[1] Babolian E., Fattahzadeh F. (2007). `` Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration", Applied Mathematics and Computation, 188, 417-426.
[2] Fleming W.H., Rishel C. J. (1975). `` Deterministic and stochastic optimal control", New York, Springer-Verlag.
[3] Jaddu H. (1998). `` Numerical methods for solving optimal control problems using Chebyshev polynomials", PHD Thesis, JAIST, Japan.
[4] Jajarmi A., Hajipour M. (2015). `` An efficient recursive shooting method for the optimal control of time-varying systems with state time-delay", Applied Mathematical Modelling. 40, 1-14.
[5] Kafash B., Delavarkhalafi A. (2015). `` Restarted state parameterization method for optimal control problems", Journal of Mathematics and Computer Science, 151-161.
[6] Kafash B., Delavarkhalafi A., Karbassi S.M. (2012). `` Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems", Scientia Iranica, 19, 795-805.
[7] Mirhosseini-Alizamini S. M., Effati, S., Heydari A. (2015). `` An iterative method for suboptimal control of linear time delayed system", Systems and Control Letters, 82, 40-50.
[8] Razmjooy N., Ramezani M. (2016). `` Analytical solution for optimal control by the second kind Chebyshev polynomials expansion", Iranian Journal of Science and Technology (Sciences) in press.
[9] Rudin W. (1976). `` Principles of mathematical analysis", 3rd edition, McGraw-Hill, New York.
[10] Saberi Nik H., Effati S., Shirazian M. (2012). `` An approximate-analytical solution for the Hamilton-Jacobi-Bellman equation via homotopy perturbation method", Applied Mathematical Modelling, 36, 5614-5623.
[11] Vlassenbroeck J. (1988). `` A Chebyshev polynomial method for optimal control with constraints", International Federation of Automatic Control, 24, 499-506.
[12] Vlassenbroeck J., Van Dooren R.A. (1988). `` Chebyshev technique for solving nonlinear optimal control problems", IEEE Transactions on Automatic Control, 33, 333-340.