bibitem{1}
Afshari Rad, M., & Taghizadeh Kakhki, H. (2013). textit{ Maximum Dynamic Network Flow Interdiction Problem: New Formulation and Sfigolution Procedures Original Research Article. Computers & Industrial Engineering}, 65(4), 531-536. DOI: 10.1016/j.cie.2013.04.014
bibitem{2}
Ahuja, R., Magnanti, T., & Orlin, J. (1993). {em Network Flows: Theory, Algorithms and Applications.} Prentice Hall.
bibitem{3}
Aronson, J. (1989). {em A Survey of Dynamic Network Flows.} Annal of Operation research, 20, 1-66. doi:10.1007/BF02216922
bibitem{4}
Bose, J., Reiners, T., Steenken, D., & Vob, S. (2000). textit{Vehicle Dispatching at Seaport Container Terminals Using Evolutionary Algorithms. } In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. Hawaii (pp. 1-10).
bibitem{5}
Bradley, G., Brown, G., & Graves, G. (1977). {em Design and Implementation of Large Scale Primal Transshipment Algorithms.} Management Science, 24, 1-38. doi:10.1287/mnsc.24.1.1.
bibitem{6}
Chan, S. (2001). {em Dynamic AGV-Container Job Deployment(Master degree dissertation).} University of Singapore, Singapore MIT Alliance.
bibitem{7}
Chawla V.K., Chandab A.k. Angra S., (2018), textit{Scheduling Of Multi Load AGVs In FMS By Modified Memetic Particle Swarm Optimization Algorithm,} Journal Of Project Management, Vol. 3 , 39--54
bibitem{8}
Cheng, Y., Sen, H., Natarajan, K., Ceo, T., & Tan, K. (2003). {em Dispatching Automated Guided Vehicles in A Container Terminal.Technical Report, National University of Singapore.}
bibitem{9}
Ciurea, E., & Parpalea, M. (2010). textit{Minimum Flow in Monotone Parametric Bipartite Networks.} NAUN International Journal of Computers, 4(4), 124-135.
bibitem{10}
Cunningham, W. (1979). textit{Theoretical properties of the network simplex method.} Mathematics of Operations research, 4(2), 196-208. doi:10.1287/moor.4.2.196
bibitem{11}
El-Sherbenym, N. (2012). {em A New Class of a Minimum Cost Flow Problem on a Time Varying and Time Window.} Scientific Research and Impact, 1(3), 18-28.
bibitem{12}
Eppstein, D. (1999). textit{Clustering for faster network simplex pivots. }In Proceedings of the 5th ACM-SIAM Symposium, Discrete Algorithms. (pp. 160-166).
bibitem{13}
Rebennack, S., Pardalos, P., Pereira, M., & Iliadis, N. (Eds.). (2010). {em Algorithms for Finding Optimal Flows in Dynamic Networks. Berlin: Springer.}
bibitem{14}
Fonoberova, M., & Lozovanu, D. (2007). textit{Optimal Dynamic Flows in Networks and Applications.} The International Symposium the Issues of Calculation Optimization, Communications.Crimea, Ukraine (pp. 292-293).
bibitem{15}
Geranis, G. (2013). {em Dynamic Trees in Exterior-Point Simplex Type Algorithms for Network Flow Problems.} Electronic Notes in Discrete Mathematics, 41, 93-100.
bibitem{16}
Geranis, G., Paparrizos, K., & Sifaleras, A. (2012). textit{On a Dual Network Exterior Point Simplex Type Algorithm and Its Computational Behavior. Operations Research,} 46, 211-234. doi:10.1051/ro/2012015.
bibitem{17}
Goldberg, A., & Kennedy, R. (1993). {em An efficient cost scaling algorithm for the assignment problem.}Technical Report, Stanford University.
bibitem{18}
Grigoriadis, M. (1986). textit{ An Efficient Implementation of the Network Simplex Method.} Mathematical Programming Study, 26, 83-111.
bibitem{19}
Grunow, M., Gunther, H., & Lehmann, M. (2004). {em Dispatching multi-load AVGs in highly automated seaport vontainer terminals.} OR Spectrum, 26(2), 211-235. doi:10.1007/s00291-003-0147-1.
bibitem{20}
Hoppe, B. (1995). {em Efficient Dynamic Network Flow Algorithms(Doctoral dissertation). Cornell University, New York.}
bibitem{21}
Hosseini, S. (2010). textit{An Introduction to Dynamic Generative Networks: Minimum Cost Flow. Applied Mathematical Modelling,} 35(10), 5017-5025. DOI: 10.1016/j.apm.2011.04.009.
bibitem{22}
Hosseini A., Sahlin T., (2018), textit{An Optimization Model for Management of Empty Containers in Distribution Network of a Logistics Company Under Uncertainty,} Journal of Industrial Engineering International (2018), PP. 1-8, https://doi.org/10.1007/s40092-018-0286-2.
bibitem{23}
Huang, Y., & Hsu, W. (2002). textit{Two Equivalent Integer Programming Models for Dispatching Vehicles at a Container Terminal.} Report No. 639798, Nan yang Technological University, School of Computer Engineering.
bibitem{24}
Kelly, D., & ONeill, G. (1993). {em The Minimum Cost Flow Problem and The Network Simplex Solution Method (Master degree dissertation).} University College, Dublin.
bibitem{25}
Leong, C. (2001). {em Simulation Study of Dynamic AGV-Container Job Deployment Scheme (Master degree dissertation).} National University of Singapore, Singapore.
bibitem{26}
Lobel, A. (2000). textit{ A Network Simplex Implementation.Technical Report,} Konrad-Zuse-ZentrumfurInformationstechnik Berlin (ZIB).
bibitem{27}
Maros, I. (2003). textit{ A General Pricing Scheme for the Simplex Method.}Technical Report, London, Department of Computing, Imperial College.
bibitem{28}
Mulvey, J. (1978). textit{Pivot Strategies for Primal Simplex Network Codes.} Association for Computing Machinery Journal, 25, 266-270. doi:10.1145/322063.322070.
bibitem{29}
Murty, K., Jiyin, L., Yat-Wah, W., Zhang, C., Maria, C., Tsang, J., & Richard, L. (2002). textit{A Decision Support System for operations in a container terminal.} Decision Support System, 39, 309-332.
bibitem{30}
Nasrabadi, E., & Hashemi, S. (2010). {em Minimum Cost Time-Varying Network Flow Problems.} Optimization Methods and Software, 25(3), 429-447. doi:10.1080/10556780903239121.
bibitem{31}
Nicoleta A., Eleonora C., Mirceab P. (2017). {em The Maximum Parametric Flow in Discrete-time Dynamic Networks,} Fundamenta Informaticae, Vol. 156(2), pp. 125-139.
bibitem{32}
Parpalea, M. (2011). A Parametric Approach to the Bi-criteria Minimum Cost Dynamic Flow Problem. Open Journal of Discre Mathematics, 1eqref{GrindEQ__3_}, 116-126. doi:10.4236/ojdm.2011.13015.
bibitem{33}
Parpalea, M., & Ciurea, E. (2011). textit{Maximum Flow of Minimum Bi-Criteria Cost in Dynamic Networks.} Recent researches in computer science, 118-123.
bibitem{34}
Parpalea, M., & Ciurea, E. (2011). {em The Quickest Maximum Dynamic Flow of Minimum Cost}. Journal of Applied Mathematics and Informatics, 5(3), 266-274.
bibitem{35}
Parpalea M., Avesalon N., Eleonor Ciurea (2015), {em Minimum parametric flow over time,} Discrete Mathematics and Theoretical Computer Science, In Press.
bibitem{36}
Patrick, J., & Wagelmans, P. (2001). textit{Dynamic Scheduling of Handling Equipment at Automated Container Terminals.} Report No. EI 2001-33, Erasmus University of Rotterdam, Econometric Institute.
bibitem{37}
Patrick, J., & Wagelmans, P. (2001). {em Effective Algorithms for Integrated Scheduling of Handling Equipment at Automated Container Terminals.} Report No. EI 2001-19, Erasmus University of Rotterdam, Econometric Institute.
bibitem{38}
Powell, W., Jaillet, P., & Odoni, A. (1995). {em Stochastic and Dynamic Networks and Routing.} Handbooks in Operations Research and Management Science (pp. 141-295). Amsterdam: North-Holland.
bibitem{39}
Rashidi, H. (2006). {em Dynamic Scheduling of Automated Guided Vehicles in Container Terminals (Doctoral dissertation).} University of Essex, Colchester.
bibitem{40}
Rashidi, H. (2014). textit{A Dynamic Version for the Network Simplex Algorithm}. Journal of Applied Soft Computing, 24, 414-422. doi:10.1016/j.asoc.2014.07.017.
bibitem{41}
Rashidi, H., & Tsang, E. (2005). {em Applying the Extended Network Simplex Algorithm and a Greedy Search Method to Automated Guided Vehicle Scheduling.} the 2nd Multidisciplinary International Conference on Scheduling: Theory & Applications (MISTA). New York (pp. 677-693).
bibitem{42}
Rashidi, H., & Tsang, E. (2011). textit{A Complete and an Incomplete Algorithm for Automated Guided Vehicle Scheduling in Container Terminals}. Journal of Computers and Mathematics with Applications, 61, 630-641. doi:10.1016/j.camwa.2010.12.009.
bibitem{43}
Rashidi H., Tsang E., (2016). {em Vehicle Scheduling in Port Automation: Advanced Algorithms for Minimum Cost Flow Problems, Second Edition.} CRC Press, New York.
bibitem{44}
Ratliff, H., Sicilia, G., & Lubore, S. (1975). {em Finding the n most vital links in flow networks. Management Science}, 21, 531-539. doi:10.1287/mnsc.21.5.531.
bibitem{45}
Rauch, M. (1992). {em Fully Dynamic Graph Algorithms and Their Data Structures (Doctoral dissertation).} Princeton University, New Jersey.
bibitem{46}
Salehi Fathabadi, H., Khodayifar, S., & Raayatpanah, M. (2012). textit{ Minimum flow Problem on network flows with time-varying bounds.} Applied Mathematical Modeling, 36(9), 4414-4421. doi:10.1016/j.apm.2011.11.067
bibitem{47}
Sen, H. (2001). {em Dynamic AVG-Container Job Deployment.} Technical Report, Singapore-MIT Alliance.
bibitem{48}
Shen, W., Nie, Y., & Zhang, H. (2007). textit{A Dynamic Network Simplex Method for Designing Emergency Evacuation Plans.} Transportation Research Record, 20(22), 83-93.
bibitem{49}
Skutella, M. (2009). {em An Introduction to Network Flows Over Time.} Research Trends in Combinatorial Optimization, Berlin: Springer.
bibitem{50}
Wook, B., & Hwan, K. (2000). textit{A pooled dispatching strategy for automated guided vehicles in port container terminals. }International Journal of Management Science, 6(2), 47-60.
bibitem{51}
Zheng, H., & Chiu, Y. (2011). textit{A Network Flow Algorithm for the Cell-Based Single-Destination System Optimal Dynamic Traffic Assignment Problem.} Transportation Science, 45(1), 121-137. doi:10.1287/trsc.1100.0343.