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1 Introduction

The notion of gap function for mathematical programming problems has been studied
in various publications. This concept was first defined by Hearn in [7] for the scalar
value convex optimization problems, and was then introduced for variational inequality

problem in [1].

For multi-objective optimization problems with smooth data, the gap function has
been presented in [4] as a set-valued function. Also, two kinds of set-valued gap func-
tions are introduced for smooth and non-smooth multiobjective optimizations in [14].
Since the initial calculations of set-valued functions are faced with special problems,
working with these gap functions is very difficult. Recently, Caristi et al. [4] intro-
duced some single-valued gap functions, with complex structures, for multi-objective

optimization problems.

All previously mentioned papers considered the (multiobjective) optimization prob-
lems with the finite number of constraints. Kanzi and Soleymani-Damaneh [10] stud-
ied the concept of gap function for optimization problems with the infinite number of
quasi-convex constraints, i.e., quasi-convex semi-infinite problems. Also, the concept
of gap function extended to linear semi-infinite multiobjective optimization in [11], and

quasi-variational inequality problems in [13].

The purpose of this article is to introduce several scalar-valued gap functions, with
simple structures, for semi-infinite multi-objective optimization problems with locally
Lipschitz functions. In fact, the purpose of the present paper is to give a generalization
of sources listed above. The paper mainly deals with constrained optimization problems

formulated as

P) minimize f(z) = (f1(z),..., fp (2))
subject to go () <0 with a € A,

where f; : R" — RU{+oo} fori € A :={1,...,p} and g, : R” — R for o € A are
(not necessary differentiable) locally Lipschitz functions, and the index set A # ) is

arbitrary.

It is worth mentioning that Mastroeni [12] presented a descent method for solving
the variational inequalities and optimization problems (under differentiability) based
on gap function algorithms. Also, some applications of gap functions in iteration al-
gorithms, proper efficiency, and scalarization of multiobjective optimization can be
studied in [4, Section 5].
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2 Notations and Preliminaries

In this section, we present definitions and auxiliary results that will be needed in the
rest of the paper.

Let R™ be the m—dimensional Euclidean space. Denote by 0,, and R’ the zero
m times

——
vector (i.e., (0,...,0)) and the nonnegative orthant of R™ respectively. Also, the open
ball with center a € R™ and radius ¢ > 0 is denoted by B, (a). The order and weak

order in R™ can respectively be defined by :

(al, ...,am) < (bl, ...,bm) — a' <, Vi=1,...,m,
al<bla 316{1,...,m},
(') @™ < (B, . b7) = ai<bi, Vi=1,..m.

Let ¢ : R®™ — R be a locally Lipschitz function. The Clarke directional derivative of
p at & € R™ in the direction v € R", and the Clarke subdifferential of ¢ at & introduced

in [8] are respectively given by

t —_
(&3 v) := limsup Py + t) cp(y)’
y—i, t10 t

dep(2) == {€ € R™ | (¢,v) < OO(i;v)  forallwe R"}.

The Clarke subdifferential is a natural generalization of the derivative since it is known

that when function ¢ is continuously differentiable at Z, then d.p(Z) = {Vp(2)}.

Theorem 1. (Lebourg mean-value [8]) Let x,y € R™, and suppose that ¢ is a locally
Lipschitz function from R" to R. Then, there exists a point v in the open line segment
(x,y), such that

o(y) — p(x) € (Ocp(u),y — ).

Definition 1. Let ¢ : R — R be a locally Lipschitz function. We say that ¢ is

c—quasiconvex (i.e., Clarke quasiconvex) at & € R™ if for any x € R"

p(r) < (@) = (& —2) <0 VE € Dep().

3 Main Results

As a starting point of this section, we introduce the available set of (P) and the set of

active indices a possible point x( as follows:
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S:={zxeR"|gy(z) <0, VaecA},
A(zg) :=={a € A| ga(xo) =0}.
A given point z¢p € S is said to be an efficient (resp. weakly efficient) solution
for (P) if there is no x € S satisfies f(x) < f(zg) (resp. f(x) < f(z¢)). The set of
all efficient solutions and weakly efficient solutions of (P) are denoted by E and W,

respectively.

For each zy € 5, let:

Oefi (x0) == 0cfi (w0) \ {0}, Vi€ A,
Oef (w0) = Def1 (o) X ... % Defy (x0) C (R™)P,
8£f (900) = 0.f (xO) \ {Onp} = ( . f1 (xﬂ) X... X acfzu (xo)) \{Onp}'

It is easy to see that

(&1,...,&) € 0cf (z0) | & # 0y, forallzGA}
(&1,...,&p) € 0cf (x0) | & # On forsomezeA}
8f( ) 0L f (z0) C Def (wo) .-

| |

First, we introduce a quasi-gap function for (P).

Definition 2. For each (z,y,2) € S x § x R" and § = (&1,...,&) € 0.f(z), the

quasi-gap function ¢y (z, 2,&) is defined as:

y (1,2,8) : Z@,

Theorem 2. let f; be c—quasiconvex function at xzg € S for i € A.

(I) If for each y € S there exists some £W) € 5cf (o) with (py(li(],.’li(],f(y)) < 0, then
xg € E.

(II) If for each y € S there exists some £W) € oL f (20) with (20, 70,£®)) < 0, then
xg € W.

Proof. (I) Suppose that xo ¢ E. Then, we can find some z* € S and k € A, satisfying
fi(@*) = fi(zo) <0, Vie A, and fi(z%) — fi (z0) <O. (1)
The above inequalities and the c—quasiconvexy of f; functions at x¢ imply that

(&i,a" —mo) <0, Vi€ A, V& € defi(wo). (2)
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At the other hand, the assumptions of theorem yield that there exists an £&7)
Oef (x0) such that

Pa* (x07$07§(x*)) S 0. (3)
It is sufficient to prove that

<§,(€x*),x* —z0) <0, (4)
since (2) and (4) imply ¢+ (20,20,6@)) = P <§i(x*),a:0 — a*) > 0, which

contradicts (3).

If (4) does not hold, in view of (2) we obtain <§]ix*), z* — z9) = 0. By latter and
f,(f*) # 0, we can find some sequence {w;} — x* — ¢ such that <£,(f*), wt> > 0 for
all t € N. Since wy = (w¢ + xg) — xo, the latter inequality and c—quasiconvexity
of fi lead us to

<§ng*), (wi +x0) —x0) >0 = fr(wy + x0) — fe(zo) >0, VteN.
Hence, the continuity of f; concludes that:

Jim (fio(wr +20) = fi(w0)) =0 = fi(a®) = fu(zo) =0,

which contradicts (1). Thus (4) holds.

(IT) If zop ¢ W, then there exists an #* € S such that f;(z*) — fi(zo) <0, for all i € A.
By definition of 9% f (x), there exists a k € A, such that 5,(;0*) # 0,. Similar to
the proof of (I), it can be seen that <§,(f*), Tt — xo> < 0. The remainder of proof

is similar to (I) and is hence omitted.
O

The following example shows that the converse of the above theorem does not valid.

Example 1. : Consider the following problem:

min ( |z1| + 21, |22 +$2)

subject to x1 + x5 < 0.

In fact, fi (z1,22) = |z1| + 21, fo (21, 22) = |x2| + 22, and g (z1,22) = x1 + z2. Consid-
ering o = (0,0), we have oy € E, and

acfl (.’Eo) = [07 2] X {O}a

acf2 (xO) = {0} X [07 2]'
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Taking § = (§1,92) = (—1, 1) € S, for cach & € D.f1 (z0) and & € . f (), we
have éy) = (a1,0) and féy) = (0, az) for some ay,as € (0,2]. Thus,

05(20,20,£W) = {(a1,0), (=91, —2) ) + { (0, a2) , (—f1, —f2) ) = a1 + az > 0.
O

Theorem 3. If 2y € E, then for each y € S and m € N, there exists 2™ e By /m (7o)
and f(m) = (ém), e })m)) € 8Cf(z(m)), such that

(&M y—x0) >0,  VieA, (5)
or
(€ Yy — o) >0, Ik € A.

Proof. Since the proof is the same as [4, Theorem 4.2], it is omitted, An only different
point of these proves is that in [4, Theorem 4.2] the feasible set is convex, and here it

is not necessarily convex. ]
Remark 1. The result of Theorem 3 can be written as

weE = VYyeS, VmeN, 30 eBy,, (x), 3(E™,...,M) e d.f(=m),
(< gm)ay - 33'0>, <£§m)7y - J;0>7 SERE) <£Z()m)’y - l‘0>> f Op'

The similar proof of Theorem 3 shows that:

eW = VyeS, VmeN, 30" eBy,, (x), 3E™,... M) e d.f(z™),
(€™ y = w0, (6™, y = 20), ., (65,5 = 20)) # Op.

Definition 3. Suppose that z( is an efficient solution to (P). The point y € S is said
to be compatible with xg if the number of natural numbers m, which is satisfied in (5)

is infinite. The set of all compatible points with z( is denoted by S(zo).

The following corollary of Theorem 3, is stated as the approximation converse of

Theorem 2.

Theorem 4. Suppose that zyp € E and y € S(xg). Then there exists a sequence
{z(m)}j::l converging to xg, and {‘f(m)}zzl with £ € 9, f (z(m)), such that:

Py (mo,z(m),f(m)) <0, Vm € N.

Now, we introduce a new gap function for the problem (P).
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Definition 4. For each (z,z) € S xR" and & := (§1,...,&p) € 0.f(2), the gap function
¢ (x,2,€) is defined as:

o (z,2,8) = SUP{Z@,:E - y>}-

yes tioy

It is easy to see that

90 (mazaé) = Sllp Spy (x727£) *
yes

Notice that the above gap function is more suitable than the gap function, which is
defined in [4], because of z = z in that gap function, so our gap function is its extension.
Moreover, the gap function presented in [4] is more complicated in calculus, since its

style is infimum of superior.

Lemma 1. For each z € S, z € R", and £ € 9.f (), we have:

¢ (x,2,€) > 0.
Proof. By taking y = x in definition of ¢ (z, 2, &), the result is clear. O
Now, we can state the following famous theorem.

Theorem 5. Suppose that f; is a c—quasiconvex function at xg € S for each i €

{1,...,p}.
(1) If p(x0, 0, €) = 0 for some € € d.f () , then zo € E.

(IT) If p(z0,z0,£F) = 0 for some & € oLf (o), then xg € W.

Proof. (I) ¢(x0,x0,&) = 0 implies that for each y € S we have ¢, (xg, z0,&) < 0. The-

orem 2 justifies the result.

(IT) Applying the proof of part (I), the result holds.
O

Remark 2. In the best of our knowledge, the inverse of Theorem 5 is not valid, even
by convexity and differentiability of involving functions. However, in [4] shows that the
inverse of Theorem 5 holds for set-valued gap function at a proper, efficient solution
under some suitable assumptions. However, the characterization of situations for the

satisfactory of the inverse of Theorem 5 is an important open problem.

Now, we introduce another gap function for the problem (P), in which satisfies in

the converse of Theorem 5.
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Definition 5. For each z € S, £ := (&1,...,&) € cf (z), and X := (A1,...,\p) € RE
with Y7 X = 1, we define:

p
90* (x7§7 )‘) = Supz )\z<§um - y>

ves o1

It is trivial that by using the proof of Theorem 5, if f; for each ¢ = 1,...,p is
c—quasiconvex at xg € S, and if p*(xo, é, A) = 0 for some e 5cf(:v0) and A > 0,, then

xg € E. The proof of the converse of this result needs the following definition.

Definition 6. & € S is said a Karush-Kuhn-Tucker point for problem (P) if there exist
A= (M., 0p) >0, with >°F A =1, and po > 0 for o € A(2), a finite number of

them are nonzero, such that:

P
0> Ndefi (@) + D HaOega (2).
i=1 acA(%)
& € S is said to be strong Karush-Kuhn-Tucker point for problem (P) if the above
inclusion holds for some A := (Ay,...,A;) > 0,. The set of all Karush-Kuhn-Tucker
points (resp. strong Karush-Kuhn-Tucker points) of (P) is denoted by K (resp. SK).

Many authors have studied necessary conditions for optimality of multiobjective
semi-infinite programming; see, for example, [2, 5, 8, 9]. We can formulate these nec-

essary conditions as follows:

JJQEW:>."IIQEIC,

zg € F = 29 € SK.

The above mentioned necessary optimality conditions hold under some assumptions
(same as closedness of cone (Uae Az0) 8Cga(xg)> and\or compactness of index set A)
and suitable constraint qualifications (same as Abadie, or Mangasarian-Fromovitz).
These special conditions differ from paper to paper, and none of them play a role in
proving converse of the Theorem 5, so, naturally, we use zg € K and ¢ € SK in place
of rg € E and zg € W.

Theorem 6. Let oy € K. If g, functions are c-quasiconvex at zq for a € A (xg), then
there exist £ € O.f (x9) and A € R} such that ¢* (x9,£,A) = 0.

Proof. By definition of K, there exist some A := (A1,...,\y) € RY with 7 | A, =1,
and nonnegative fiq,, ..., fa, With {a1,..., 04} € A(zg) ,and & € O.f; (x0) for i =

1,...,p, and (u,, € Ocfa,, (xo) for m =1,..., ¢, such that:

p q
D ik + D pamCom = 0. (6)
=1 m=1
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Let y € S. Then,

9o, (Y) <0 = ga,, (0), Ym=1,...,q.

Thus, according to c-quasiconvexity of g,,, functions
(Cam»y — x0) <0, Ym=1,...,q.

The last inequality and (6) imply that:

p q
> Ailbiy—20) == pra {Cam ¥ — o) > 0.
=1 m=1

Therefore,
> A& w0 —y) <0.
i=1
From this and > ©_; <£Z-, Ty — a:0> = 0, the result is proved. O

As mentioned in Remark 2, the converse of Theorem 5 is not valid in general. The

following example shows this invalidity.

Example 2. Considering the problem that is considered in Example 1. we saw that
zo = (0,0) € E and
@y(% 275) = —a1y1 — a2y2,
for each y = (y1,y2) € S and 51 = (a1,0) and ég = (0, a2) with a1, a2 € (0,2]. Hence,
90(900,300, (él7€2)> = sup{ — a1Yy1 — ay2 ! Y1 +y2 < 0}~

Since ay,as > 0, taking y; < 0 and ys < 0, implies that:
@(960,5007 (éth)) > 0.
In a similar way it can be shown that for each (fg, 55) € 0 f(x0) we have

90(%, xo, (5%, 53)) > 0.

The following example summarizes our results.
Example 3. Consider the following problem:
x
r—1 if ze2,+00),
3—z if z€(—0,2)

1
2
min 23 if x € [1,400)

if U (0, 1) {
0 if z€(—00,0]

subject to |z — 3| — 3 < 0.
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ot if (0.1) 1 if ze2,+0)
: x — if x , +00),
In fact, fi(x) = 23 if ze [1,400) , fa(z) = ) , and
) 3—x if z€(—00,2)
0 if z€(—00,0]
gi(z) = |z — 5| — 1. It is easy to check that Oc.f1 (1) = [5,3], dcfa(1) = {-1},
d.g1 (1) = {0}, and A(1) = {1}. Thus, taking ¢ := (1, —1) €d.f(1
(1, 1,5) =0, and so 1 € F by Theorem 5.
On the other hand, since

), we conclude that

0€.f1 (1) + 0efo (1) + Oegr (1),

then 1 € SKC C K by setting Ay = Ao = p; = 1. This fact and Theorem 6 deduce that
(1,5,)\):0for)\.:(, ). O

4 Conclusion

In conclusion, for each z,y € S, z € R™, & € 0.fi(z), and \; > 0 with >°F | A =1, let
P

ZEZ&)\ Z)\lg’u - 7

(33,2,5,)\) —bUPSOy(x z 5 )\>
yes

©, as a generalization of ¢ and ¢*, is a new general form of gap function for (P). In
similar way to Theorems 3, 5, and 6 (apart from some small differences), the following

theorems can be proved:

Theorem 7. Suppose that the f; (for ¢ = 1,...,p) and g, (for a € A(zg)) are

c—quasiconvex functions at xg. Then, the following assertions hold:

(1) 3 € ef(xo), IN> 0y, B(x0,20,E,A) =0 = ¢ € E.

suitable conditions
N

(II) xg € FE ro € SK = Hf S 8cf($0) x> Op, (.%'0,.1’0,5 /\) =0.

Theorem 8. Suppose that the f; (for i = 1,...,p) and g, (for a € A(zg)) are

c—quasiconvex functions at xg. Then, the following assertions hold:
(1) 3¢* € O f(xo), N> 0p, B0, 20, N) =0 = x9€ W.
(IT) @ € W *wheblecanditions o e )& —s 3¢ € Def(wo), IN > 0p, B(wo,70,&, A) = 0.

Theorem 9. Suppose that each f; (fori =1,...,p) is a c—quasiconvex function at x.

Then, the following assertions hold:
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(I) Yy € 5, Hf(y) S 8Cf(330), A > Op, @y(l‘o,ﬂjo,f(y),)\) <0 = z9g€E.

(IT) zg € E = Yy € S(wo), 2™} — g, ™ € 9.f(2(™), YA > 0,, Gy(w0, 2™, 07 N) <
0 Vm € N.

Remark 3. It is easy to show that the condition 3A > 0, in Theorem 8(I) can be
replaced by the weaker condition I\ > 0,, if

¢ #0, = M #£0.
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