In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

Department of Mathematics, Shiraz University of Technology, Shiraz, Iran

Abstract

‎This paper describes a new optimization method for solving continuous semi-infinite linear problems‎. ‎With regard to the dual properties‎, ‎the problem is presented as a measure theoretical optimization problem‎, ‎in which the existence of the solution is guaranteed‎. ‎Then‎, ‎on the basis of the atomic measure properties‎, ‎a computation method was presented for obtaining the near optimal solution by means of famous and simple simplex method‎. ‎Some numerical results are reported to indicate the efficiency of the new method.

Keywords

Main Subjects

[1] ‎Anderson E‎. ‎J.‎, ‎Nash P‎. ‎(1987)‎. ‎``Linear programming in infinite dimensional space''‎, ‎Theory and Application‎, ‎John Wiley and Sons‎.
[2] ‎Basu A.‎, ‎Christopher M.‎, ‎Ryan T‎. ‎(2017)‎. ‎``Strong duality and sensitivity analysis in semi-infinite linear programming''‎, ‎Mathematical Programming‎, ‎161‎, ‎451-485‎.
[3] ‎Choquet G‎. ‎(1969)‎. ‎``Lectures on analyziz''‎, ‎Benjamin publisher‎, ‎New York‎.
[4] ‎Conway J‎. ‎B‎. ‎(1990)‎. ‎``A course in functional analysis''‎, ‎University of Tennessee‎, ‎Springer‎.
[5] ‎Fakharzade J‎. ‎A.‎, ‎Rubio J‎. ‎E‎. ‎(1999)‎. ‎``Global solution of optimal shape design problems''‎, ‎Zeitschrift fur Analysis and ihre Anwendungen‎, ‎18(1)‎, ‎143-155‎.
[6] ‎Fakharzade J‎. ‎A.‎, ‎Rubio J‎. ‎E‎. ‎(2009)‎. ‎``Best domain for an elliptic problem in cartesian coordinates by means of shape-measure''‎, ‎Asian Journal of Control‎, ‎11‎, ‎536-547‎.
[7] ‎Fiacco A‎. ‎V.‎, ‎Kortanek K‎. ‎O‎. ‎(1981)‎. ‎``Semi-infinite programming and Application''‎, ‎Papers from the International Symposium Economics and Mathematical System‎, ‎215 held at the university of Texas‎, ‎Austin‎, ‎September 8-10‎.
[8] ‎Goberna M‎. ‎A.‎, ‎Lopez M‎. ‎A‎. ‎(1998)‎. ‎``Linear semi-infinite Optimizatiom''‎, ‎John Wiley and Sons‎, ‎Chichester‎.
[9] ‎Goberna M‎. ‎A.‎, ‎Lopez M.‎, ‎Wu S‎. ‎Y‎. ‎(2001)‎. ‎``Separationa by hyper planes‎: ‎A linear semi-infinite programming approach''‎, ‎In‎: ‎M‎. ‎A‎. ‎Goberna‎, ‎M‎. ‎Lopez (eds)‎, ‎Semi-Infinite Programming Recent Advances‎, ‎Kluwer‎, ‎Dordrecht‎, ‎255-269‎.
[10] ‎Glashoff K.‎, ‎Gustafson S‎. ‎A‎. ‎(1983)‎. ‎``Linear optimization and approximation‎: ‎An introduction to the theoretical analysis and numerical‎ ‎treatment of semi-infinite programms''‎, ‎Applied Mathematical Siences‎, ‎45‎, ‎Springer-Verlag‎, ‎New York‎.
[11] ‎He L.‎, ‎Huang H.‎, ‎Lu H‎. ‎(2011)‎. ‎``Bivariate interval semi-infinite programming with an application to environmental decision making‎ ‎analysis''‎, ‎European Journal of Operational Research‎, ‎211‎, ‎452-465‎.
[12] ‎Hermes H.‎, ‎Lasalle J‎. ‎P‎. ‎(1969)‎. ‎``Functional analysis and time optimal control''‎, ‎Matematics in Sience and Engineering  56, ‎Academic press‎, ‎New York and London‎.
[13] ‎Hettich R.‎, ‎Kortanek K‎. ‎O‎. ‎(1993)‎. ‎``Semi-infinite programming‎: ‎theory‎, ‎methods and applications''‎, ‎SIAM Review‎, ‎35‎, ‎380-429‎.
[14] ‎Kiwiel‎, ‎K‎. ‎C‎. ‎(2001)‎. ‎``Convergence of subgradient methods for quasicovex minimization''‎, ‎Mathematical Programming (Series A)‎, ‎90‎, ‎1-25‎.
[15] ‎Leo'n T.‎, ‎Vercher E‎. ‎F‎. ‎(2001)‎. ‎``Optimization under uncertainty and linear semi-infinite programming‎: ‎A survey"‎, ‎In‎: ‎M.A‎. ‎Goberna‎, ‎M‎. ‎Lopez (eds)‎, ‎Semi-Infinite Programming Recent Advances‎, ‎Kluwer‎: ‎Dordrecht‎, ‎327-348‎.
[16] ‎Leo'n T.‎, ‎Sanmatias S.‎, ‎Vercher F‎. ‎(2000)‎. ‎``On the numerical treatment of linearly constrained semi-infinite optimization problems''‎, ‎European Journal of Operational Research‎, ‎121‎, ‎78-91‎.
[17] ‎Kanzi N.‎, ‎Nobakhtian S‎. ‎(2009)‎. ‎``Nonsmooth semi-infinite programming problems with mixed constraints''‎, ‎Journal of Mathematical Analysis and Applications‎, ‎351‎, ‎170-181‎.
[18] ‎Nash P.(1985)‎. ‎``Algebraic fundamentals of linear Programming''‎, ‎In Anderson E.J‎. ‎and Philpott A.B‎. ‎(eds.) Infinite programming Berlin‎. ‎Springer‎.
[19] ‎Oskoorouchi M‎. ‎R.‎, ‎Ghaffari H‎. ‎R.‎, ‎Terlaky T‎. ‎(2011)‎. ‎``An interior point constraint generation method for semi-infinite linear‎ ‎programming''‎, ‎Operations Research‎, ‎59‎, ‎1184-1197‎.
[20] ‎Reemtsen R.‎, ‎Ruckmann J‎. ‎J‎. ‎(1998)‎. ‎``Nonconvex optimization and its application‎: ‎semi-infinite programming''‎, ‎Kluwer Academic Publishers‎, ‎London‎.
[21] ‎Rosenbloom P‎. ‎C‎. ‎(1952)‎. ‎``Qudques classes de problems exteremaux''‎, ‎Buleetin de societe Mathematique de France‎, ‎80‎, ‎183-216‎.
[22] ‎Rubio J‎. ‎E‎. ‎(1986)‎. ‎``Control and optimization‎: ‎the linear treatment of nonlinear problems''‎, ‎Manchester University Press‎, ‎Manchester‎.‎
[23] ‎Rubio J‎. ‎E‎. ‎(1993)‎. ‎``The global control of nonlinear elliptic equation''‎, ‎Journal of The Franklin Institute‎, ‎330‎, ‎29-35‎.
[24] ‎Vaz‎, ‎A‎. ‎I‎. ‎F‎. ‎(2001)‎. ‎``Robot trajectory planning with semi-infinite programming‎" ‎Paris‎, ‎Sep‎. ‎26-29 OPR‎.
[25] ‎Vazquez F‎. ‎G.‎, ‎Ruckmann J‎. ‎J.‎, ‎Stein O.‎, ‎Still G‎. ‎(2008)‎. ‎``Generalized semi-infinite programming''‎, ‎Journal of Computational and Applied Mathematics‎, ‎217‎, ‎394-419‎.
[26] ‎Voigt H‎. ‎(1998)‎. ‎``Semi-infinite transportation problems''‎, ‎Zeitschrift fur Analysis and ihre Anwendungen‎, ‎17‎, ‎729-741‎.
[27] ‎Wang M.‎, ‎Kuo Y‎. ‎E‎. ‎(1999)‎. ‎``A perturbation method for solving linear semi-infinite programming problems''‎, ‎Computers and Mathematics with Applications‎, ‎37‎, ‎181-198‎.
[28] ‎Winterfeld A‎. ‎(2008)‎. ‎``Application of general semi infinite programming to lapidary cutting problems''‎, ‎European Journal of Operational Research‎, ‎191‎, ‎838-854‎.