[1] Ayati Z., Biazar J., Ebrahimi S. (2015). ``A new homotopy perturbation method for solving two-dimensional reaction–diffusion brusselator system'', Journal of Mathematics and Computer Science, 15, 195-203.
[2] Banks H. T., Burns J. A. (1978). ``Hereditary control problem: Numerical methods based on averaging approximations'', SIAM Journal on Control and Optimization, 16 (2), 169-208.
[3] Dooren R. V., Vlassenbroeck J. (1982). `` Chebyshev series solution of the controlled duffing oscillator'', Journal of Computational Physics, 47, 321-329.
[4] El-kady M., Elbarbary E. M. E. (2002). ``A Chebyshev expansion method for solving nonlinear optimal control problems'', Applied Mathematics and Computation, 129, 171-182.
[5] Elnagar G., Khamayseh A. (1997). ``On the optimal spectral Chebyshev solution of a controlled nonlinear dynamical system'', IMA Jounal of Applied Mathematics, 58, 147-157.
[6] Feki M. (2003). ``Observer-based exact synchronization of ideal and mismatched chaotic systems'', Physics Letters A, 309, 53-60.
[7] Ghorbani A. (2009). ``Beyond Adomian polynomials: He polynomials'', Chaos, Solutions & Fractals, 39, 1486-1492.
[8] He, J. H. (1999). ''Homotopy perturbation technique'', Computer Methods in Applied Mechanics and Engineering, 178, 257-262.
[9] He, J. H. (1999). ``Variational iteration method-a kind of nonlinear analytical technique: some examples'', International Journal of Nonlinear Mechanics, 699-708
[10] He J. H. (2006). ``Some asymptotic methods for strongly nonlinear equations'', International Journal of Modern Physics B, 20 (10), 1141-1199.
[11] Haddadi N., Ordokhani Y., Razzaghi M. (2012). ``Optimal control of delay systems by using a hybrid functions approximation'', Journal of Optimization Theory and Applications, 153, 338-356.
[12] Jia W., He X., Guo L. (2017). ``The optimal homotopy analysis method for solving linear optimal control problems'', Applied Mathematical Modelling, 45, 865-880.
[13] Kharatishvili G. L. (1961). ``The maximum principle in the theory of optimal process with time-lags'', Doklady Akademii Nauk SSSR, 136, 39-42.
[14] Khellat F., Vasegh N. (2011). ``Suboptimal control of linear systems with delays in state and input by orthogonal basis'', International Journal of Computer Mathematics, 88(4), 781-794.
[15] Maimistov A. I. (2000). ``Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium'', Quantum Electronics, 30, 287-304.
[16] Maimistov A. I. (2003). ``Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order duffing model'', Optics and Spectroscopy, 94, 251-257.
[17] Marzban H. R., Razzaghi M. (2003). ``Numerical solution of the controlled duffing oscillator by hybrid functions'', Applied Mathematics and Computation, 140, 179-190.
[18] Mirhosseini-Alizamini S. M., Effati S., Heydari A. (2015). ``An iterative method for suboptimal control of linear time-delayed systems'', Systems & Control Letters, 82, 40-50.
[19] Mirhosseini-Alizamini S. M., Effati S., Heydari A. (2016). ``Solution of linear time-varying multi-delay systems via variational iteration method'', Journal of Mathematics and Computer Science, 16, 282-297.
[20] Rad J. A., Kazem S., Parand K. (2012). `` Numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions'', Computers and Mathematics with Applications, 64, 2049-2065.
[21] Razzaghi M., Elnagar G. (1994). ``Numerical solution the controlled duffing oscillator by the pseudospectral method'', Journal of Computatational and Applied Mathematics, 56, 253-261.
[22] Ravindra B., Mallik A. K. (1998). ``Dissipative control of chaos in non-linear vibrating systems'', Journal of Sound and Vibration, 211, 709-715.
[23] Saberi nik H., Zahedi M. S., Buzhabadi R., Effati S. (2013). ``Homotopy perturbation method and He's polynomials for solving the porous media equation'', Computational Mathematics and Modeling, 24 (2), 279-292.
[24] Scaramozzino S. (2013).``Optimal control of time-varying harmonic Oscillator at resonance'', New York.
[25] Shirazian M., Effati S. (2012). ``Solving a class of nonlinear optimal control problems via He's variational iteration method'', International Journal of Control, Automation and Systems, 10 (2), 249-256.
[26] Stokes J. J. (1950). ``Nonlinear Vibrations'', Intersciences, New York.
[27] Yang S. P., Xiao A. G. (2011). `` Of the variational iteration method for solving multi-delay differential equations'', Computers and Mathematics with Applications, 61, 2148-2151.
[28] Yu Z. H. (2008). ``Varaitional iteration method for solving the multi-pantograph delay equation'', Physics Letters A, 372, 6475-6479.
[29] Wang G., Zhenga W., He S. (2002).``Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator'', Signal Processing, 82, 103-115.
[30] Zeeman E. (1976). ``Duffing equation in brain modelling'', Bull IMA, 12, 207-214.