In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Author

Payame Noor University

Abstract

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to optimize the precision of defect detection of concrete slabs depending on their qualitative evaluation‎. ‎Based on this idea‎, ‎some machine learning algorithms such as C4.5 decision tree‎, ‎RIPPER rule learning method and Bayesian network have been studied to explore the defect of concrete and to supply a decision system to speed up the defect detection process‎. ‎The results from the examinations show that the proposed RIPPER rule learning algorithm in combination with Fourier Transform feature extraction method could get a defect detection rate of 93% as compared to other machine learning algorithms.

Keywords

Main Subjects

[1] Asano M.‎, ‎Kamada T.‎, ‎Kunieda M.‎, ‎Rokugo K‎. ‎(2003)‎. ‎`` Impact acoustics methods for defect evaluation in concrete‎ ", ‎International Symposium Non-Destructive Testing in Civil Engineering‎.
[2] Chen H.‎, ‎Wang J.‎, ‎Wang M.‎, ‎Angelia M‎. ‎(2014)‎. ‎`` Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data‎ ", ‎Applied Soft Computing‎, ‎24‎, ‎773-780‎.
[3] Chia-Hsuan S‎. ‎(2012)‎. ‎`` Acoustic based condition monitoring‎ ", ‎The Graduate Faculty of The University of Akro‎, ‎Ph.D dissertation‎.
[4] Cohen W‎. ‎W‎. ‎(1995)‎. ‎`` Fast effective rule induction‎ ", ‎Proceedings of International Conference on Machine Learning‎, ‎Lake Tahoe‎, ‎CA‎.
[5] Cowling M.‎, ‎Sitte R‎. ‎(2003)‎. ‎`` Comparison of techniques for environmental sound recognition‎ ", ‎Pattern Recognition Letters‎, ‎24(15)‎, ‎2895-2907‎.
[6] Debdas S.‎, ‎Quereshi M.‎, ‎Reddy A.‎, ‎Chandrakar D.‎, ‎Pansari D‎. ‎(2011)‎. ‎`` A wavelet based multiresolution analysis for real time condition monitoring of AC machine using vibration analysis‎ ", ‎International Journal of Scientific and Engineering Research‎.
[7] Furnkranz J‎. ‎(1999)‎. ‎`` Separate-and-conquer rule learning‎ ", ‎Artificial Intelligence Review‎, ‎13‎, ‎3–54‎.
[8] Fuster-Parra P.‎, ‎Tauler P.‎, ‎Bennasar-Veny M.‎, ‎Ligęza A.‎, ‎López-González A.‎, ‎Aguiló A‎. ‎(2016)‎. ‎`` Bayesian network modelling‎: ‎A case study of an epidemiologic system analysis of cardiovascular risk‎ ", ‎Computer Methods and Programs in Biomedicine‎, ‎126‎, ‎128-142‎.
[9] Gokgoz E.‎, ‎Subasi A‎. ‎(2015)‎. ‎`` Comparison of decision tree algorithms for EMG signal classification using DWT‎ ", ‎Biomedical Signal Processing and Control‎, ‎18‎, ‎138-144‎.
[10] Gray R‎. ‎(1990)‎. ‎`` Entropy and information theory‎ ", ‎New York‎, ‎Springer-Verlag‎.
[11] Han J.‎, ‎Kamber M‎. ‎(2001)‎. ‎`` Data mining‎: ‎concepts and techniques‎ ", ‎San Francisco‎, ‎Morgan Kaufmann‎.
[12] Han J.‎, ‎Kamber M.‎, ‎Pei J‎. ‎(2011)‎. ‎`` Data mining‎: ‎concepts and techniques‎ ", ‎Third Edition‎, ‎Morgan Kaufmann‎.
[13] Heckerman D‎. ‎(1999)‎. ‎`` A tutorial on learning with Bayesian networks‎ ", ‎In Learning in Graphical Models‎, ‎MIT Press‎, ‎Cambridge‎, ‎MA‎.
[14] Henry M‎. ‎(2011)‎. ‎`` Learning techniques for identifying vocal regions in music using the wavelet transformation‎, ‎Version 1.0‎ ", ‎Graduate School of Arts and Sciences of Georgetown University‎, ‎Washington DC‎, ‎M.S‎. ‎dissertation‎.
[15] Jaber A.‎, ‎Bicker R‎. ‎(2016)‎. ‎`` Industrial robot backlash fault diagnosis based on discrete wavelet transform and artificial neural network‎ ", ‎American Journal of Mechanical Engineering‎, ‎4(1)‎, ‎21-31‎.
[16] Khunarsal P.‎, ‎Lursinsap C.‎, ‎Raicharoen T‎. ‎(2013)‎. ‎`` Very short time environmental sound classification based on spectrogram pattern matching‎ ", ‎Information Sciences‎, ‎243‎, ‎57-74‎.
[17] Koch C.‎, ‎Georgieva K.‎, ‎Kasireddy V.‎, ‎Akinci B.‎, ‎Fieguth P‎. ‎(2015)‎. ‎`` A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure‎ ", ‎Advanced Engineering Informatics‎, ‎29(2)‎, ‎196-210‎.
[18] Ma L.‎, ‎Destercke S.‎, ‎Wang Y‎. ‎(2016)‎. ‎`` Online active learning of decision trees with evidential data‎ ", ‎Pattern Recognition‎, ‎52‎, ‎33-45‎.
[19] Maas R.‎, ‎Huemmer C.‎, ‎Hofmann C.‎, ‎Kellermann W‎. ‎(2014)‎. ‎`` On Bayesian networks in speech signal processing‎ ", ‎11th ITG Conference on Speech Communication‎, ‎Germany‎.
[20] McNab A.‎, ‎Dunlop I‎. ‎(1990)‎. ‎`` Artificial intelligence techniques for the automated analysis of ultrasonic NDT data‎ ", ‎IEE Colloquium on Advances in Transducers‎, ‎Equipment and Data Processing to Improve the Reliability of NDT‎, ‎1-8‎.
[21] Mitchell T‎. ‎(1997)‎. ‎`` Machine learning‎ ", ‎McGraw-Hill‎.
[22] More S.‎, ‎Gaikwad P‎. ‎(2016)‎. ‎`` Trust-based voting method for efficient malware Detection‎ ", ‎Procedia Computer Science‎, ‎79‎, ‎657-667‎.
[23] Oran Brigham E‎. ‎(1988)‎. ‎`` The fast Fourier transform and its applications ”‎, ‎Prentice-Hall‎.
[24] Park B.‎, ‎Bae J‎. ‎K‎. ‎(2015)‎. ‎`` Using machine learning algorithms for housing price prediction‎: ‎The case of Fairfax County‎, ‎Virginia‎ ", ‎Expert Systems with Applications‎, ‎42(6)‎, ‎2928-2934‎.
[25] Pearl J‎. ‎(1988)‎. ‎`` Probabilistic reasoning in intelligent systems‎: ‎networks of plausible inference‎ ", ‎Morgan Kaufmann‎.
[26] Quinlan J‎. ‎(1993)‎. ‎`` C4.5‎: ‎Programs for machine learning‎ ", ‎San Francisco‎, ‎Morgan Kauffman‎.
[27] Rancoita P.‎, ‎Zaffalon M.‎, ‎Zucca E.‎, ‎Bertoni F.‎, ‎de Campose C‎. ‎(2016)‎. ‎`` Bayesian network data imputation with application to survival tree analysis‎ ", ‎Computational Statistics and Data Analysis‎, ‎93‎, ‎373-387‎.
[28] Sawicki J.‎, ‎Sen A.‎, ‎Litak G‎. ‎(2009)‎. ‎`` Multiresolution wavelet analysis of the dynamics of a cracked rotor‎ ", ‎International Journal of Rotating Machinery‎.
[29] Suvrit S.‎, ‎Nowozin S.‎, ‎Wright S‎. ‎J‎. ‎(2012)‎. ‎`` Optimization for machine learning‎ ", ‎MIT Press‎.
[30] Sugiyama M‎. ‎(2016)‎. ‎`` Statistical machine learning‎ ", ‎Introduction to Statistical Machine Learning‎, ‎3-8‎.
‎[31] Suzuki J‎. ‎(1999)‎. " ‎Learning Bayesian belief networks based on the minimum description length principle‎: ‎basic properties‎ ", ‎IEICE Transactions on Fundamentals‎, ‎82(10)‎, ‎2237−2245‎.
[32] Vetterli M.‎, ‎Kovacevic J‎. ‎(1995)‎. ‎`` Wavelets and subband coding‎ ", ‎Prentice Hall‎.
[33] Wang Y.‎, ‎Li W.‎, ‎Zhou J.‎, ‎Li X.‎, ‎Pu Y‎. ‎(2014)‎. ‎`` Identification of the normal and abnormal heart sounds using wavelet-time entropy features based on OMS-WPD‎ ", ‎Future Generation Computer Systems‎, ‎37‎, ‎488-495‎.
[34] Witten I.‎, ‎Eibe F‎. ‎(2005)‎. ‎`` Data mining‎: ‎practical machine learning tools and techniques‎ ", ‎Morgan Kaufmann‎.
[35] Yu J.‎, ‎Zhou H.‎, ‎Gao X‎. ‎(2015)‎. ‎`` Machine learning and signal processing for human pose recovery and behaviour analysis‎ ", ‎Signal Processing‎, ‎110‎, ‎1-4‎.