trust region algorithm for nonlinear equations ''‎, ‎The tenth International Symposium on Operation Research and its Applications (ISORA)‎, ‎Dunhuang‎, ‎China‎, ‎28-31‎. [7] Kanzow‎ ‎C‎. ‎(2001)‎ " ‎An active set-type newton method for constrained nonlinear systems''‎, Complementarity‎: ‎Applications‎, ‎Algorithms and Extensions Applied Optimization‎, ‎50‎, ‎179-200‎.
[8] ‎Ferris‎ ‎O‎. ‎L.‎, ‎Mangasarian‎ ‎J‎. ‎S.‎, ‎Pang‎ ‎J‎. ‎S.‎ " ‎Complementarity‎: ‎Applications‎, ‎algorithms and extensions‎ ", ‎Kluwer Academic‎, ‎Dordrecht‎, ‎Springer‎.
[9] Levenberge‎ ‎K. (1944)‎ "‎A method for the solution of certain nonlinear problem in least squares ''‎, ‎Quarterly Journal of Applied Mathematics‎, ‎2‎, ‎2‎, ‎164-166‎. 
[10] Marquardt‎ ‎D‎. ‎W. (1963)‎ " ‎An algorithm for least-squares estimation of nonlinear inequalities ''‎, ‎SIAM Journal on Applied Mathematics‎, ‎11‎, ‎2‎, ‎431-441‎.
[11] More‎ ‎J‎. ‎J. (1983)‎ " ‎Recent developments in algorithms and software for trust region methods‎, ‎mathematical programming‎ ", ‎The State of the Art‎, ‎(Edited by A. Bachem‎, ‎M. Gortchel and B. Korte) Springer-Verlag‎, ‎Berlin‎, ‎258-287‎.
[12] More‎ ‎J‎. ‎J.‎, ‎Garbow‎ ‎B‎. ‎S.‎, ‎Hillstorm‎ ‎K‎. ‎E. (1981)‎ " ‎Testing unconstrained optimization software ''‎, ‎ACM Transaction on Mathematical Software‎, ‎7‎, ‎17-41‎.
[13] Nocedal‎ ‎J.‎, ‎Wright‎ ‎S‎. ‎J. (1999)‎ " ‎Numerical optimization ''‎, ‎Springer Series in Operation Research‎, ‎Springer‎, ‎New York‎.
[14] Yuan‎ ‎Y‎. ‎(1996)‎ " ‎On the convergence of the trust region algorithms ''‎, ‎Mathematica Numerica Sinica‎, ‎16333-346‎.
[15] Yuan‎ ‎Y.‎, ‎Sun‎ ‎W‎. ‎(1997)‎ " ‎Optimization theory and algorithm ''‎, ‎Scientific Publishing House‎, ‎China‎.