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1 Introduction

Boundary of systems always play a substantial role in identification, manipulation and
control of them. In physical systems mostly, boundary is accessible or easier to be ac-
cessed for manipulation and making effects. Optimal heating of temperature field is one
of the important problems in industry and has wide range of applications in physics, engi-
neering, medicine and etc. In many industrial processes, one needs to adjust the thermal
state of the system by manipulating temperature at the boundaries of the system. For
more applied examples we refer the reader to [11, 12, 13]. Temperature field problem in
deterministic case is introduced by McKinney and Savitsky [10]. Mathematically these
problems can be modelled as a boundary optimal control problem. In boundary optimal
control problems, control is implemented on the boundary as a Dirichlet or Neumann
condition to the Partial Differential Equation (PDE) and derives the state. Also there
are lots of problems can be modelled as optimal heating problem. For detailed discussions
about numerical treatments of boundary control problems with PDE constraints we refer
to [4] and [5].

Recently researches in engineering, headed to consider problems with stochastic pa-
rameters, from which we can mention [18, 25]. The safety factor is the traditional engi-
neering approach to manage uncertainty. However, safety factors are often heuristically
defined and do not take direct account of uncertainties. This can lead to an overly con-
servative solution that fails in uncertain environments. Thus, there has recently been a
growing interest in applying probabilistic methods that takes a more direct account of
uncertainties to protect against failure as well as to reduce conservatism. There are two
types of uncertainties to be considered: inherent uncertainty and model-form uncertainty
[17, 20]. Inherit uncertainty is classified as an objective and irreducible uncertainty with
sufficient information on uncertain input data, whereas model form uncertainty stems
from stochastic behaviour of the environment.

A non-statistical approach, called polynomial chaos expansion (PCE), based on
Wiener-Hermite polynomial chaos expansion [14] was introduced by Ghanem and Spanos
for uncertainty quantification in PDE models [2]. PCE, expresses stochastic solutions as
orthogonal polynomials of the input random parameters. Further PCEs were generalized
so that any set of complete bases can be a viable choice instead of globally smooth basis
polynomials [1, 22, 23].

Transient heat conduction with uncertain parameters is modelled and numerically
solved via PCE in [24]. They considered media with random heat conductivity and
capacity.

In the present paper, the model is obtained from deterministic versions of optimal
heating problem by including uncertainty in input function and material parameter (heat
conductivity). The idea of modelling is that uncertainties appeared in heat conductivity,
heat capacity, source terms, boundary and initial conditions or some combinations of
them. An example if inherit uncertainty is stochastic behaviour of the environment which
enforces stochastic input to the field. Such problem raises e.g., in industries, medicine,
physics, biology and etc. Another source of uncertainty is modelled by heat conductivity
of the material, which raise up when impurity effects conductivity of the temperature field.
It has been shown that the uncertainty in heat conductivity has substantial influence on
the temperature prediction [7].

The main theoretical underpinning of present paper is to consider the problem of
optimal heating with uncertainties, exert PCEs for uncertainty quantification and apply
optimal control methods for solving the problem. As most of the times it is not possible
to control whole of the environment, the control is considered as Dirichlet boundary
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condition. Therefore we reached to a boundary optimal control problem constrained with
stochastic PDE.

Once one has chosen an approximation space of the random field of interest, a so-
lution within that space can be found by solving the stochastic PDE of interest in the
weak form. Because of its analogy with the classic Galerkin method as employed in the
finite element method [2], this methodology is often referred to as generalized polynomial
chaos stochastic Galerkin (gPC-SG) method [21]. Random parameters are approximated
by applying Karhunen-Loéve expansion. In order to consider uniform and normal distri-
butions (commonly appeared in practice) gPC-SG method is applied for discretizing the
stochastic PDE. It has been shown that PCEs for proper chaos expansion, the solution
converges exponentially [24]. In this paper as we are dealing with correlated random data
gPC-SG is very effective comparing with other techniques [21, 24].

For numerical treatment, first stochasticity is parametrized by which the problem
leads to a higher order deterministic linear system. For numerical treatment of the prob-
lem the optimize-then-discretize strategy is applied. Lagrangian functional is constructed
and optimality system is invoked by applying Karush-Kuhn-Tucker (KKT) conditions.

Matrix formulation of the optimality system and gradient computation is presented.
The higher order optimality system is solved applying Gradient based techniques. Nu-
merical examples are chosen so that the effect of uncertainty (specially in conductivity
and inputs) be apparent on the final results. Numerical results are compared with Monte
Carlo Sampling (MCS) method and results are presented in figures.

The present paper is organized as follows: in Section 2 problem is stated in Section 3,
variational formulation is derived. In Section 4, the optimality system is obtained by in-
troducing Lagrangian, numerical optimization is implemented in Section 5 and numerical
examples are presented in Section 6. Finally conclusion is derived in Section 7.

2 Problem Statement

In this section we consider the problem of determining the optimal heating of the rectangu-
lar plate D ⊂ R2. It is placed in an environment that enforces stochastic temperature on
the field (e.g. plate). This effect is modelled as stochastic source function. Let (Ω,F ,P)
be a complete probability space where F is sigma algebra on events space Ω ⊂ Rn and
P : Ω → [0, 1] is a probability measure while integer n denotes dimension of stochastic
space. We assume that κ, f : Ω×D → R are P-measurable second order random fields.

In the stochastic space Ω ⊂ R, general form of the heat exchange equation in stochastic
environment can be stated as

∇. (κ∇y(ω;x)) = f(ω;x), ω ∈ Ω, x ∈ D, (1)
y(ω;x) = u(x), ω ∈ Ω, x ∈ ∂Du, (2)

where κ ∈ L2(Ω;L∞(D)) is conductivity of the thermal field (e.g. plate) models the
real problem situation. f ∈ L2(Ω;L2(D)) models the environmental effects on plate
distributively, y ∈ H1

Ω(D) := L2(Ω;H1(D)) is the temperature of the plate or state of the
system. The heating-cooling device is stated on the controlled boundary ∂Du ⊂ ∂D.

The spaces L2(Ω;Lp(D)) for 1 < p ≤ ∞ are Bochner that inherit most of the prop-
erties of Banach and Hilbert spaces on Ω × D and L∞(D) is the space of essentially
bounded measurable functions on D. For more information we refer the reader to [15]
and references therein.
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Optimal heating problem is indeed an inverse problem that tries to trace a desired
temperature yd ∈ L2(D) on the plate D. The performance criteria that suits for this
purpose can be stated as

J (y, u) =
1

2

∫
Ω

∫
D

(y − yd)
2dxµ(dω) +

γ

2

∫
∂Du

u2ds, (3)

where real constant γ > 0 is called regularization parameter.
With this formulation, optimal heating problem is transformed to an optimal control

problem constrained by stochastic PDE. The goal is to minimize (3) subject to (1) and
boundary condition (2). The problems is pursued in the following sections.

3 Variational Formulation

In this section we are going to study the solution spaces and express the assumptions
that are required for the existence and uniqueness of the boundary optimal control in
problem (1)-(3). The solution of the optimal control problem i.e. obtaining state and
control functions are performed in Bochner spaces H1

Ω(D) which are built on Hilbert
space H1(D)⊗ L2(Ω) and equipped with inner product

⟨y, v⟩H1
Ω
:=

∫
Ω

⟨y, v⟩H1µ(dω),

and the induced norm on this space. Admissible control u is considered on the trace
space, Uad ⊂ L2(∂Du). We define the following trace space

H1/2
u (∂Du) := {w : γu(w) = u,w ∈ H1

Ω(D)},

which is a Hilbert space equipped with norm

∥w∥H1/2
Ω

:= inf
{
∥w∥H1

Ω(D) : γu(w) = u
}
,

where γu, is the trace operator.
In order to guaranty the existence of the state variable y (temperature of the plate)

for given control u (heating strategy), and source function f (environmental effects), it is
needed to state some assumptions over the stochastic PDE;

Assumption 1. There exists constants a+, a− ∈ R+ so that for all (ω;x) ∈ Ω×D
we have

0 < a− ≤ κ(ω;x) ≤ a+ < +∞.

Assumption 2. The control function u ∈ Uad is Lipschitz continuous function, and the
boundary ∂Du is Lipschitz continuous.

Noting that Assumption 2 is necessary for the regularity of the solution.
For the weak formulation of the stochastic elliptic PDE (1), we chose test function

space V := L2(Ω;H1
0 (D)), then the week form is constructed as follows; for all v ∈ V find

y ∈ H1
Ω(D) that solves∫

Ω

∫
D

κ(ω;x)∇y.∇vdxµ(dω) =

∫
Ω

∫
D

f.vdxµ(dω).

For variational form representation let us define bilinear form A : H1
Ω(D)× V → R as
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A(y, v) :=

∫
Ω

∫
D

κ(ω;x)∇y.∇vdxµ(dω),

and linear form l(.) : V → R with

l(v) :=

∫
Ω

∫
D

f.vdx.

With Assumptions 1 and for given f ∈ L2(Ω;L2(D)), it is easy to check that Lax-Milgiram
conditions are hold (see Lemma 2.29 in [15]), then applying Lax-Milgiram theorem anal-
ogous to Theorem 2.30 in [15], one can verify that the variational problem

A(y, v) = l(v), ∀v ∈ V. (4)

has a unique solution y ∈ V.
Remark 1. The Dirichlet boundary condition (2) is not considered in the weak

formulation, this helps us to make simple formulation for the problem.
The Dirichlet boundary condition consists of the boundary control of the system and

is implemented as constraint in optimality system with Lagrange multiplier as presented
in the next section.

4 Optimality System

To derive the optimality system we introduce Lagrangian functional L : H1
Ω ×U ×H−1

Ω ×
U−1
Ω → R as

L (y, u, p, λ) = J (y, u) +A(y, p)− l(p) +

∫
Ω

∫
∂Du

λ(y − u)dsµ(dω), (5)

assuming that Lagrangian multipliers are existing, the optimality system is obtained by
computing the derivatives of Lagrangian with respect to independent variables y, u, p and
λ.

Partial derivative of L over Lagrange variable λ gives the Dirichlet boundary condition
(2), and with respect to Lagrange variable p gives the state equation (1). Computing Ly

in direction δy ∈ H1
Ω(D) gives

Ly (y, u, p, λ) (δw) =

∫
Ω

∫
D

(y − yd)δydxµ(dω) +A(δy, p)

+

∫
Ω

∫
∂Du

λδydsµ(dω), (6)

that leads to the adjoint equation. The adjoint variables p and λ are computed by taking
different values for δy and relations that obtained by integration and double integration
by parts.

Partial derivative Lu is computed in the direction δu ∈ Uad as follows:

Lu (y, u, p, λ) (u− δu) = γ

∫
∂Du

u(u− δu)ds+

∫
Ω

∫
∂Du

λ(u− δu)dsµ(dω). (7)

According to the relations (1), (2), (6) and (7) the optimality system is drown as follows:
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u ∈ Uad

γ
∫
∂Du

u(u− δu)ds+
∫
Ω

∫
∂Du

λ(u− δu)dsµ(dω) ≥ 0

A(δy, p) +
∫
Ω

∫
∂Du

λδydsµ(dω) = −
∫
Ω

∫
D
(y − yd)δydxµ(dω),

A(u, δp) = l(δp), ∀δp ∈ H−1
Ω (D),

y = u, on Ω× ∂Du.

(8)

The optimality system (8) is a first order necessary optimality condition obtained by
defining Lagrangian (5) and existence assumption over Lagrange multipliers. For the
existence of Lagrange multipliers, according to the analogy we refer the reader to [6].

The problem of existence of optimal solution in the case of distributed controls is
considered in [6]. Noting that the convex objective function (3) is constrained by affine
linear condition (1) and (2), in the convex state and control spaces, therefore there exists
unique optimal solution for the optimization problem (1)-(3). Gradient based method
converges to the optimal solution with efficient computations in convex optimization
problems that motivates us to apply it for the stochastic optimization problem.

In the following section numerical discretization of the optimality system is intro-
duced.

5 Numerical Optimization

In order to apply numerical techniques we first need to discretize the spatial space and
quantify the uncertainty. In this section a very short review on the uncertainty quan-
tification technique and then discretization of the optimality system is presented. The
discretization helps us describe numerical optimization algorithm at the final part of the
section.

We divide the section into two parts; Uncertainty quantification and numerical op-
timization two discuss two separate numerical implementation parts. At the first part,
the problem is discretized with uncertainty quantification and at the second part, the
discretized problem is optimized numerically. obviously both parts are very technical
and important in order to obtain proper results.

5.1 Uncertainty Quantification

In uncertainty quantification gPC-SG is implemented along with approximating stochastic
parameters with deterministic series. Random fields are approximated by Karhunen-
Loéve expansion. The Karhunen-Loeve expansion has been proven to be a very useful
tool in manipulating the random inputs and parameters in the stochastic PDEs [21]. Let
f(ω;x) be a spatially varying random field over the spatial domain D with mean f(x)
and covariance function Cf (x1, x2). Then f(ω;x) can be represented as an infinite series
[3, 8];

f (ω;x) = f (x) +
∞∑
k=1

√
λkφk(x)ξk(ω),

where λk and φk are the eigenvalues and corresponding eigenfunctions according to the
given covariance function. In other words they solve the integral equations
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∫
D

Cf (x1, x2)φkdx2 = λkφk(x1), k = 1, 2, . . .

as we cannot execute real computations using the infinite series, the series are truncated
to get finite number of terms. This truncation gives us an approximate representation
of random field. In most cases covariance function of random fields is not known to
use the preceding expansion, for more details about the computation of Karhunen-Loéve
expansion we refer the reader to [16].

The following polynomial chaos expansion is presented for approximation state vari-
able

y (ω;x) =
∞∑
k=1

yk(x)ζk(ω),

where yk(x) are deterministic coefficients and ζk for k = 1, 2, . . . is multi-dimensional
orthogonal polynomials with the following properties

E [ζ0] = 1, E [ζk] = 0, k > 0, E [ζiζj ] = hiδij

In the following ξ is a vector of orthonormal random variables. By the Cameron-Martin
theorem, the PCE of a random quantity converges in L2 sense, i.e.

E

[
y (ω;x)−

∞∑
k=1

yk (x) ζk (ξ)

]
L2

−→ 0.

This approximation can be truncated into P terms in which P is determined with P+1 =
(N+K)!
N !K! , where N is number of random variables and K is highest degree of polynomials

used to represent y.
Assuming that we have finite dimensional noise, the measure ρ (ω) dω is applied in-

stead of µ(dω) and stochastic space Ω is replaced by parametrized space Γ [21].
In order to represent the discretized form of the problem, we take the spaces Qi ⊂

L2
µ (Γi) with dimension pi for i = 1, 2, . . . ,M and X ⊂ H1

0 (D) with dimension N . We
assume that {ξin}

pi

n=1 for i = 1, 2, . . . ,M is bases of Qi and {φi}Ni=1 is basis of X. Noting
that these bases are orthogonal. We also define the finite dimensional tensor product
space

Q1 ⊗ · · · ⊗QM ⊗X, (9)

as the space spanned by
{
ξin1

, . . . , ξinM
, φi

}
where ni ∈ {1, . . . , pi}, i = 1, . . . , N and

⊗ denotes tensor product of matrices defined by A ⊗ B := [aij × B]ij for all entries aij
of A. For simplicity we can replace indices with multi-index n whose kth component
is nk ∈ {1, . . . , pk}, and let T to denote the set of such multi indices. Now the basic
functions for the tensor product space have the form

yni (ω;x) = ζn(ω)φi(x),

where ζn =
∏M

k=1ξ
k
nk
(ωk). Furthermore we are looking for the solution yh ∈ Q1 ⊗ · · · ⊗

QM ⊗X such that∫
Γ

ρ (ω)

∫
D

κ(ω;x)∇yh (ω;x) .∇yni (ω;x) dxdω =

∫
Γ

ρ (ω)

∫
D

f(ω;x) dxdω,

for all n ∈ T and i = 1, . . . , N , discretized state variable yh is represented in terms of
tensor product finite element basis functions as follows
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yh (ω;x) =
∑
m∈T

N∑
j=1

ymjζm(ω)φj(x).

The discretized control function is represented as

uh (x) =
∑
m∈T

N∑
j=1

umjζ
u
mφj(x),

where ζum is not an stochastic basis function, it can be considered as a projection for
unifying matrix dimension. As mentioned earlier, random fields κ and f are approximated
as

κ (ω;x) = κ (x) +
M∑
i=1

ωκ
i κi (x),

f (ω;x) = f (x) +
M∑
i=1

ωf
i fi(x).

Now we can state univariate version of the Galerkin discretization of the variational
formulation (4) as [21]:

P∑
m=1

N∑
j=1

(
(K0)ij

∫
Γ

ρ(ω)ζn(ω)ζm(ω)dω

+
M∑
k=1

(Kk)ij

∫
Γ

ρ(ω)ζn(ω)ζm(ω)ωkdω
)
vmj

= (F )i

∫
Γ

ρ (ω) ζn (ω) dω

+

M∑
k=1

(Fk)i

∫
Γ

ρ (ω) ζn (ω)ωkdω.

where i = 1, 2, . . . N and n = 1, 2, . . . P then

(Kk)ij =

∫
D

κi (x)∇φi (x) . ∇φj (x) dx,

(Fk)i =

∫
D

fk(x)φi (x) dx.

We also can use the following relations for simplifying the equations;∫
Γ

ρ (ω) ζn (ω) ζm (ω) dω = δnm,∫
Γ

ρ (ω) ζn (ω) ζm (ω)ωkdω = Cknδnm,

finally we reach to the following discretized form

N∑
j=1

(K0)ij +

N∑
j=1

Ckn(Kk)ij

 vmj

= (F )i

∫
Γ

ρ (ω) ζn (ω) dω +

M∑
k=1

(Fk)i

∫
Γ

ρ (ω) ζn (ω)ωkdω. (10)
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With tensor notation we can derive the following linear system:(
I ⊗K0 +

M∑
k=1

Ck ⊗Kk

)
−→v = F,

where we applied identity matrix I ∈ RP×P , and vectors −→v = (−→v 1, . . . , vP )
T and F =

(
−→
F 1, . . . ,

−→
F P )

T
.

5.2 Numerical Optimization

The optimality system is derived and spatial-stochastic discretization is performed with
gPC-SG. We present the discretization for the state equation. For numerical optimization,
Gradient decent method is developed. One of the key features of the method is that decent
direction is obtained by computing the gradients of the objective function [19]. One of
the efficient approaches for computing the gradient is to apply adjoint equation (6);

K−→p = F,

where F = (
−→
F 1, . . . ,

−→
F P )

T
and in turn

(
−→
F k)i =

−→
b iδ1k −

N∑
j=1

Mij(
−→v k)j ,

where again
−→
b i =

∫
D

vd (x)φi (x) dx, Mij =

∫
D

φi (x)φj (x) dx.

Then we can perform Gradient computation in (8) as

Ju(v, u)(u− δu) =

∫
∂Du

u(u− δu)dx =

∫
∂Du

u(x)ϕj(x)ds

≈
N∑
i=1

−→u i

∫
∂Du

ϕi(x)ϕj(x)ds =
N∑
i=1

−→u iM
s
ij .

And for computing Jv we have

Jv(v, u)(δv) =

∫
Γ

∫
D

(v − yd)δvdxρ(ω)dω

=

∫
Γ

∫
D

∑
m

∑
j

(vmj − ydjIm)ζmϕjζkϕidsρ(ω)dω

≈
∑
m

∑
j

(vmj − ydjIm)

∫
D

ϕiϕjdx

∫
Γ

ζkζmρ(ω)dω

= (−→v −−→y d)M ⊗ S.

where
Smk =

∫
Γ

ζkζmρ(ω)dω, m, k = 1, 2, . . . , P.
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Remark 2. For unifying the dimensions of control and state vector, and also the desired
state, we applied identical projections denoted by ζum and Im respectively.

Numerical optimization method is summarized in the following steps:

1. State and adjoint state: set k = 0, compute the state and adjoint, and put the
solutions into −→v kand −→p k

2. Search direction: search direction is computed as follows

d := −Ju (
−→v k,

−→u k)− Jv (
−→v k,

−→u k) ,

3. Step-size control: analogous to deterministic case the optimal step size s is deter-
mined by

J
(−→v k,PUad

(−→u k + s−→u
′

k

))
= min

s>0
J
(−→v k,PUad

(−→u k + s−→u
′

k

))
, (11)

where PUad
is the projection onto the space of admissible controls.

1. Update control: The control vector is updated according to

2. −→u k+1 := PUad

(−→u k + s−→u ′

k

)
, set k := k + 1,

3. Update state and adjoints: Solve optimality system (8) for −→u k+1 and put the
solutions into −→v k+1 and −→p k+1.

Remark 3. Iteration is continued until suitable stopping criteria is satisfied. In this
paper we set stopping criteria as ∥uk+1 − uk∥L2 < ϵ.

Noting that direction can be computed using Armijo’s rule or Wolf’s method.

6 Numerical Examples

Two numerical examples are presented in this section. The examples are designed in order
to illustrate the applicability of the purposed method in solving optimal heating problems
with stochastic data and the effect of random data on the state. In the examples, as
discussed earlier, conductivity coefficient κ (Figure 1) and source function f are considered
to be taken as random fields. For simplicity, the desired state is remained constant
function yd = 0.2, and regulator coefficient is taken γ = 0.1, in both examples. In both
of examples stochastic space as Γ = [0 1].

Example 1. In this example optimal boundary control problem (1)-(3) is considered
with uniformly distributed κ(.;x) (Figure 1(a)) and f(.;x) (Figure 2(b)) for every x ∈ D.
Spatial space is taken as D = [0 2]×[0 2], and controlled boundary is {(x1, x2) ∈ D : x1 =
0}. Thermal conductivity is κ = 1/2 + w, and random input is taken as

f =

{
w + 2 x1 ∈ [1 1.8], x2 ∈ [0.2 0.8],

w elsewhere,

where w(ω) is distributed uniformly on sample space and ω ∈ Γ.
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(a) (b)

Figure 1: (a) Conductivity coefficient κ in Example 1, (b) Conductivity coefficient κ in
Example 2

Numerical method is implemented and computed optimal state which represents op-
timal distribution of heat on the plate, is represented in Figure 2(a) and random source f
for Example 1 is shown in Figure 2(b). Optimal boundary control that denotes optimal
heating strategy, is computed by implementing proposed method (gPC-SG uncertainty
quantification) and MCS method. MCS is implemented with 1000 sampling points to
reach the stopping criteria.

The results are illustrated in Figure 3(a). The optimal strategy u is obtained such
that optimal state become as close as possible to yd i.e. the temperature on the whole of
the plate becomes 0.2 in norm 2 sense.

(a) (b)

Figure 2: (a) Optimal state (temperature distribution) y in Example 1, (b) Source function f in
Example 1



34 Numerical Solution of Optimal Heating .../ COAM, 1(2), Autumn-Winter 2016

The value of objective function in both numerical methods (MCS and gPC-SG based
methods) is reported in Figure 3(b).
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Figure 3: (a) Optimal heating strategy u in Example 1 (gPC-SG based method (later on denoted
by PCE) is presented with dash line and plus sign and MCS based methods is shown with solid
line), (b) Value of objective function in Example 1 (PCE is denoted by dash line and MCS is shown
with solid line)

Example 2. Optimal boundary control problem (1)-(3) is considered with normally
distributed random data

κ =

{
1
2x1 + w x1 ∈ [0.5 1.5], x2 ∈ [0.5 1.5]
1
2x1 elsewhere

and

f(.;x) =


w + 2 x1 ∈ [1 1.8], x2 ∈ [0.2 0.8]

w + 1 x1 ∈ [1 1.8], x2 ∈ [1.2 1.8]

w elsewhere

where w(ω;x) is normal random field for ω ∈ Γ and x ∈ D. In this example spatial space
has hole in the middle that is D = [0 2]×[0 2]\C where C = {x ∈ D : (x1−1)2+(x2−1)2 <
0.2}. Controlled boundary is same as previous example {(x1, x2) ∈ D : x1 = 0}.
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(a) (b)

Figure 4: (a) Optimal state y computed in Example 2, (b) Source function f in Example 2
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Figure 5: (a) Optimal heating strategy u in Example 2 (gPC-SG based method (later on denoted
by PCE) is presented with dash line and plus sign and MCS based methos is shown with solid line),
(b) Value of objective function in Example 2 (PCE is denoted by dash line and MCS is shown with
solid line), and results are presented for iterations 6 to 20.

State and boundary control are numerically computed by MCS and gPC-SG based
methods for given κ (Figure 1(b)) and source function f (Figure 4(b)). Figure 4(a)
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represents state which computed with gPC-SG based method. Obtained boundary control
with both methods are compared in Figure 5(a). The value of objective function for both
MCS and gPC-SG based methods are comparatively presented in Figure 5(b).

In both examples, it can be seen that MCS based method makes a smooth reduction
in objective function while we see rapid reduction in value of objective function in gPC-
SG based method. Thus we can conclude that as it was asserted PCE leads to fast
convergence with respect to MCS based method.

Numerical examples are implemented in Matlab 7.10 and figures are extracted apply-
ing ParaView software.

7 Conclusion

Optimal heating problem with uncertainties in thermal conductivity of the plate and
stochastic behaviour of the environment is modelled as boundary optimal control of
stochastic PDE. Parameter uncertainty and input uncertainty are taken into account
with PCE based approach. Stochastic parameters are approximated via Karhunen-Luéve
expansion. Uncertainty quantification is performed by gPC-SG and the problem is turned
into a very large linear system of equations. Gradient decent method is implemented for
solving the stochastic optimization problem. As it is illustrated in numerical examples,
the proposed method is efficient. For future researches one can consider other types of
uncertainties e.g. weakly related random variables. Other types of controls such as dis-
tributed can also be taken into account. Finally transient optimal heating problems can
be considered with stochastic parameters.
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چکیده
مرزی بهینه کنترل از استفاده با تصادفی محیط یک در دمایی میدان یک بهینه گرمادهی مسئله حاضر مقاله در
با جزئی مشتقات با معادلات از فیزیکی مدل سازی در است. شده حل عددی صورت به و شده فرمول بندی
اند شده اعمال معادله به دیریکله شرایط صورت به کنترل ها است. شده استفاده قید عنوان به تصادفی پارامترهای
گسسته سازی در شده اند. گرفته نظر در تصادفی توابع صورت به و هستند میدان مرز روی گرمایی المنت های مدل که
برای شده اند. اعمال مسئله به و شده داده بسط کارهونن-لوئو توسیع از استفاده با تصادفی پارامتر و ورودی عددی
است. شده استفاده تعمیم یافته آشوب چندجمله ای های از استفاده با و تصادفی گالرکین روش از عددی گسسته سازی
برای و شده پیاده سازی کامل صورت به مسئله است. شده انجام گرادیان روش از استفاده با عددی بهینه سازی

شده اند. داده نمایش نمودارها از استفاده با و ارائه عددی نتایج و مثال ها روش، کارایی دادن نشان

کلیدی کلمات
گرادیان روش تصادفی، تصویرسازی تصادفی، جزئی مشتقات با معادله مرزی، بهینه کنترل
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