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1 Introduction

In this paper, we consider the following multiobjective semi-infinite programming prob-
lem (MSIP):

(P) inf
(
f1(x), f2(x), . . . , fp(x)

)
s.t. gt(x) ≤ 0 t ∈ T, x ∈ Rn,

where fi, i ∈ I := {1, 2, . . . , p} and gt, t ∈ T are locally Lipschitz functions from Rn

to R, and the index set T ̸= ∅ is arbitrary, not necessarily finite. When T is finite, (P )
is a multiobjective optimization problem, and when p = 1 and T is infinite, (P ) is a
semi-infinite optimization problem.

Necessary and sufficient optimality conditions for efficient, weakly efficient, and
isolated efficient solutions of MSIP have been studied by many authors; see for instance
[13, 18] in linear case, [12, 14] in convex case, [5] in smooth case, and [7, 11, 19, 20, 21, 23]
in locally Lipshitz case. In almost all of the mentioned articles, the Karush-Kuhn-
Tucker (KKT) type necessary conditions are justified for MSIPs under some constraint
qualifications, and sufficient conditions are proved under several kinds of generalized
convexity and generalized invexity. We know that the most general generalization of
concept of invexity is (Φ, ρ)−invexity, has been introduced by Caristi et al. in [5, 6] for
smooth functions. Antczak and his coauthor presented the concept of (Φ, ρ)−invexity
for nonsmooth functions [1, 2], and Kanzi [19] extended this definition to a wider range
of nonsmooth functions. In the present paper, we will use this most general form of
(Φ, ρ)−invexity.

On the other hand, the gap function for mathematical programming problems has
been studied in various publications in recent years. Hearn [17] introduced a gap
function for scalar convex optimization problems. Chen et al. [9] investigated a gap
function for differentiable multiobjective optimization problems. The weak point of the
gap function introduced in [9] is set-valued, i.e., brings a set to any point. Recently,
Caristi et al. [4] can present some scalar-valued gap functions to nonsmooth multiob-
jective problems. Given the complexity of set-valued maps, these new single-valued gap
functions are very useful. The defect gap functions introduced in [4] is that they work
only for problems with convex\quasiconvex data. In the present article, this weakness
will be resolved. For this end, we will define a gap function for nonsmooth MSIP, using
(Φ, ρ)−invexity. Of course, it should be mentioned that, in this study, if we replace
“(Φ, ρ)−invex” by “invex”, the results will still be original which are the extensions of
the existing theorems in mentioned articles.

We organize the paper as follows. In the next section, we provide the preliminary
results to be used in the rest of the paper. In Section 3, we first overview some necessary
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optimality conditions for weakly efficient and efficient solutions, that are presented in
literatures. Then, we state a similar result for properly efficien solutions. In Section 4,
we introduce a new gap function involving (Φ, ρ)−invexity, and present some charac-
terizations for efficient, weakly efficient and properly efficient solutions of MSIP respect
to considered gap function, unlike of other papers that consider separate gap functions
for each kind of efficiency.

2 Preliminaries

In this section, we briefly overview some notions of nonsmooth analysis widely used in
formulations and proofs of main results of the paper. For more details, discussion, and
applications see [8].

As usual, ⟨x, y⟩ stands for the standard inner product x, y ∈ Rn. Given x, y ∈ Rn,
we write x ≤ y (resp. x < y) when x ̸= y and xi ≤ yi (resp. xi < yi) for all i ∈ {1, . . . , n}.
The zero vector of Rn is denoted by 0n.

Given a nonempty set A ⊆ Rn, we denote by A0 and A−, the polar and strictly
polar cones of A, defined respectively by

A0 := {x ∈ Rn | ⟨x, a⟩ ≤ 0, ∀a ∈ A},

A− := {x ∈ Rn | ⟨x, a⟩ < 0, ∀a ∈ A}.

Also, we denote the cotingent tangent cone of A at x̂ ∈ A by T (A, x̂), i.e.,

T (A, x̂) :=
{
v ∈ Rn | ∃tr ↓ 0, ∃vr → v such that x̂+ trvr ∈ A ∀r ∈ N

}
.

Let x̂ ∈ Rn and let φ : Rn → R be a locally Lipschitz function. The Clarke directional
derivative of φ at x̂ in the direction v ∈ Rn, and the Clarke subdifferential of φ at x̂
are respectively given by

φ0(x̂; v) := lim sup
y→x̂, t↓0

φ(y + tv)− φ(y)

t

and
∂cφ(x̂) :=

{
ξ ∈ Rn | ⟨ξ, v⟩ ≤ φ0(x̂; v) for all v ∈ Rn

}
.

The Clarke subdifferential is a natural generalization of the classical derivative since it
is known that when function φ is continuously differentiable at x̂, ∂cφ(x̂) = {∇φ(x̂)}.
Moreover when a function φ is convex, the Clarke subdifferential coincides with ∂φ(x̂),
the subdifferential in the sense of convex analysis, i.e.
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∂φ(x̂) :=
{
ξ ∈ Rn | φ(x) ≥ φ(x̂) +

〈
ξ, x− x̂

〉
∀ x ∈ Rn

}
.

It is worth to observe that ∂cφ(x̂) is a nonempty, convex, and compact subset of Rn.

Theorem 1. Let ϑ1 and ϑ2 be locally Lipschitz functions from Rn to R and x̂ ∈ Rn.
Then,

∂c(αϑ1 + βϑ2)(x̂) ⊆ α∂cϑ1(x̂) + β∂cϑ2(x̂), ∀α, β ∈ R.

3 KKT Type Necessary Conditions

At starting point of this section, we observe that the feasible set of (P ) is denoted by
M , i.e.,

M := {x ∈ Rn | gt(x) ≤ 0, ∀t ∈ T}.

For each x̂ ∈M , set

Fx̂ :=
⋃
i∈I

∂cfi(x̂), and Gx̂ :=
⋃

t∈T (x̂)

∂cgt(x̂),

where, T (x̂) denotes the set of active constraints at x̂,

T (x̂) := {t ∈ T | gt(x̂) = 0}.

There exist different kind of optimality, named efficiency, in multiobjective optimiza-
tion. A feasible point x̂ is said to be efficient solution [resp. weakly efficient solution]
for (P ) if and only if there is no x ∈ M satisfying f(x) ≤ f(x̂) [resp. f(x) < f(x̂)].
As well as in the classical case, the KKT type optimality conditions hold at efficient
and weakly efficient solutions of (P), provided some constraint qualifications (CQ) are
satisfied. For example, Kanzi [20] emphasized on weakly efficiency, and introduced the
CCQ as,

Definition 1. Let x̂ ∈ S. We say that (P) satisfies the Cottle constraint qualification
(CCQ, in brief) at x̂, if J is a compact subset of Rp, and the function (x, t) → gt(x) is
upper semicontinuous on Rn × T , and ∂cgt(x) is an upper semicontinuous mapping in
t for each x, and (Gx̂)

− ̸= ∅.

Then, following KKT type theorem is proved in [20, Theorem 3.6].

Theorem 2. (KKT Necessary Condition) Let x̂ ∈M be a weakly efficient solution of
(P) and CCQ holds at x̂. Then there exist αi ≥ 0 (for i ∈ I) with

∑m
i=1 αi = 1, and

βt ≥ 0 (for t ∈ T (x̂)) with βt ̸= 0 for at most finitely many indices, such that

0 ∈
p∑

i=1

αi∂cfi(x̂) +
∑

t∈T (x̂)

βt∂cgt(x̂).
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Caristi and Kanzi [7] considered the efficient solutions of (P), considered a Meda
type CQ as,

(MCQ): (Fx̂)
0 ∩ (Gx̂)

0 ⊆
p⋂

i=1

T (Qi, x̂),

where, Qi(x̂) :=
{
x ∈M | fl(x) ≤ fl(x̂) ∀l ∈ I \ {i}

}
, and in [7, Theorem 3.3] proved

the strong KKT type result as follows.

Theorem 3. (Strong KKT Necessary Condition). Let x̂ be an efficient solution of (P).
If in addition, (MCQ) and the condition

(Fx̂)
0 \ {0n} ⊆

p⋃
i=i

(
∂cfi(x̂)

)−
, (1)

hold at x̂, then there exist scalars αi > 0, i ∈ I, and an integer k ≥ 0, and a set
{t1, t2, . . . , tk} ⊆ T (x̂), and scalars βtr ≥ 0 for r ∈ {1, 2, . . . , k}, such that

0 ∈
p∑

i=1

αi∂cfi(x̂) +

k∑
r=1

βtr∂cgtr(x̂).

Also, Kanzi in [19, Theorem 3] (resp. [19, Theorem 4]) presented the KKT (resp.
strong KKT) condition under Zangwill (resp. strong Zangmill) CQ, that introduced
there.

Everywhere in the above, we consider the efficiency and weakly efficiency for (P).
Proper efficiency is a very important notion used in studying multiobjective optimiza-
tion problems. There are many definitions of proper efficiency in literature, as those
introduced by Geoffrion, Benson, Borwein, and Henig; see [16] for a comparison among
the main definitions of this notion. We recall the following definition from [15, pp.
110].

Definition 2. A point x̂ ∈M is called a properly efficient solution of (P ) when there
exists a λ > 0p such that

⟨λ, f(x̂)⟩ ≤ ⟨λ, f(x)⟩, ∀x ∈M.

As proved in [10, Section 3], the above definition of proper efficiency is weaker than
its other definitions (under some assumed conditions). The following theorem gives us
a strong KKT condition for properly efficient solutions of (P).

Theorem 4. (Strong KKT Necessary Condition) Let x̂ be a properly efficient solution
of (P ), and CCQ holds at x̂. Then, there exist αi > 0 (for i ∈ I) with

∑p
i=1 αi = 1,

and βt ≥ 0, (for t ∈ T (x̂)), with βt ̸= 0 for finitely many indexes, such that

0 ∈
p∑

i=1

αi∂cfi(x̂) +
∑

t∈T (x̂)

βt∂cgt(x̂).
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Proof. By the definition of proper efficiency, there exist some scalars λi > 0 (for i ∈ I)
such that

p∑
i=1

λifi(x̂) ≤
p∑

i=1

λifi(x), ∀x ∈M.

This means that x̂ is a minimizer of the following scalar semi-infinite problem:

min
x∈M

p∑
i=1

λifi(x).

Applying Theorem 2, we get

0n ∈ τ∂c

( p∑
i=1

λifi(·)
)
(x̂) +

∑
t∈T (x̂)

µt∂cgt(x̂), (2)

for some τ > 0 and µt ≥ 0, (t ∈ T (x̂)), with µt ̸= 0 for finitely many indexes. Since
Theorem 1 guaranties that

∂c

( p∑
i=1

λifi(·)
)
(x̂) ⊆

p∑
i=1

λi∂cfi(x̂),

(2) concludes that

0n ∈ τ

p∑
i=1

λi∂cfi(x̂) +
∑

t∈T (x̂)

µt∂cgt(x̂).

Dividing both sides of above inclusion to τ
∑p

i=1 λi, we conclude that

0n ∈
p∑

i=1

λi∑p
i=1 λi

∂cfi(x̂) +
∑

t∈T (x̂)

µt
τ
∑p

i=1 λi
∂cgt(x̂). (3)

For each i ∈ I and t ∈ T (x̂) take

αi :=
λi∑p
i=1 λi

, and βt :=
µt

τ
∑p

i=1 λi
.

Since
∑p

i=1 αi = 1, (3) completes the proof.

We illustrate the application of Theorem 4 by an example.

Example 1. Consider the following problem:

inf
(
x1, x2

)
s.t. (cos t)x1 + (sin t)x2 ≤ 0, t ∈

[
π,

3π

4

]
.

It is easy to check that
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M = {(x1, x2) ∈ R2 | x21 + x22 ≤ 1}+ {(x1, x2) ∈ R2 | x1 ≥ 0, x2 ≥ 0}.

We consider the feasible point x̂ = (cosα, sinα) for some α ∈
(
π, 3π4

)
.

Since f1(x1, x2) = x1, f2(x1, x2) = x2, gt(x1, x2) = (cos t)x1+(sin t)x2, and T =
[
π, 3π4

]
,

we get

T (x̂) = {α}, Gx̂ = {(cosα, sinα)}, Fx̂ = {(1, 0), (0, 1)}.

Therefore, according to Theorem 4, we conclude x̂ is a properly efficient solution for
the problem.

4 Characterization via gap function

This section is started by a definition from [19].

Definition 3. Suppose that the functions Φ : Rn×Rn×Rn×R → R and ρ : Rn×Rn →
R, and the nonempty set X ⊆ Rn are given. A locally Lipschitz function ℏ : Rn → R
is said to be (Φ, ρ)−invex at x∗ ∈ X with respect to X, if for each x ∈ X one has:

Φ
(
x, x∗, 0n, r

)
≥ 0 for all r ≥ 0, (4)

Φ(x, x∗, ., .) is convex on Rn × R, (5)
Φ
(
x, x∗, ξ, ρ(x, x∗)

)
≤ ℏ(x)− ℏ(x∗), ∀ξ ∈ ∂cℏ(x∗). (6)

Notice that this definition is more general that [1, Definition 4] and [2, Definition
6], since there considered ρ are real number and here is a function. Everywhere in the
following, we will assume X equals to feasible solution of (P ), i.e., X =M , but for the
sake of simplicity we will omit to mention X.

Since 1982, an important function respect to convex optimization problems was
defined by Hearn [17]. As mentioned in introduction, all existing literatures the gap
function was defined for optimization programming with convex or quasiconvex data.
Now, we define the gap function for nonsmooth MSIPs with (Φ, ρ)-invex functions.

Definition 4. Suppose that the fi functions are (Φ, ρi)-invex at x ∈M . For each

ξ := (ξ1, . . . , ξp) ∈
p∏

i=1

∂cfi(x) and λ := (λ1, . . . , λp) ≥ 0p with
p∑

i=1

λi = 1,

the gap function of problem (P ) is defined as

Υ(x, ξ, λ) := inf
y∈M

{
p∑

i=1

λiΦ(y, x, ξi, ρi(y, x))

}
.



A General Scalar-Valued Gap Function ... / COAM, 3(2), Autumn-Winter 201820

It is worth mentioning that all the gap functions considered in [7, 9, 12, 17] are
special cases of above gap function. At the rest of this section, we will characterize
efficient, weakly efficient, and properly efficient solutions of (P) utilizing Υ(x, ξ, λ).

Theorem 5. Let the fi function be (Φ, ρi)-invex at x̂ ∈M for each i ∈ I.

(a) If Υ(x̂, ξ̂, λ̂) = 0 for some ξ̂ := (ξ̂1, . . . , ξ̂p) ∈
∏p

i=1 ∂cfi(x̂) and λ̂ := (λ̂1, . . . , λ̂p) ≥
0p with

∑p
i=1 λ̂i = 1, then x̂ is a weak efficient solution for (P ).

(b) If Υ(x̂, ξ̂, λ̂) = 0 for some ξ̂ := (ξ̂1, . . . , ξ̂p) ∈
∏p

i=1 ∂cfi(x̂) and λ̂ := (λ̂1, . . . , λ̂p) >

0p with
∑p

i=1 λ̂i = 1, then x̂ is an efficient solution for (P ).

Proof. (a) By contradiction assume that Υ(x̂, ξ̂, λ̂) = 0 while x̂ is not a weak efficient
solution for (P ). Then, we can find a feasible point x0 ∈ M such that fi(x0) < fi(x̂)

for all i ∈ I. Thus, the (Φ, ρi)-invexity of fi functions implies that

Φ
(
x0, x̂, ξ̂i, ρi(x0, x̂)

)
≤ fi(x0)− fi(x̂) < 0, ∀i ∈ I. (7)

On the other hand, since λ̂ ≥ 0p, then there exists an index k ∈ I such that

λ̂k > 0, and λ̂i ≥ 0 ∀i ∈ I \ {k}. (8)

Clearly, (7) and (8) imply

λ̂kΦ
(
x0, x̂, ξ̂k, ρk(x0, x̂)

)
< 0, and λ̂iΦ

(
x0, x̂, ξ̂i, ρi(x0, x̂)

)
≤ 0 ∀i ∈ I \ {k}.

Hence,
p∑

i=1

λ̂iΦ
(
x0, x̂, ξ̂i, ρi(x0, x̂)

)
< 0,

which consequences that Υ(x̂, ξ̂, λ̂) < 0. This contradiction completes the proof. (b) If
Υ(x̂, ξ̂, λ̂) = 0 while x̂ is not an efficient solution for (P ), there exist some x0 ∈M and
some index k ∈ I such that

fi(x0) ≤ fi(x̂), ∀i ∈ I, and fk(x0) < fk(x̂).

According to the above inequalities, the (Φ, ρi)-invexity of fi functions, and the as-
sumption of λ̂ > 0p, we get

p∑
i=1

λ̂iΦ
(
x0, x̂, ξ̂i, ρi(x0, x̂)

)
≤

p∑
i=1

λ̂i (fi(x0)− fi(x̂)) < 0.

So, Υ(x̂, ξ̂, λ̂) < 0, which contradicts the assumption.
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Since properly efficientcy is stronger than weakly efficiency and efficiency, the fol-
lowing sufficient condition needs some assumptions which are stronger than Theorem
4, containing equality of ρi functions for each i ∈ I.

Theorem 6. Suppose that for each i ∈ I, the fi function is (Φ, ρ)-invex at x̂ ∈ M .
If there exists a ξ̂ := (ξ̂1, . . . , ξ̂p) ∈

∏p
i=1 ∂cfi(x̂) such that Υ(x̂, ξ̂, λ) = 0 for all λ :=

(λ1, . . . , λp) > 0p with
∑p

i=1 λi = 1, then x̂ is a proper efficient solution for (P ).

Proof. If x̂ is not a proper efficient solution for (P ), we can find some x0 ∈ M and
λ∗ := (λ∗1, . . . , λ

∗
p) > 0p such that

p∑
i=1

λ∗i fi(x0) <

p∑
i=1

λ∗i fi(x̂).

Taking λ̃i := λ∗
i∑p

i=1 λ
∗
i
, we conclude that

∑p
i=1 λ̃i = 1, and

p∑
i=1

λ̃ifi(x0) <

p∑
i=1

λ̃ifi(x̂). (9)

We claim that
∑p

i=1 λ̃ifi is a (Φ, ρ)−invex function at x̂. Suppose that ζ ∈
∑p

i=1 λ̃i∂cfi(x̂)

is given. It is enough to show that

Φ
(
x, x̂, ζ, ρ(x, x̂)

)
≤

p∑
i=1

λ̃ifi(x)−
p∑

i=1

λ̃ifi(x̂), ∀x ∈M. (10)

For this end, we recall from Theorem 1 that ζ =
∑p

i=1 λ̃iζi for some ζi ∈ ∂cfi(x̂). The
(Φ, ρ)−invexity of fi functions at x̂ and the convexity of Φ(x, x̂, ., .) imply that

Φ
(
x, x̂, ζ, ρ(x, x̂)

)
= Φ

(
x, x̂,

p∑
i=1

λ̃iζi,

p∑
i=1

λ̃iρ(x, x̂)
)

≤
p∑

i=1

λ̃iΦ
(
x, x̂, ζi, ρ(x, x̂)

)
≤

p∑
i=1

λ̃i
(
f(x)− f(x̂)

)
=

p∑
i=1

λ̃ifi(x)−
p∑

i=1

λ̃ifi(x̂).

Thus, (10) is proved. Now, (9) and the (Φ, ρ)−invexity of
∑p

i=1 λ̃ifi at x̂ conclude that
p∑

i=1

λ̃iΦ
(
x0, x̂, ξ̂i, ρ(x0, x̂)

)
≤

p∑
i=1

λ̃ifi(x0)−
p∑

i=1

λ̃ifi(x̂) < 0.

This means Υ(x̂, ξ̂, λ̃) < 0, which contradicts the assumption.

The following new definition will be required in the sequel.
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Definition 5. A locally Lipschitz function ℏ : Rn → R is said to be “symmetric
(Φ, ρ)-invex” at x̃ ∈ Rn if

• ℏ is (Φ, ρ)-invex at x̃,

• Φ(x̃, x̃, ξ, ρ(x̃, x̃)) = 0 for all ξ ∈ ∂cℏ(x̃).

ℏ(.) is said to be symmetric (Φ, ρ)-invex, if it is symmetric (Φ, ρ)-invex at each point
in its domain.

We recall from [23] that for r-convex (r ∈ R+) functions we have ρ(x, y) := r and

Φ
(
x, y, ξ, ρ

)
= ⟨ξ, y − x⟩+ r∥x− y∥2.

So, r-convex functions are symmetric (Φ, ρ)-invex. Also, the skew invex functions,
which are defined in [22], are examples for nonconvex symmetric (Φ, ρ)-invex functions.
The following example shows that a symmetric (Φ, ρ)-invexity function does not need
to be invex.

Example 2. Consider a function Φ : R× R× R× R → R defined by

Φ(x, y, u, w) :=


− u

3y2
|x3 − y3| if y ̸= 0,

w|x3| if y = 0.

Let x and y be arbitrary elements of R. Since Φ(x, y, ., .) is a linear function and

Φ(x, y, 0, r) =

{
0 if y ̸= 0,

r|x3| if y = 0,

the conditions (12) and (26) hold. Take ρ(x, y) := −1 for all x, y ∈ R, and ℏ(x) := x3.
Since ℏ(.) is continuously differentiable on R, then ∂cℏ(y) = {3y2}. Now, owing to

Φ(x, y, 3y2,−1) =

{
−|x3 − y3| if y ̸= 0,

−|x3| if y = 0,

≤ x3 − y3 = ℏ(x)− ℏ(y),

we understand that ℏ(.) is a (Φ, ρ)−invex function at each y ∈ R with respect to R.
Also, th equality of

Φ(y, y, 3y2,−1) = 0,

shows that ℏ(.) is a symmetric (Φ, ρ)−invex function at each y ∈ R. Furthermore, as
it follows by [3, Theorem 1], ℏ(.) is not an invex function on R.
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Theorem 7. Let x̂ ∈ M be a weakly efficient solution of (P) and CCQ holds at x̂.
Suppose that for each i ∈ I the fi function is symmetric (Φ, ρi)-invex at x̂, and for each
t ∈ T (x̂) the gt function is (Φ, ρt)-invex at x̂, satisfying

ρr(y, x̂) ≥ 0, ∀r ∈ I ∪ T (x̂), ∀y ∈M. (11)

Then, there exist ξ := (ξ1, . . . , ξp) ∈
∏p

i=1 ∂cfi(x̂) and λ := (λ1, . . . , λp) ≥ 0p with∑p
i=1 λi = 1, such that Υ(x̂, ξ, λ) = 0.

Proof. According to Theorem 2, we can find some λi ≥ 0 and ξi ∈ ∂cfi(x̂) (for i ∈ I)
with

∑p
i=1 λi = 1, a finite subset T ∗ for T (x̂), some µt ≥ 0 and ζt ∈ ∂cgt(x̂) (for t ∈ T ∗),

such that ∑
i∈I

λiξi +
∑
t∈T ∗

µtζt = 0n. (12)

For each (i, t) ∈ I × T ∗ set

λ̂i :=
λi

1 +
∑

t∈T ∗ µt
, and µ̂t :=

µt
1 +

∑
t∈T ∗ µt

.

Assume that t ∈ T ∗ and y ∈ M are arbitrarily chosen. Since T ∗ ⊆ T (x̂), the (Φ, ρt)-
invexity of gt implies that

gt(y) ≤ 0 = gt(x̂) =⇒ Φ
(
y, x̂, ζt, ρt(y, x̂)

)
≤ 0, ∀y ∈M.

So, by µ̂t ≥ 0 (for t ∈ T ∗), we get∑
t∈T ∗

µ̂tΦ
(
y, x̂, ζt, ρt(y, x̂)

)
≤ 0, ∀y ∈M. (13)

On the other hand, Definition 3, (11) and (12) conclude that

0 ≤ Φ
(
y, x̂, 0n,

∑
i∈I

λ̂iρi(y, x̂) +
∑
t∈T ∗

µ̂tρt(y, x̂)
)

= Φ
(
y, x̂,

∑
i∈I

λ̂iξi +
∑
t∈T ∗

µ̂tζt,
∑
i∈I

λ̂iρi(y, x̂) +
∑
t∈T ∗

µ̂tρt(y, x̂)
)
nonumber (14)

≤
∑
i∈I

λ̂iΦ
(
y, x̂, ξi, ρi(y, x̂)

)
+
∑
t∈T ∗

µ̂tΦ
(
y, x̂, ζt, ρt(y, x̂)

)
, (15)

where (15) is implied by
∑

i∈I λ̂i+
∑

t∈T ∗ µ̂t = 1 and convexity of Φ(y, x̂, ., .). Combining
the last inequality and (13), yields∑

i∈I
λ̂iΦ

(
y, x̂, ξi, ρi(y, x̂)

)
≥ 0 =⇒

∑
i∈I

λiΦ
(
y, x̂, ξi, ρi(y, x̂)

)
≥ 0, ∀y ∈M. (16)

Since the symmetric (Φ, ρi)-invexity of fi functions at x̂ concludes
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∑
i∈I

λiΦ
(
x̂, x̂, ξi, ρi(x̂, x̂)

)
= 0,

the inequality (16) deduces that

Υ(x̂, ξ, λ) = inf
y∈M

{
p∑

i=1

λiΦ
(
y, x̂, ξi, ρi(y, x̂)

)}
= 0,

as requested.

Applying Theorems 3 and 4, and repeating the proof of Theorem 7, we can state
the following theorem for efficient and properly efficient solutions of (P ), respectively.

Theorem 8. Assume that x̂ ∈M is an efficient solution of (P), the (MCQ) is satisfied
at x̂, and (1) holds. Suppose that for each i ∈ I the fi function is symmetric (Φ, ρi)-
invex at x̂, and for each t ∈ T (x̂) the gt function is (Φ, ρt)-invex at x̂, satisfying (11).
Then, there exist ξ := (ξ1, . . . , ξp) ∈

∏p
i=1 ∂cfi(x̂) and λ := (λ1, . . . , λp) > 0p with∑p

i=1 λi = 1, such that Υ(x̂, ξ, λ) = 0.

Theorem 9. Suppose that x̂ is a properly efficient solution for (P ) and CCQ holds at
x̂. Suppose that for each i ∈ I the fi function is symmetric (Φ, ρi)-invex at x̂, and for
each t ∈ T (x̂) the gt function is (Φ, ρt)-invex at x̂, satisfying (11). Then, there exist
ξ := (ξ1, . . . , ξp) ∈

∏p
i=1 ∂cfi(x̂) and λ := (λ1, . . . , λp) > 0p with

∑p
i=1 λi = 1, such that

Υ(x̂, ξ, λ) = 0.

We note that the difference between the Theorem7 with Theorems 8 and 9 is that
in the first we have λ ≥ 0p, whereas in the latter ones we have λ > 0p. Also, it is worth
mentioning that the presented results generalize

5 Conclusion

In this paper, we considered the class of nonsmooth multiobjective optimization prob-
lems with arbitrary many constraints. We proved a Karush-Kuhn-Tucker type optimal-
ity condition for properly efficient solutions of the problems. We introduced a new gap
function that can characterizes efficient, weakly efficient, and properly efficient solutions
the problem, under (Φ, ρi)-invexity and symmetric (Φ, ρi)-invexity assumptions.
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چکیده

تابع می شود تعریف قید بینهایت تعداد توسط که همواری غیر هدفه چند ریزی برنامه مسئله یک برای مقاله این در ما
سره کارایی و ضعیف کارایی کارایی، ما آنگاه است. دیگر مقالات در مفهوم این تعمیم که می کنیم معرفی را جدیدی شکاف
اینوکس −Φ, ρ توابع مفهوم مبنای بر ما مفاهیم تمام می کنیم سازی مشخص جدید شکاف تابع این توسط را فوق مسئله

گشته اند. تنظیم کلارک مشتق زیر و

کلیدی کلمات

شکاف. تابع بهینگی، شرایط محدود، کیفیت چندهدفه، سازی بهینه نامتناهی، نیمه ریزی برنامه
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