[1] R. Franke, Scattered data interpolation: test of some methods, Math. Comput. 38 (1982) 181–200.
[2] E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (1990) 127–145.
[3] E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990) 147–161.
[4] M. Sharan, E. J. Kansa, S. Gupta, Application of the multiquadric method for numerical solution of elliptic partial differential equations, Appl. Math. Comput. 84 (1997) 275–302.
[5] H. P. M. Zerroukat, C. Chen, A numerical method for heat transfer problems using collocation and radial basis functions, Int. J. Numer. Meth. Eng. 42 (1998) 1263–1278.
[6] N. Mai-Duy, T. Tran-Cong, Numerical solution of differential equations using multiquadric radial basis function networks, Neural Networks 14 (2001) 185–199.
[7] M. Tatari, M. Dehghan, A method for solving partial differential equations via radial basis functions: Application to the heat equation, Eng. Anal. Bound. Elem. 34 (2010) 206–212.
[8] M. Dehghan, A. Shokri, Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math. 230 (2009) 400–410.
[9] M. Mai-Duy, T. Tran-Cong, An integrated-RBF technique based on Galerkin formulation for elliptic differential equations, Eng. Anal. Bound. Elem. 33 (2009) 191–199.
[10] N. Mai-Duy, Solving high order ordinary differential equations with radial basis function networks, Int. J. Numer. Meth. Eng. 62 (2005) 824–852.
[11] M. Dehghan, M. Tatari, Use of radial basis functions for solving the second-order parabolic equation with nonlocal boundary conditions, Numer. Meth. Part. D. E. 24 (2008) 924–938.
[12] S. Kazem, J. A. Rad, Radial basis functions method for solving of a non-local boundary value problem with neumann’s boundary conditions, Appl. Math. Modell. 36 (2012) 2360– 2369.
[13] S. Kazem, J. A. Rad, K. Parand, Radial basis functions methods for solving Fokker-Planck equation, Eng. Anal. Bound. Elem. 36 (2012) 181–189.
[14] J. A. Rad, S. Kazem, K. Parand, Radial basis functions approach on optimal control problems: a numerical investigation, Journal of Vibration and Control 20 (9) (2014) 1394–1416.
[15] J. A. Rad, K. Parand, S. Kazem, A numerical investigation to viscous flow over nonlinearly stretching sheet with chemical reaction, heat transfer and magnetic field, International Journal of Applied and Computational Mathematics 3 (2) (2017) 919–935.
[16] S. Kazem, J. Rad, K. Parand, M. Shaban, H. Saberi, The numerical study on the unsteady flow of gas in a semi-infinite porous medium using an RBF collocation method, International Journal of Computer Mathematics 89 (16) (2012) 2240–2258.
[17] K. Parand, S. Abbasbandy, S. Kazem, J. A. Rad, A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 4250–4258.
[18] S. Kazem, J. A. Rad, K. Parand, A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions: A comparative study, Comput. Math. Appl. 64 (2012) 399–412.
[19] J. A. Rad, S. Kazem, K. Parand, A numerical solution of the nonlinear controlled duffing oscillator by radial basis functions, Comput. Math. Appl. 64 (2012) 2049–2065.
[20] M. Dehghan, A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Bound. Elem. 34 (2010) 51–59.
[21] N. Mai-Duy, D. Ho-Minh, T. Tran-Cong, A Galerkin approach incorporating integrated radial basis function networks for the solution of 2d biharmonic equations, Int. J. Com. Math. 86 (2009) 1746–1759.
[22] K. Parand, S. Abbasbandy, S. Kazem, A. Rezaei, Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium, Commun. Nonlinear. Sci. Numer. Simul. 16 (2011) 1396–1407.
[23] S. Kazem, F. Hadinejad, PROMETHEE technique to select the best radial basis functions for solving the 2-dimensional heat equations based on Hermite interpolation, Eng. Anal.
Bound. Elem. 50 (2015) 29–38.
[24] S. Kazem, A. Hatam, A modification on strictly positive definite RBF-DQ method based on matrix decomposition, Engineering Analysis with Boundary Elements 76 (2017) 90–98.
[25] S. Kazem, E. A. Chadwick, A. Hatam, Making conditionally negative definite radial basis function interpolation well-conditioned by adding cardinal basis functions, Ain Shams Engineering Journal.
[26] R. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 176 (1971) 1905–1915.
[27] W. R. Madych, S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988) 77–89.
[28] M. D. Buhmann, Radial basis functions, Acta Numerica (2000) 1–38.
[29] M. D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press, New York, 2004.
[30] S. Rippa, An algorithm for selecting a good parameter c in radial basis function interpolation, Advan. Comp. Math. 11 (1999) 193–210.
[31] A. H. D. Cheng, M. A. Golberg, E. J. Kansa, Q. Zammito, Exponential convergence and H-c multiquadric collocation method for partial differential equations, Numer. Meth. Part. D. E. 19 (2003) 571–594.
[32] R. E. Carlson, T. A. Foley, The parameter R2 in multiquadric interpolation, Comput. Math. Appl. 21 (1991) 29–42.
[33] A. E. Tarwater, A parameter study of Hardy’s multiquadric method for scattered data interpolation, Report UCRL-53670, Lawrence Livermore National Laboratory, 1985.
[34] G. Fasshauer, J. Zhang, On choosing ”optimal” shape parameters for RBF approximation, Numer. Algorithms 45 (2007) 346–368.
[35] H. Wendland, Scattered Data Approximation, Cambridge University Press, New York, 2005.
[36] Y. Zhang, Z. P. Fan, Y. Liu, A method based on stochastic dominance degrees for stochastic multiple criteria decision making, Comput. Ind. Eng. 58 (2010) 544–552.
[37] C. B. Cheng, Solving a sealed-bid reverse auction problem by multiple criterion decision-making methods, Comput. Math. Appl. 56 (2008) 3261–3274.
[38] T. H. Chang, T. C. Wang, Using the fuzzy multi-criteria decision-making approach for measuring the possibility of successful knowledge management, Inform. Sciences. 179 (2009) 355–370.
[39] V. F. Yu, K. J. Hu, An integrated fuzzy multi-criteria approach for the performance evaluation of multiple manufacturing plants, Comput. Ind. Eng. 58 (2010) 269–277.
[40] R. U. Bilsel, G. Bu¨yu¨ko¨zkan, D. Ruan, A fuzzy preference-ranking model for a quality evaluation of hospital web sites, Int. J. Intell. Syst. 21 (2006) 1181–1197.
[41] D. Bouyssou, remarks on the notion of compensation in MCDM, Eur. J. Oper. Res. 26 (1986) 150–160.
[42] T. Gal, T. Hanne, Nonessential objectives within network approaches for MCDM, Eur. J. Oper. Res. 168 (2006) 584–592.
[43] R. Narasimhan, S. K. Vickery, An experimental evaluation of articulation of preferences in multiple criterion decision-making (MCDM) methods, Decision Sci. 19 (1988) 880–888.
[44] H. J. Shyur, H. Shih, A hybrid MCDM model for strategic vendor selection, Math. Comput. Modell. 44 (2006) 749–761.
[45] S. Wadhwa, J. Madaan, F. T. S. Chan, Flexible decision modeling of reverse logistics system: A value-adding MCDM approach for alternative selection, Robot. Cim-Int. Manuf. 25 (2009) 460–469.
[46] J. Ignatiusa, S. M. H. Motlagh, M. M. Sepehri, M. Behzadian, A. Mustafa, Hybrid models in decision making under uncertainty: The case of training provider evaluation, J. Intell. Fuzzy. Syst. 20 (2009) 1–16.
[47] F. Mirzazadeh, F. Hadinejad, N. A. Roshan, Investigating utility level of waste disposal methods using multicriteria decision-making techniques (case study: Mazandaran-Iran), Journal of Material Cycles and Waste Management 20 (1) (2018) 505–515.
[48] F. Hadinejad, M. Ghasemi, M. Ahmadi, Proposing a new model for the performance assessment of students through utilizing 360-degree feedback (case study: Performance assessment of the students of Imam Ali military university), Military Management 16 (63) (2016) 1–33.
[49] F. Mirzazadeh, F. Hadinejad, Applying fuzzy AHP technique in waste disposal method selection (Case study: Mazandaran province), waste management, A glance at the world II, 38 (2015).
[50] M. Moradian, F. Hadiynejad, A. Poormanafi, Providing a model for assessing and analyzing the military power of countries, Defence Studies 16 (4) (2018) 169–200.
[51] M. Goumas, V. Lygerou, An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects, Eur. J. Oper. Res. 123 (2000) 606–613.
[52] J. Geldermann, T. Spengler, O. Rentz, Fuzzy outranking for environmental assessment, Fuzzy. Set. Syst. 115 (2000) 45–65.
[53] M. Goumas, V. Lygerou, An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects, Eur. J. Oper. Res. 123 (2000) 606–613.
[54] M. Behzadian, R. B. Kazemzadeh, A. Albadvi, M. Aghdasi, PROMETHEE: A comprehensive literature review on methodologies and applications, Eur. J. Oper. Res. 200 (2010) 198–215.
[55] S. Balli, B. Karasulu, S. Korukoglu, En uygun otomobil seffimi problemi iffin bir bulanik PROMETHE yo¨ntemi uygulamasi, DE.U¨ IIBF Dergisi 22 (2007) 139–147.
[56] E. Georgopoulou, Y. Sarafidis, D. Diakoulaki, Design and implementation of a group DSS for sustaining renewable energies exploitation, Eur. J. Oper. Res. 109 (1998) 483–500.
[57] J. G. Iniestra, J. G. Gutiffrrez, Multicriteria decisions on interdependent infrastructure transportation projects using an evolutionary-based framework, Appl. Soft Comput. 9 (2009) 512–552.
[58] H. S. Mohamadabadi, G. Tichkowsky, A. Kumar, Development of a multicriteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles, Energy 34 (2009) 112–125.
[59] T. Briggs, P. L. Kunsch, B. Mareschal, Nuclear waste management: An application of the multicriteria PROMETHEE methods, Eur. J. Oper. Res. 44 (1990) 1–10.
[60] W. C. Chou, W. T. Lin, C. Lin, Application of fuzzy theory and PROMETHEE technique to evaluate suitable ecotechnology method: A case study in Shihmen Reservoir Watershed, Taiwan, Ecol. Eng. 31 (2007) 269–280.
[61] A. Albadvi, S. K. Chaharsooghi, A. Esfahanipour, Decision making in stock trading: An application of PROMETHEE, Eur. J. Oper. Res. 177 (2007) 673–683.
[62] G. Baourakis, M. Doumpos, N. Kalogeras, C. Zopounidis, Multicriteria analysis and assessment of financial viability of agribusinesses: The case of marketing co-operatives and juice-producing companies, Agribusiness 18 (2002) 543–558.
[63] G. Zhang, Y. Ni, J. Churchill, S. Kokot, Authentication of vegetable oils on the basis of their physical-chemical properties with the aid of chemometrics, Talanta 70 (2006) 293–300.
[64] B. Rekiek, P. de Lit, A. Delchambre, Hybrid assembly line design and user’s preferences, Int. J. Prod. Res. 40 (2002) 1095–1111.
[65] F. Hadinejad, A. Ramzi, M. Khajeh, Evaluation and comparison of multi-objective meta innovative algorithms for solving the problem of optimization of the production design (case study: Optimum design of military equipment), Military Management 17 (68) (2018) 128–163.
[66] P. Azimi, F. Hadinejad, A multi-objective optimization model for redundancy allocation problem in reparable systems using multi-criteria decision making, industrial management studies 14 (2016) 137–162.
[67] K. Hyde, H. Maier, C. Colby, Incorporating uncertainty in the PROMETHEE MCDA method, J. Multi-Criteria Dec. Anal. 12 (2003) 245–259.
[68] G. D’Avignon, B. Mareschal, An application of the Promethee and GAIA methods, Math. Comput. Model. 12 (1989) 1393–1400.
[69] P. D. Bois, J. P. Brans, F. C. B. Mareschal, MEDICIS: An expert system for computer-aided diagnosis using the PROMETHEE multicriteria method. case study: Iron and steel making industry, Eur. J. Oper. Res. 39 (1989) 284–292.
[70] D. L. Olson, Comparison of three multicriteria methods to predict known outcomes, Eur.
J. Oper. Res. 130 (2001) 576–587.
[71] M. Amiri, F. Hadinejad, S. a. Malekkhoyan, Evaluation and prioritization of suppliers adopting a combined approach of entropy, analytic hierarchy process, and revised Promethee (case study: Youtab company), Journal of Operational Research and Its Applications 14 (2017) 1–20.
[72] F. Hadinejad, Designing a model for evaluation of information technology projects contractors, Resource management in police 17 (2017) 236–264.
[73] C. Macharis, J. S. K. de Brucker A. Verbeke, Promethee and AHP: the design of operational synergies in multicriteria analysis, Strengthening PROMETHEE with ideas of AHP, Eur. J. Oper. Res. 153 (2004) 307–317.
[74] M. A. Golberg, Some recent results and proposals for the use of radial basis functions in the BEM, Eng. Anal. Bound. Elem. 23 (1999) 285–296.
[75] S. Abbasbandi, K. Parand, S. Kazem, A. Sanaei Kia, A numerical approach on hiemenz flow problem using radial basis functions, International Journal of Industrial Mathematics 5 (1) (2013) 65–73.
[76] G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, Vanderbilt University Press, Nashville, 1997.
[77] Z. Wu, Hermite-Birkhoff interpolation of scattered data by radial basis functions, Approx. Theory 8 (1992) 1–11.
[78] Z. M. Wu, Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs, J. Eng. Math. 19 (2002) 1–12.
[79] R. Schaback, C. Franke, Convergence order estimates of meshless collocation methods using radial basis functions, Adv. Comput. Math. 8 (1998) 381–399.
[80] H. Power, V. Barraco, A comparison analysis between unsymmetric and symmetric radial basis function Collocation methods for the numerical solution of partial differential equations, Comput. Math. Appl. 43 (2002) 551–583.
[81] J. P. Brans, B. H. Vincke, B. Mareschal, How to select and how to rank projects: the PROMETHEE method, Eur. J. Oper. Res. 24 (1986) 228–238.
[82] M. Goumas, V. Lygerou, An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects, Eur. J. Oper. Res. 123 (2000) 606–613.
[83] C. Chareonsuk, N. Nagarur, M. T. Tabucanon, A multicriteria approach to the selection of preventive maintenance intervals, Eur. J. Oper. Res. 49 (1997) 55–64.
[84] M. D. Deviren, Decision making in equipment selection: An integrated approach with AHP and PROMETHEE, J. Intell. Manuf. 19 (2008) 397–406.
[85] J. P. Brans, B. Mareschal, How to decide with PROMETHEE, J. Intell. Manuf. 19 (1998) 397–406.
[86] J. P. Brans, P. H. Vincke, A preference ranking organization method, Manage. Sci. 31 (1985) 647–656.