[1] Anderson E. J., Nash P. (1987). ``Linear programming in infinite dimensional space'', Theory and Application, John Wiley and Sons.
[2] Basu A., Christopher M., Ryan T. (2017). ``Strong duality and sensitivity analysis in semi-infinite linear programming'', Mathematical Programming, 161, 451-485.
[3] Choquet G. (1969). ``Lectures on analyziz'', Benjamin publisher, New York.
[4] Conway J. B. (1990). ``A course in functional analysis'', University of Tennessee, Springer.
[5] Fakharzade J. A., Rubio J. E. (1999). ``Global solution of optimal shape design problems'', Zeitschrift fur Analysis and ihre Anwendungen, 18(1), 143-155.
[6] Fakharzade J. A., Rubio J. E. (2009). ``Best domain for an elliptic problem in cartesian coordinates by means of shape-measure'', Asian Journal of Control, 11, 536-547.
[7] Fiacco A. V., Kortanek K. O. (1981). ``Semi-infinite programming and Application'', Papers from the International Symposium Economics and Mathematical System, 215 held at the university of Texas, Austin, September 8-10.
[8] Goberna M. A., Lopez M. A. (1998). ``Linear semi-infinite Optimizatiom'', John Wiley and Sons, Chichester.
[9] Goberna M. A., Lopez M., Wu S. Y. (2001). ``Separationa by hyper planes: A linear semi-infinite programming approach'', In: M. A. Goberna, M. Lopez (eds), Semi-Infinite Programming Recent Advances, Kluwer, Dordrecht, 255-269.
[10] Glashoff K., Gustafson S. A. (1983). ``Linear optimization and approximation: An introduction to the theoretical analysis and numerical treatment of semi-infinite programms'', Applied Mathematical Siences, 45, Springer-Verlag, New York.
[11] He L., Huang H., Lu H. (2011). ``Bivariate interval semi-infinite programming with an application to environmental decision making analysis'', European Journal of Operational Research, 211, 452-465.
[12] Hermes H., Lasalle J. P. (1969). ``Functional analysis and time optimal control'', Matematics in Sience and Engineering 56, Academic press, New York and London.
[13] Hettich R., Kortanek K. O. (1993). ``Semi-infinite programming: theory, methods and applications'', SIAM Review, 35, 380-429.
[14] Kiwiel, K. C. (2001). ``Convergence of subgradient methods for quasicovex minimization'', Mathematical Programming (Series A), 90, 1-25.
[15] Leo'n T., Vercher E. F. (2001). ``Optimization under uncertainty and linear semi-infinite programming: A survey", In: M.A. Goberna, M. Lopez (eds), Semi-Infinite Programming Recent Advances, Kluwer: Dordrecht, 327-348.
[16] Leo'n T., Sanmatias S., Vercher F. (2000). ``On the numerical treatment of linearly constrained semi-infinite optimization problems'', European Journal of Operational Research, 121, 78-91.
[17] Kanzi N., Nobakhtian S. (2009). ``Nonsmooth semi-infinite programming problems with mixed constraints'', Journal of Mathematical Analysis and Applications, 351, 170-181.
[18] Nash P.(1985). ``Algebraic fundamentals of linear Programming'', In Anderson E.J. and Philpott A.B. (eds.) Infinite programming Berlin. Springer.
[19] Oskoorouchi M. R., Ghaffari H. R., Terlaky T. (2011). ``An interior point constraint generation method for semi-infinite linear programming'', Operations Research, 59, 1184-1197.
[20] Reemtsen R., Ruckmann J. J. (1998). ``Nonconvex optimization and its application: semi-infinite programming'', Kluwer Academic Publishers, London.
[21] Rosenbloom P. C. (1952). ``Qudques classes de problems exteremaux'', Buleetin de societe Mathematique de France, 80, 183-216.
[22] Rubio J. E. (1986). ``Control and optimization: the linear treatment of nonlinear problems'', Manchester University Press, Manchester.
[23] Rubio J. E. (1993). ``The global control of nonlinear elliptic equation'', Journal of The Franklin Institute, 330, 29-35.
[24] Vaz, A. I. F. (2001). ``Robot trajectory planning with semi-infinite programming" Paris, Sep. 26-29 OPR.
[25] Vazquez F. G., Ruckmann J. J., Stein O., Still G. (2008). ``Generalized semi-infinite programming'', Journal of Computational and Applied Mathematics, 217, 394-419.
[26] Voigt H. (1998). ``Semi-infinite transportation problems'', Zeitschrift fur Analysis and ihre Anwendungen, 17, 729-741.
[27] Wang M., Kuo Y. E. (1999). ``A perturbation method for solving linear semi-infinite programming problems'', Computers and Mathematics with Applications, 37, 181-198.
[28] Winterfeld A. (2008). ``Application of general semi infinite programming to lapidary cutting problems'', European Journal of Operational Research, 191, 838-854.