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1 Introduction

We consider the following multiobjective mathematical programming with vanishing constraints
(MMPVC in brief):

MMPVC : min
x∈Ω

F (x) := (f1(x), . . . , fp(x)),

Ω :=
{
x ∈ Rn | Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i ∈ I

}
, (1)

where, the considered functions fj (for j ∈ J := {1, . . . , p}), Hi (for i ∈ I := {1, . . . ,m}), and
Gi (for i ∈ I) are convex, not necessarily differentiable, and defined from Rn to R.

If p = 1, then MMPVC reduces to “mathematical programming with vanishing constraints”
(MPVC) which were introduced by Kanzow and his coauthors in 2007 [1, 9]. After defining
the MPVC, finding the optimality conditions, named stationary conditions, for it become an
interesting subject for some researchers; see [7, 8, 9, 13] in smooth case and [10, 11] in nonsmooth
case).

If Gi(x) = 0 for i ∈ I, the MMPVC coincides to classical multiobjective programming
problem which is an important field in optimization theory. Also, the MMPVC is a direct
generalization for the following “mathematical problem with equilibrium constraints” (MPEC),
considered in a lot of papers (see [14, 16] and their references):

min F (x)

s.t. Hi(x) ≥ 0, Gi(x) ≥ 0, i ∈ I,

Gi(x)Hi(x) = 0, i ∈ I.

To the best of our knowledge, there is no work available dealing with MMPVC with nondif-
ferentiable data, and the present paper is the first to consider it. So far under differentiablity
assumption, there is only one conference paper that considered MMPVC [12].

As well as classic multiobjective optimization, we can consider different kinds of optimality
(efficiency) for MMPVC, including weakly efficient, efficient, strictly efficient, isolated efficient,
and properly efficient solutions. Some characterizing of weakly efficient solutions for MMPVCs
with smooth data are presented in [12]. In order to obtain optimality in which, given any
objective, the trade-off between that objective and some other objective is bounded, Geoffrion
[3] suggested restricting attention to efficient solutions that are proper. After Geoffrion, proper
efficiency became a very important notion in studying multiobjective optimization, and many
definitions for proper efficiency were introduced in literature, such as those introduced by Ben-
son, Borwein, Henig, Kuhn-Tucker; see [2] for a comparison among the main definitions of this
notion. Here, we will consider the newest definition of proper efficiency that is introduced in
[4], and will characterize it for nonsmooth convex MMPVC. This characterization is made for
the first time, even for MMPVCs with smooth data.

Since the product function of two convex functions is not necessarily convex, the feasible set
Ω is not necessarily convex. Consequently, to set optimality conditions for properly efficient so-
lutions of MMPVC, we can select different normal cones for S. Here we focus on Mordukhovich
normal cone of Ω. This kind of optimality condition has been studied in [7, 8, 9, 14, 16] for
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MPVCs and MPECs. We would mention that all mentioned references to MPVC have con-
sidered the problems with continuously differentiable functions, and the present paper extends
their results to MMPVC with nondifferentiable functions.

The structure of this paper is as follows: Section 2 contains some definitions and theorems
from convex analysis and non-smooth analysis. In section 3, we will introduce a new constraint
qualification for MMPVC, and will present a necessary condition for properly efficient solutions
of MMPVC. Then, we will show our necessary condition is also sufficient under some weak
assumptions.

2 Preliminaries

In this section we present some preliminary results on convex analysis and nonsmooth analysis
from [6, 15]. Suppose that g : Rn → R is a convex function, and x0 ∈ Rn. The subdifferential
of g at x0 is defined as

∂g(x0) := {ζ ∈ Rn | g(x)− g(x0) ≥ ⟨ζ, x− x0⟩ , ∀x ∈ Rn}.

Notice that if g1 and g2 are two convex functions from Rn to R, and α is a non-negative real
number, then αg1 + g2 is convex and

∂(αg1 + g2)(x0) = α∂g1(x0) + ∂g2(x0).

Let φ : Rn → R be a locally Lipschitz function. The Mordukhovich subdifferential of φ at x0
is defined as

∂Mφ(x0) := lim sup
x→x0

{
ξ ∈ Rn | lim inf

y→x

φ(y)− φ(x)−
〈
ξ, y − x

〉
∥y − x∥

≥ 0
}
.

We observe that if g is a convex function, then ∂Mg(x0) = ∂g(x0) and ∂M (−g)(x0) = −∂g(x0).
Also, for two locally Lipschitz functions φ1 and φ2 from Rp to R, and for an arbitrary real
number α, we have

∂M
(
αφ1 + φ2

)
(x0) ⊆ α∂Mφ1(x0) + ∂Mφ2(x0).

Notice that if x0 is a minimizer of φ on Rp, then 0p ∈ ∂Mφ(x0), where 0p denotes the zero
vector of Rp.
The Mordukhovich normal cone of a closed subset Λ ⊆ Rp at x0 ∈ Λ is defined by NM (Λ, x0) :=

∂MIΛ(x0), where

IΛ(x) :=

{
0 x ∈ Λ,

+∞ x /∈ Λ.

It is not difficult to show that for given Λi ⊆ Rpi and x(i) ∈ Λi, i = 1, . . . , s, we have

NM

(
Λ1 × · · · × Λs,

(
x(1), . . . , x(s)

))
= NM

(
Λ1, x

(1)
)
× · · · ×NM

(
Λs, x

(s)
)
. (2)

If h(y) = (h1(y), . . . , hs(y)), where his are locally Lipschitz from Rn to R, and x∗ = (x∗1, . . . , x
∗
s),

then the Mordukhovich coderivative of h is defined as



Characterization of Properly Efficient Solutions ... / COAM, 3(2), Autumn-Winter 201852

D∗h(y)(x∗) = ∂M

(
s∑

k=1

x∗khk(y)

)
(y).

Let Π : Rr ⇒ Rs be a set-valued function, and x̄ ∈ Π(ȳ). We say that Π is calm at (y, x) if
there exist some L > 0 and neighborhoods U and V around x and y, respectively, such that
dΠ(y)(x) ≤ L∥y − y∥,for all y ∈ V and x ∈ U ∩ Π(y), where dΠ(y)(x) denotes the distance
between x to Π(y).

Theorem 1. [5, Theorem 4.1] Suppose that the set-valued mapping 𝟋 : Rl ⇒ Rk is defined as

𝟋(y) := {x ∈ C | g(x) + y ∈ E},

where the function g : Rk → Rl is locally Lipschitz and (C,E) ⊆ Rk ×Rl is closed. If 𝟋 is calm
at (0, x) ∈ Gph𝟋, then

NM

(
𝟋(0), x

)
⊆

⋃
y∗∈NM (E,g(x))

D∗g(x)(y∗) +NM (C, x).

Theorem 2. [5, Corollary 3.4] Consider the set-valued function 𝟋 : Rp ⇒ Rk,

𝟋(y) := {x ∈ Rk | g(x, y) ∈ E},

where g : Rk ×Rp → Rq is locally Lipschitz and E ⊆ Rq is closed. Let (ȳ, x̄) ∈ Gph𝟋. Further,
assume the following qualification condition holds,⋃

z∗∈NM (E,g(x̄,ȳ))\{0}

[∂M ⟨z∗, g⟩(x, y)]x = ∅,

where [ ]x denotes projection onto the x-component. Then, 𝟋 is calm at (ȳ, x̄).

For two vectors x, y ∈ Rp, the inequality x ≦ y stands for xi ≤ yi for all i ∈ {1, 2, . . . , p}.
The inequality x ≤ y means x ≦ y and x ̸= y. Furthermore, x < y stands for xi < yi for all
i ∈ {1, 2, . . . , p}.

3 Main Results

At the start of this section, we recall that the feasible solution set of MMPVC which is defined
in (1) is denoted by Ω. Also, we recall the following definition from [4, pp. 110].

Definition 1. A feasible point x0 ∈ Ω is called a properly efficient solution to MMPVC when
there exists a vector λ > 0p such that

⟨λ, F (x0)⟩ ≤ ⟨λ, F (x)⟩, ∀x ∈ Ω.

Throughout this paper, we fix a feasible point x̂ ∈ Ω, and divide the index set I as

I+ := {i ∈ I | Hi(x̂) > 0}, and I0 := {i ∈ I | Hi(x̂) = 0}.
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Also, we divide these two index sets as

I0+ := {i ∈ I+ | Gi(x̂) = 0}, I−+ := {i ∈ I+ | Gi(x̂) < 0},

I+0 := {i ∈ I0 | Gi(x̂) > 0}, I00 := {i ∈ I0 | Gi(x̂) = 0},

I−0 := {i ∈ I0 | Gi(x̂) < 0}.

Now, we introduce a new constraint qualification for MMPVC that plays a key rule in this
section.

Definition 2. The MMPVC is said to be satisfy to (CQ) at x̂ if there are not, non-zero together,
scalars αi and βi for i ∈ I, satisfying αi ≥ 0 for i ∈ I00 ∪ I0+, βi ≥ 0 for i ∈ I−0 , αiβi = 0 for
i ∈ I00 , and

0 ∈
∑

i∈I0
0∪I0

+

αi∂Gi(x̂)−
∑
i∈I0

βi∂Hi(x̂).

We should mention that (CQ) is a generalization of a constraint qualification that is de-
fined by Ye [16] for mathematical programming with equilibrium constraints (MPEC), named
“No Nonzero Abnormal Multiplier Constraint Qualification”. This constraint qualification was
extended to nonsmooth MPECs by Movahedian and Nobakhtian [14], and is considered for
MMPVC, for the first time, in the present paper.

Example 1. Let
Ω = {x ∈ R2 | x1 ≥ −x2, x2(x1 + x2) ≤ 0},

and x̂ = 02 ∈ Ω. This set can be considered as feasible set of a MMPVC with following data:

H1(x1, x2) = x1 + x2, and G1(x1, x2) = x2.

Obviously, I0 = {1}, ∂H1(x̂) = {(1, 1)} and ∂G1(x̂) = {(0, 1)}. A short calculation shows that

02 ∈ α1∂G1(x̂)− β1∂H1(x̂), α1 ≥ 0, β1 ≥ 0 =⇒ α1 = β1 = 0,

and so, the CQ holds at x̂.

The following theorem presents the first main result of this section.

Theorem 3. Let x̂ be a properly efficient solution to MMPVC. If (CQ) holds at x̂, then there
exist scalars µF

j , µH
i and µG

i , for j ∈ J and i ∈ I, such that:

0n ∈
p∑

j=1

µF
j ∂fj(x̂) +

m∑
i=1

[
µG
i ∂Gi(x̂)− µH

i ∂Hi(x̂)
]
, (3)

µG
i ≥ 0, i ∈ I00 ∪ I0+; µG

i = 0, i ∈ I+0 ∪ I−0 ∪ I−+ , (4)
µH
i free, i ∈ I00 ∪ I+0 ; µH

i ≥ 0, i ∈ I−0 ; µH
i = 0, i ∈ I+, (5)

µH
i µ

G
i = 0, i ∈ I00 , (6)

(µF
1 , . . . , µ

F
p ) > 0p. (7)
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Proof. Since x̂ is a properly efficient solution to MMPVC, Definition 1 concludes that there
exist some positive scalars µF

j > 0, for j ∈ J , such that x̂ is a minimizer to the following
weighted problem:

min

p∑
j=1

µF
j fj(x) subject to x ∈ Ω.

Therefore,
∑p

j=1 µ
F
j fj + IS attains its global minimum at x̂. Hence,

0n ∈ ∂M

 p∑
j=1

µF
j fj + IΩ

 (x̂) ⊆
p∑

j=1

µF
j ∂Mfj(x̂) + ∂MIΩ(x̂)

=

p∑
j=1

µF
j ∂fj(x̂) +NM (Ω, x̂). (8)

For estimating of NM (Ω, x̂), for all i ∈ I take Θi(x) :=
(
Gi(x),Hi(x)

)
, and let Θ(x) :=(

Θ1(x), . . . ,Θm(x)
)
. Also, set

X∗ := {(v1, v2) ∈ R2 | v2 ≥ 0 and v1v2 ≤ 0},

and X :=
{
(v1, . . . , vm) ∈

(
R2
)m | vi := (v1i , v

2
i ) ∈ X∗, ∀i ∈ I

}
. Since X =

∏m
i=1 X∗, then

NM

(
X ,Θ(x̂)

)
=

m∏
i=1

NM

(
X∗,Θi(x̂)

)
, (9)

by (2). On the other hand, the following equality has been proved in [7, Lemma 3.2]:

NM (X∗,Θi(x̂)) =



X∗ for i ∈ I00
{0} × R for i ∈ I+0
{0} × R− for i ∈ I−0
R+ × {0} for i ∈ I0+
{0} × {0} for i ∈ I−+ .

(10)

Owing to (9)-(10), the (CQ) at x̂ implies that for each ρ =
(
ρG1 , ρ

H
1 , . . . , ρ

G
m, ρ

H
m

)
∈ NM (X ,Θ(x̂))

we have
0n ∈

∑
i∈I

[
ρGi ∂Gi(x̂) + ρHi ∂Hi(x̂)

]
=⇒ ρ = 02m.

Thus,
0n /∈

⋃
02m ̸=ρ∈NM (X ,Θ(x̂))

[∂ (⟨ρ,Θ(x) + y⟩) (x̂, 0m)]x .

From this and Theorem 2 we conclude that the set-valued function Ω̂(.) is calm at (x̂, 0m),
where Ω̂(y) := {x ∈ Rn | Θ(x) + y ∈ X} for each y ∈ R2m. Since Ω̂(0m) = Ω, Theorem 1
deduces that

NM (Ω, x̂) ⊆
⋃

λ∈NM (X ,Θ(x̂))

D∗Θ(x̂)(λ) +NM (Rn, x̂). (11)

On the other hand, by(2), for each λ :=
(
λH1 , λ

G
1 , . . . , λ

H
m, λ

G
m

)
∈ R2m we have



55
J. Shaker Ardakani, SH. Farahmand Rad, N. Kanzi, P. Reihani Ardabil/ COAM, 3(2), Autumn-Winter
2018

D∗Θ(x̂)(λ) = ∂M ⟨λ,Θ(.)⟩(x̂) = ∂

[
m∑
i=1

(
λHi Hi + λGi Gi

)]
(x̂)

=

m∑
i=1

[
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

]
.

According to above equality,(11) and the fact that NM (Rn, x̂) = {0n}, we get tho following
estimate for NM (Ω, x̂):

NM (Ω, x̂) ⊆
⋃

λ∈NM (X ,Θ(x̂))

[
m∑
i=1

(
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

)]
.

Hence, the last inclusion and (8) imply that

0n ∈
p∑

j=1

µF
j ∂fj(x̂) +

⋃
λ∈NM (X ,Θ(x̂))

[
m∑
i=1

(
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

)]
.

Therefore, there exists some λ := (λH1 , λ
G
1 , . . . , λ

H
m, λ

G
m) ∈ NM (X ,Θ(x̂)) such that

0 ∈
p∑

j=1

µF
j ∂fj(x̂) +

m∑
i=1

[
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

]
. (12)

From (10) and λ ∈ NM (X ,Θ(x̂)), we can conclude that λGi ≥ 0 for i ∈ I00 ∪ I0+, λGi = 0 for
i ∈ I+0 ∪ I−0 ∪ I0+, λHi is free for i ∈ I00 ∪ I+0 , λHi ≤ 0 for i ∈ I−0 , λHi = 0 for i ∈ I0+ ∪ I−+ ,
and λHi λ

G
i = 0 for i ∈ I00 . Taking µG

i := λGi for i ∈ I, µH
i := −λHi for i ∈ I00 , µH

i := λHi for
i ∈ I \ I00 , and considering (12), the result is justified.

It is worth mentioning that when p = 1, the relations (3)-(7), named M-stationary condition,
are proved in [7, 8] for the problems with smooth data, and in [14] for nonsmooth MPECs. The
present paper is the first that studies this kind of stationary condition for MMPVCs.

We know from classic nonlinear optimization that necessary optimality conditions are also
to be sufficient under convexity assumption. These results cannot be applied for MMPVC since
the product function HiGi does not convex. The following theorem, which is our second main
result in this section, shows the sufficient condition holds for MMPVCs, under some additional
weak assumptions.

Theorem 4. Let x̂ ∈ Ω be a feasible solution that satisfies in (3)-(7) for some scalars µF
j , µH

i ,
and µG

i , (i, j) ∈ I × J .

(a): If
A := {i ∈ I00 | µH

i < 0} ∪ {i ∈ I00 | µH
i = 0, µG

i > 0} = ∅,

then x̂ is a local properly efficient to MMPVC.

(b): If
B := A ∪ {i ∈ I+0 | µH

i < 0} ∪ {i ∈ I0+ | µH
i = 0, µG

i > 0} = ∅,

then x̂ is a global properly efficient to MMPVC.
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Proof. (a): Suppose that x̂ is not locally properly efficient to MMPVC. Then, for each neigh-
borhood U ⊆ Rn to x̂, and for each vector λ = (λ1, . . . , λp) > 0p, we can find a point
xUλ ∈ Ω ∩ U such that

p∑
j=1

λjfj(x̂) >

p∑
j=1

λjfj(x
U
λ ).

Notice that (7) leads us take λ = µF := (µF
1 , . . . , µ

F
p ) in above inequality. So, the

convexity of
∑p

j=1 µ
F
j fj implies that

〈
ς, xUµ − x̂

〉
≤

p∑
j=1

µF
j fj(x

U
µ )−

p∑
j=1

µF
j fj(x̂) < 0, ∀ς ∈ ∂

 p∑
j=1

µF
j fj

 (x̂).

The last inequality and the fact that ∂
(∑p

j=1 µ
F
j fj

)
(x̂) =

∑p
j=1 µ

F
j ∂fj(x̂) conclude that

p∑
j=1

µF
j

〈
ςj , x

U
µ − x̂

〉
< 0, ∃xUµ ∈ U ∩ Ω, ∀ςj ∈ ∂fj(x̂). (13)

On the other hand, (3) implies that
p∑

j=1

µF
j ξ

F
j +

m∑
i=1

(µG
i ξ

G
i − µH

i ξ
H
i ) = 0, (14)

for some ξFj ∈ ∂fj(x̂), ξ
H
i ∈ ∂Hi(x̂) and ξGi ∈ ∂Gi(x̂), for (i, j) ∈ I × J .

Let i ∈ I+0 . The continuity of Gi concludes that there exists a neighborhood Ui for x̂
such that Gi(x) > 0 for all x ∈ Ui. Thus, Gi(x) > 0, Hi(x) ≥ 0 and Gi(x)Hi(x) ≤ 0,

for all x ∈ Ui ∩ Ω, which imply Hi(x) = 0. Similarly, for each i ∈ I0+ there exists
a neighborhood Ûi for x̂ such that Hi(x) > 0 and Gi(x) ≤ 0. Summarizing, for all
x ∈ Ω ∩ V in which V :=

⋂
i∈I+

0
Ui ∩

⋂
i∈I+

0
Ûi, we have Gi(x) ≤ 0 = Gi(x̂), for i ∈ I0+,

and Hi(x) = 0 ≤ Hi(x̂), for i ∈ I+0 . Hence

⟨ξGi , x− x̂⟩ ≤ 0, ∀i ∈ I0+, and ⟨ξHi , x− x̂⟩ ≤ 0, ∀i ∈ I+0 .

So, owing to (4)-(6), we get

⟨
∑

i∈I0
+∪I+

0

(
µG
i ξ

G
i − µH

i ξ
H
i

)
, x− x̂⟩ ≤ 0, ∀x ∈ Ω ∩ V.

By the above inequality, convexity of functions, assumption that A = ∅, (4)-(6), and a
short calculation, we deduce that

⟨
m∑
i=1

(
µG
i ξ

G
i − µH

i ξ
H
i

)
, x− x̂⟩ ≤ 0, ∀x ∈ Ω ∩ V. (15)

Now, inner-producing two sides of (14) to x− x̂ and regarding (15), we conclude that
p∑

j=1

µF
j

〈
ξFj , x− x̂

〉
≥ 0, ∀x ∈ Ω ∩ V,

which contradicts (13). Thus, the proof is complete.



57
J. Shaker Ardakani, SH. Farahmand Rad, N. Kanzi, P. Reihani Ardabil/ COAM, 3(2), Autumn-Winter
2018

(b): Emptiness assumption of B leads us to repeat the proof of (a) without considering any
neighborhood for x̂.

Example 2. Consider the MMPVC with following data:

f1(x1, x2) = x21 + |x2|, f2(x1, x2) = 2x41 + 3|x2|,

H1(x1, x2) = −x2, H2(x1, x2) = |x1|+ x2,

G1(x1, x2) = −1, G2(x1, x2) = −x1.

Taking x̂ = 02, we conclude that I−0 = {1} and I00 = {2}. Since the conditions (3)-(7) hold for
µF
1 = µF

2 = 1, µH
1 = µH

2 = 1
4 and µG

1 = µG
2 = 0, and also B = ∅, Theorem 4 implies that x̂ is

properly sufficient for the problem.

4 Conclusion

In this paper, we considered a new class of nonsmooth multiobjective optimization problems,
denoted by MMPVC, as an extension of the mathematical programs with vanishing constraints
from the scalar case and the multiobjective mathematical programming with equilibrium con-
straints. We introduced a suitable modification of the “No Nonzero Abnormal Multiplier Con-
straint Qualification”. We gave Karush-Kahn-Tucker type necessary optimality condition for
proper efficient solutions, and derived that this necessary condition is also sufficient for proper
efficiency under some additional assumptions in emptiness kind.
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چکیده

تعریف پوچ شونده قیدهای توسط که می گیریم نظر در را محدب چندهدفه ی بهینه سازی مسئله ی یک مقاله این در ما
برای لازم شرط یک مردخویچ، نرمال مخروط توسط و کرده معرفی مسئله برای جدید تعریفی قید یک ابتدا، در می شود.
برای نیز کافی شرط شده، بیان لازم شرط که کرد خواهیم ثابت آنگاه داد. خواهیم ارائه مسئله سره ی موثر جواب های

شده اند. فرمول بندی محدب زیرمشتق حسب بر ما احکام می باشد. سره موثر جواب های

کلیدی کلمات

تعریفی. قیدهای محدب، بهینه سازی چندهدفه، قیود چندهدفه، بهینه سازی
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