[1] Adams B. M., Banks H. T., Davidian M., Kwon H. D., Tran H. T., Wynne S. N. (2005). `` HIV dynamics: modeling, data analysis, and optimal treatment protocols ", Journal of Computational and Applied Mathematics, 184, 10-49.
[2] Banks H. T., Kwon H. D., Toivanen J. A., Tran H. T. (2006). `` A state-dependent Riccati equation-based estimator approach for HIV feedback control ", Optimal Control Applications and Methods, 27, 93-121.
[3] Bellman R. E., Zadeh L. A. (1970). `` Decision making in a fuzzy environment ", Management Science, 17, 41-64.
[4] Chen Y., Huang F., Yi N., Liu W. (2011). `` A Legendre-Galerkin spectral method for optimal control problems governed by Stokes equations ", Siam Journal of Numerical Analysis, 49, 1625-1648.
[5] Culshaw R., Ruan S., Spiteri R. J. (2004). `` Optimal HIV treatment by maximizing immune response ", Journal of Mathematical Biology, 48, 545-562.
[6] Das I., Dennis J. E. (1997). `` A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems ", Structural Optimization, 14, 63-69.
[7] Das I., Dennis J. E. (1998). `` Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems ", Siam Journal on Optimization, 8, 631-657.
[8] Duffin R. P., Tullis H. R. (2002). `` Mathematical models of the complete course of HIV infection and AIDS ", Journal of Theoretical Medicine, 4, 215-221.
[9] Elaiw A. M., Xia X. (2009). `` HIV dynamics: Analysis and robust multirate MPC-based treatment schedules ", Journal of Mathematical Analysis Applications, 359, 285-301.
[10] Elnagar G. N., Razzaghi M. (1997). `` A Chebyshev spectral method for the solution of nonlinear optimal control problems ", Applied Mathematical Modelling, 21, 255-260.
[11] Gonzalez S., Miele A. (1978). `` Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions ", Journal of Optimization Theory and Applications, 26, 395-425.
[12] Hadjiandreou M. M., Conejeros R., Wilson D. I. (2009). `` Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions ", Chemical Engineering Science, 64, 1600-1617.
[13] Jennings L. S., Fisher M. E., Teo K. L., Goh C. J. (2004). `` MISER3 optimal control software: Theory and user manual ”, University of Western Australia, Perth.
[14] Karrakchou J., Rachik M., Gourari S. (2006). `` Optimal control and infectiology: Application to an HIV/AIDS model ", Applied Mathematics and Computation, 177, 807-818.
[15] Kaya C. Y., Noakes J. L. (1996). `` Computations and time-optimal controls ", Optimal Control Applications Methods, 17, 171-185.
[16] Kirk D. E. (1970). `` Optimal control theory: An introduction ", Prentice Hall, New York, NY, USA.
[17] Kirschner D. E., Lenhart S., Serbin S. (1997). `` Optimal control of the chemotherapy of HIV ", Journal of Mathematical Biology, 35, 775-792.
[18] Landi A., Mazzoldi A., Andreoni C., Bianchi M., Cavallini A., Laurino M., Ricotti L., Luliano R., Matteoli B., Ceccherini N. (2008). `` Modelling and control of HIV dynamics ", Computer Methods and Programs in Biomedicine, 89, 162-168.
[19] Lee H. W. J., Teo K. L., Jennings L. S., Rehbock V. (1999). `` Control parametrization enhancing technique for optimal discrete-valued problems", Automatica, 35, 1401-1407.
[20] Lee H. W. J., Teo K. L., Rehbock V., Jennings L. S. (1997). `` Control parametrization enhancing technique for time optimal control problems ", Dynamic Systems and Applications, 6, 243-262.
[21] Liancheng W., Michael Y. L. (2006). `` Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells", Mathematical Biosciences, 200, 44-57.
[22] Logist F., Houska B., Diehl M., Van Impe J. F. (2010). " Fast Pareto set generation for nonlinear optimal control problems with multiple objectives ", Structural Multidisciplinary Optimization, 42, 591-603.
[23] Logist F., Van Erdeghem P. M. M., Van Impe J. F. (2009). `` Efficient deterministic multiple objective optimal control of biochemical processes ", Chemical Engineering Science, 64, 2527-2538.
[24] Mehne H. H., Farahi M. H., Kamyad A. V. ( 2006). `` MILP modelling for the time optimal control problem in the case of multiple targets ", Optimal Control Applications Methods, 27, 77-91.
[25] Messac A., Yahaya A. I., Mattson C. A. (2003). `` The normalized normal constraint method for generating the Pareto frontier ", Structural Multidisciplinary Optimization, 25, 86-98.
[26] Miele A., Mohanty B. P., Venkataraman P., Kuo Y. M. (1982). `` Numerical solution of minimax problems of optimal control, Parts 1, 2 ", Journal of Optimization Theory and Applications, 38, 97-135.
[27] Mojaver A., Kheiri H. (2015). `` Mathematical analysis of a class of HIV infection models of CD4+ T-cells with combined antiretroviral therapy ", Applied Mathematics and Computation, 259, 258- 270.
[28] Myburgh C., Wong K. H. (2005). `` Computational control of an HIV model ", Annals of Operations Research, 133, 277-283.
[29] Neri F., Toivanen J., Cascella G. L., Ong Y. S. (2007). `` An adaptive multimeme algorithm for designing HIV multidrug therapies ", IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4, 1313-1328.
[30] Nowak M. A. (2001). `` Helper-dependent vs. helper-independent CTL responses in HIV infection: Implications for drug therapy and resistance ", Journal of Theoretical Biology, 213, 447-459.
[31] Pannocchia G., Laurino M., Landi A. (2010). `` A model predictive control strategy toward optimal structured treatment interruptions in anti-HIV therapy ", IEEE Transactions on Biomedical Engineering, 57, 1040-1050.
[32] Pantaleo G., Graziosi C., Fauci A. S. (1993). `` New concepts in the immunopathogenesis of human immunodeficiency virus infection ", The New England Journal of Medicine, 328, 327-335.
[33] Perelson A. S., Kirschner D. E., Deboer R. (1998). `` The dynamics of HIV infection of CD4+ T-cells ", Mathematical Biosciences, 114, 81-125.
[34] Pinto C. M. A., Carvalho A. (2014). `` Mathematical model for HIV dynamics in HIV-specific helper cells ", Communications in Nonlinear Science and Numerical Simulation, 19, 693-701.
[35] Ramirez J., Meraz A. M., Hernandez J. X. V. (2000). `` Feedback control of the chemotherapy of HIV ", International Journal of Bifurcation and Chaos, 10, 2207-2219.
[36] Sakawa M. (1993). `` Fuzzy sets and interactive multiobjective optimization ", New York: Plenum Press.
[37] Sakawa M., Inuiguchi M., Kato K., Ikeda T. (1999). `` An interactive fuzzy satisficing method for multiobjective optimal control problems in linear distributed-parameter systems ", Fuzzy Sets and Systems, 102 , 237-246.
[38] Sastry V. N., Tiwari R. N., Sastr K. S. ( 1992). `` Solution of optimal control problems with lumped parameters having single or multiple goal objectives in fuzzy environment ", Fuzzy Sets and Systems, 48, 173-83.
[39] Tabak D. ( 1970). `` Application of mathematical programming techniques in optimal control: A survey ", IEEE Transactions on Automatic Control, 15, 688-90.
[40] Teo K. L., Goh C. J., Wong K. H. (1991). `` A unified computational approach to optimal control problems ", Longman Scientific and Technical, Essex.
[41] Teo K. L., Jennings L. S., Lee H. W. J., Rehbock V. (1999). `` The control parameterization enhancing transform for constrained optimal control problems ", Journal of Australian Mathematical Society Series B, 40, 314-335.
[42] UNAIDS. (2011). `` Unite for universal access: Overview brochure on 2011 high-level meeting on AIDS ", New York, NY, USA, Joint United Nations Programme on HIV/AIDS.
[43] Vargas A. E. H., Middleton R. H. (2013). `` Modelling the three stages in HIV infection ", Journal of Theoretical Biology, 12, 33-40.
[44] Wodarz D., Nowak M. A. (2002). `` Mathematical models of HIV pathogenesis and treatment ", BioEssays, 24, 1178-1187.
[45]Wodraz D., Nowak M. A. (1999). `` Specific therapy regimes could lead to long-term immunological control of HIV ", In Proceedings of the National Academy of Sciences,1 , 223-241.
[46] Zarei H. (2013). `` Soling multi-objective optimal control problems using fuzzy aggregation and embedding method ", AMO - Advanced Modeling and Optimization, 15, 553-563.
[47] Zarei H., Bahrmand M. R. ( 2014). `` Multiobjective optimal control of the linear wave equation ", Ain Shams Engineering Journal, 5, 1299-305.
[48] Zarei H., Kamyad A. V., Farahi M. H. (2011). `` Optimal control of HIV dynamic using embedding method ", Computational and Mathematical Methods in Medicine, 1-9.
[49] Zimmermann H. J. (1975). `` Fuzzy programming and linear programming with several objective functions ", Fuzzy Sets and Systems, 1, 45-55.
[50] Zurakowski R., Teel A. R. (2006). `` A model predictive control based scheduling method for HIV therapy ", Journal of Theoretical Biology, 238, 368-382.