bibitem{affonso}
Affonso C., Sassi R.J., Barreirosa R. (2015). ``Biological image classification using rough-fuzzy artificial neural network", Expert Systems with Applications, 42, 9482--9488.
bibitem{ahmadi}
Ahmadi G., Teshnehlab M. (2017). ``Designing and implementation of stable sinusoidal rough-neural identifier", IEEE Trans. Neural Netw. Learn. Syst., 28, 1774--1786.
bibitem{ahmadi2}
Ahmadi G., Teshnehlab M. (2017). ``System identification using rough extreme learning machines", In Proceedings of the 9th National Conference on Mathematics of Payame Noor University, Kerman, 811--815.
bibitem{ahmadi1}
Ahmadi G., Teshnehlab M., Soltanian, F. (2018). ``Identification of discrete dynamic nonlinear systems using stable sinusoidal rough-neural networks with online emotional learning", In Proceedings of the 6th Iranian Joint Congress on Fuzzy and Intelligent Systems, Kerman, 20--26.
bibitem{alehasher}
Alehasher S., Teshnehlab M. (2012). ``Implementation of rough neural networks with probabilistic learning for nonlinear system identification", J. Control, 6, 41--50.
bibitem{balkenius}
Balkenius C., Mor'{e}n J. (2001). ``Emotional learning: a computational model of amyg", Cybernetics and Systems, 32, 611--636.
bibitem{ding}
Ding S., Ma G., Shi Z. (2014). ``A rough RBF neural network based on weighted regularized extreme learning machine", Neural Processing Letters, 40, 245--260.
bibitem{el-saify}
El-Saify M., El-Garhy A., El-Sheikh G. (2017). ``Brain emotional learning based intelligent decoupler for nonlinear multi-input multi-output distillation columns", Mathematical Problems in Engineering, 2017, 1--13.
bibitem{hassan2017}
Hassan, Y. (2017). ``Deep learning architecture using rough sets and rough neural networks", Kybernetes, 46, 693--705.
bibitem{hassan2018}
Hassan Y. (2018). ``Rough set machine translation using deep structure and transfer learning", Journal of Intelligent and Fuzzy Systems, 34, 4149--4159.
bibitem{hassanien}
Hassanien A., Slezak D. (2006). ``Rough-neural intelligent approach for image classification: A case of patients with suspected breast cancer", International Journal of Hybrid Intelligent Systems, 3, 205--218.
bibitem{ioannou}
Ioannou P., Sun J. (1996). Robust adaptive control, Prentice Hall, New Jersey.
bibitem{isermann}
Isermann R., Munchhof M. (2011). ``Identification of dynamic systems", Springer, Berlin.
bibitem{janay}
Janakiraman V., Nguyen X., Assanis D. (2013). ``A lyapunov based stable online learning algorithm for nonlinear dynamical systems using extreme learning machines", In International Joint Conference on Neural Networks, Dallas, TX, USA.
bibitem{kreyszig}
Kreyszig E. (1978). ``Introductory functional analysis with applications", John Wiley and Sons, New York.
bibitem{liao}
Liao H., Ding S., Wang M., Ma G. (2016). ``An overview on rough neural networks", Neural Computing and Applications, 27, 1805--1816.
bibitem{lingras}
Lingras P. (1996). ``Rough neural networks", In Proceedings of the 6th international conference on information processing and management of uncertainty (IPMU), Granada, 1445--1450.
bibitem{lingrasb}
Lingras P. (2001). ``Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing", neurocomputing, 36, 29--44.
bibitem{lotfi2014a}
Lotfi E., Akbarzadeh-T M. (2014). ``Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices", Neurocomputing, 126, 188--196.
bibitem{lotfi2014c}
Lotfi E., Setayeshi S., Taimory S. (2014). ``A neural basis computational model of emotional brain for online visual object recognition", Applied Artificial Intelligence, 28, 814--834.
bibitem{lucas}
Lucas C., Abbaspour A., Gholipour A., Araabi B., Fatourechi M. (2003). ``Enhancing the performance of neurofuzzy predictors by emotional learning algorithm", Informatica, 27, 137--145.
bibitem{lucass}
Lucas C., Shahmirzadi D., Sheikholeslami N. (2004). ``Introducing BELBIC: brain emotional learning based intelligent controller", Intelligent Automation and Soft Computing, 10, 11--21.
bibitem{man}
Man Z., Wu H., Liu S., Yu X. (2006). ``A new adaptive backpropagation algorithm based on lyapunov stability theory for neural networks", IEEE Trans. neural netw., 17, 1580--1591.
bibitem{mardani}
Mardani A., Nilashi M., Antucheviciene J., Tavana M., Bausys R., Ibrahim O. (2017). ``Recent fuzzy generalisations of rough sets theory: A systematic review and methodological critique of the literature", Complexity, 2017, 1--33. %doi:10.1155/2017/1608147.
bibitem{mehrabian}
Mehrabian A., Lucas C., Roshanian J. (2006). ``Aerospace launch vehicle control: an intelligent adaptive approach", Aerospace Science and Technology, 10, 149--155.
bibitem{narendra}
Narendra K., Parthasarathy K. (1990). ``Identification and control of dynamical systems using neural networks", IEEE Transactions on Neural Networks, 1, 4--27. %doi:10.1109/72.80202.
bibitem{nelles}
Nelles O. (2001). ``Nonlinear system identification: From classical approaches to neural networks and fuzzy models", Springer-Verlag, Berlin.
bibitem{nguyen}
Nguyen H., Skowron A. (2013). ``Rough sets: from rudiments to challenges", In Rough sets and intelligent systems – Professor Zdzisław Pawlak in memoriam, 75--173.
Berlin volume 1.
bibitem{park}
Park I.K., Choi, G.S. (2015). ``Rough set approach for clustering categorical data using information-theoretic dependency measure", Information Systems, 48, 289--295.
bibitem{parsapoor}
Parsapoor M., Bilstrup U. (2013). ``Chaotic time series prediction using brain emotional learning-based recurrent fuzzy system (belrfs)", Int. J. Reasoning-based Intelligent Systems, 5, 113--126. %doi:10.1504/IJRIS.2013.057273.
bibitem{patt}
Pattaraintakorn P., Cercone N., Naruedomkul K. (2006). ``Rule learning: ordinal prediction based on rough sets and softcomputing. Applied Mathematics Letters", An International Journal of Rapid Publication, 19, 1300--1307.
bibitem{paw}
Pawlack Z. (1982). ``Rough sets", International Journal of Computer and Information Sciences, 11, 341--356.
bibitem{pedrycz}
Pedrycz W., Skowron A., Kreinovich V. (2008). ``Handbook of granular computing", England, John Wiley and Sons.
bibitem{rouhani}
Rouhani H., Jalili M., Araabi B., Eppler W., Lucas C. (2007). ``Brain emotional learning based intelligent controller applied to neurofuzzy model of micro-heat exchanger", Expert Systems with Applications, 32, 911--918.
bibitem{sadeghian}
Sadeghian M., Fatehi A. (2011). ``Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique", J. Process Control, 21, 302--308.
bibitem{sarmadi}
Sarmadi N., Teshnehlab M. (2002). ``Short-term weather forecasting using neurofuzzy approach", In Proceedings of the 20th IASTED International Multi-Conference on Modeling, Identification and Control (MIC), Innsbruck, Austria.
bibitem{sharifi}
Sharifi A., Shoorehdeli M. A., Teshnehlab M. (2012). ``Identification of cement rotary kiln using hierarchical wavelet fuzzy inference system", J. Franklin Inst., 349, 162--183.
bibitem{tay}
Tay F., Shen, L. (2002). ``Economic and financial prediction using rough sets model", European Journal of Operational Research, 141, 641--659.
bibitem{yama}
Yamaguchi D., Katayama F., Takahashi M., Arai M., Mackin K. (2008). ``The medical diagnostic support system using extended rough neural network and multiagent", Artificial life and robotics, 13, 184--187. %doi:10.1007/s10015-008-0543-3.
bibitem{yan}
Yan L., Sundararajan N., Saratchandran P. (2000). ``Analysis of minimal radial basis function network algorithm for real-time identification of nonlinear dynamic systems", IEE Proceedings-Control Theory and Applications, 147, 476--484.
bibitem{ye}
Ye M., Wu X., Hu X., Hu D. (2013). ``Anonymizing classification data using rough set theory", Knowledge-Based Systems, 43, 82--94.
bibitem{zhang}
Zhang H.Y., Yang S.Y. (2017). ``Feature selection and approximate reasoning of large-scale set-valued decision tables based on $alpha$-dominance-based quantitative rough sets", Information Sciences, 378, 328--347.