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1 Introduction

Data envelopment analysis (DEA), initially developed by [3], is a non-parametric technique for
evaluating the relative efficiencies of homogeneous decision-making units (DMUs) in terms of
multiple inputs and multiple outputs. The basic DEA models and their numerous theoretical
and methodological extensions have been reported in [6]. Unlike the black box model, the
Network Data Envelopment Analysis (NDEA) model considers all internal processes in perfor-
mance evaluation. For example, many companies are composed of several sections that have
linked activities such as Figure 1. In this example, the company has 3 sections. Each section
uses its input resources to generate its output. In either case, there are links or intermediate
products that are shown by the link 1 −→ 2 and 1 −→ 3, and the link 2 −→ 3. The link 1 −→ 2

shows that part of the outputs of section 1 are used as inputs in section 2. In the current
DEA models, each activity must belong to an input or output, and not both, so these models
cannot be formulated with intermediate products. For the first time in the year 2000, Fare and

Figure 1: A company with three linked activities

Grosskopf [7] provided network data envelopment analysis models. Their models were expanded
by several authors. Sexton and Lewis presented a multi-stage network data envelopment anal-
ysis model in 2004 as an extension of the Lewis and Sexton two-step data envelopment analysis
model [9]. This article solves a dea model independently for each NODE. Tone and Tsutsui [16]
presented a network-based data envelopment analysis model in 2009 based on the SBM model.
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The Revenue Efficiency Model (RE) seeks to find a unit that receives the highest revenue from
inputs equal to the inputs of the unit under consideration, from the sales of non-less than the
outputs of the unit under evaluation. Revenue Efficiency is defined as the ratio of observed
revenue to the maximum possible revenue. Given the fact that in the real world we are dealing
with network data envelopment analysis, it is important for managers to evaluate the revenue
efficiency in NDEA. In 2013, Bani Hashemi and Tohidi [2] presented a model for assessing the
revenue efficiency of network data envelopment analysis models.

Classical DEA models assume that all data is crisp. However, crisp data is not always
available because the nature of data can be vague and unclear. In this case, one of the important
methods for dealing with inaccurate data is to consider fuzzy data. Only in [12] and [13] the
fuzzy revenue efficiency (FRE) with input- outputs fuzzy and fuzzy input prices is discussed.
Aghayi [1] is examined revenue efficiency measurement with undesirable data in fuzzy DEA
and also Kordrostami and Jahani Sayyad Noveiri [8] are studied fuzzy revenue efficiency in
sustainable supply chains.

However, in none of these studies, the measurement of fuzzy revenue efficiency has not
been mentioned in Full Fuzzy Network Data Envelopment Analysis (FFNDEA). In this paper,
we examine full-fuzzy models of network data envelopment analysis (fuzzy input-outputs and
fuzzy input prices) to evaluate fuzzy revenue efficiency. Here, the method of ranking functions
is used. Therefore, the ranking functions transform the full fuzzy model of network revenue
efficiency into a crisp linear programming problem for measuring the fuzzy network revenue
efficiency. The rest of the article will be as follows. In section 2, we refer to fuzzy clauses. In
the next section, the problem of fuzzy linear programming and its transformation into a crisp
problem is studied. section 4 addresses the measurement of revenue efficiency in the DEA, and
in Sections 5 and 6 is examined network data envelopment analysis based on SBM model and
revenue efficiency in it. Section 7,the proposed method for measuring fuzzy revenue efficiency
in FFNDEA is presented and, based on the proposed method, a numerical example is solved in
the last section.
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2 Fuzzy Premises

2.1 Basic Definitions of Fuzzy

In this section, the basic definitions and the symbols of the fuzzy sets [17, 18], fuzzy Numbers
[4], Ranking function [10], and the FFLP concept used in this article.

Definition 1. [17] A fuzzy set Ã is defined in the reference setX with Ã =
{
(x, µÃ(x)) : x ∈ X

}
where µÃ : X −→ [0, 1] is the membership function and µÃ(x) is the degree of x in A.

Definition 2. [18] Regarding X as the reference set, then fuzzy set A will be convex if and
only if for every x1, x2 ∈ X:

µÃ

(
λx1 + (1− λ)x2

)
≥ min

(
µÃ(x1), µÃ(x2)

)
∀λ ∈ [0, 1]

Definition 3. [18] Assuming that X is the reference set, then the fuzzy set A is called normal
provided that there exist x ∈ X so that µÃ(x) = 1.

Definition 4. [18] A fuzzy number Ã is a convex normalized fuzzy set Ã of the real line R
such that

1. it exists exactly one x0 ∈ R µÃ(x0) = 1 (x0 is called the mean value of Ã).

2. µÃ(x) is piecewise continuous.

Definition 5. [18] A triangular fuzzy number (TFN), Ã = (al, am, au) is a fuzzy number with
the given membership function µÃ

µÃ(x) =


(x− al)/(am − al) al < x ≤ am

(x− au)/(am − au) am ≤ x < au

0 otherwise.

Definition 6. A triangular fuzzy number Ã = (al, am, au) is called a nonnegative number if
and only if a al ≥ 0, am − al ≥ 0, au − am ≥ 0 and it is a positive number if and only if
al > 0, am − al ≥ 0, au − am ≥ 0.

Definition 7. The support of a fuzzy set Ã, S(Ã) is the crisp set of all x ∈ X such that .
µÃ(x) > 0. The (crisp) set of elements that belong to the fuzzy set Ã at least to the degree α
is called the α-cut set: Aα = {x ∈ X|µÃ(x) ≥ α}

Definition 8. [10] Suppose F a set of all triangular fuzzy numbers. If Ã ∈ F, [A1
α, A

u
α], α ∈ [0, 1]

the α- cut is Ã. Then, the ranking function of a function R : F −→ R is:

R(Ã) =
1

2

∫ 1

0

(Al
α +Au

α)dα

If Ã = (al, am, au) is a triangular fuzzy number, then R(Ã) =
1

4
(al + 2am + au).
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Definition 9. [10] If Ã = (al, am, au) and B̃ = (bl, bm, bu) are two triangular fuzzy numbers,
then order of Ã and B̃ based on the ranking function R will be:

(i) Ã ⋞ B̃ ⇐⇒ R(Ã) ≤ R(B̃)

(ii) Ã ≽ B̃ ⇐⇒ R(Ã) ≥ R(B̃)

(iii) Ã ≈ B̃ ⇐⇒ R(Ã) = R(B̃)

And the features of Linearity will be:

R(kÃ+ B̃) = kR(Ã) +R(B̃), k ∈ R

2.2 Math Operations on Triangular Fuzzy Numbers

If Ã = (al, am, au) and B̃ = (bl, bm, bu) are two triangular fuzzy numbers, then the mathematical
operations on triangular fuzzy numbers will be as follows:

(i) Addition Ã⊕ B̃ ≈ (a1 + b1, am + bm, au + bu)

(ii) Subtraction Ã⊖ B̃ ≈ (a1 − bu, am − bm, au − b1)

(iii) Multiplication Ã⊗ B̃ ≈ (a1b1, ambm, aubu), Ã, B̃ ⋟ 0̃

(iv) Division
Ã

B̃
≈ (a1, am, au)

(b1, bm, bu)
≈
(
a1

bu
,
am

bm
,
au

b1

)
, Ã, B̃ ≻ 0̃

(v) Scalar multiplication ∀k ∈ R, kÃ ≈

(ka1, kam, kau), k > 0

(kau, kam, ka1), k < 0

3 Fuzzy linear programming problem

A linear programming problem with fuzzy coefficients and variables is called a full fuzzy linear
programming problem. A full-fuzzy linear programming problem [11] with m constraints and
n fuzzy variables are defined by the following model:

Z̃ = max (ormin)(C̃T ⊗ X̃)

subject to Ã⊗ X̃ ⋞,≈,⋟ b̃; X̃ ⋟ 0̃ (P1)

where C̃ = [c̃j ]n×1, X̃ = [x̃j ]n×1, Ã = [ãij ]m×n, b̃ = [b̃j ]m×1, and ãij , c̃j , b̃i ∈ F, x̃j are
non-negative fuzzy numbers and 0̃ = (0, 0, 0).

Definition 10. [11] The fuzzy optimal solution to the full-fuzzy linear programming problem
(P1) will be X̃ = [x̃j ]n×1. will apply if the following conditions apply:

1) x̃j is a non-negative fuzzy number,

2) Ã⊗ X̃ ⋞,≈,⋟ b̃,
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and 3) If there exist any non-negative fuzzy number such as Ỹ = [ỹj ]n×1, to the point where
Ã⊗X̃ ⋞,≈,⋟ b̃, then R(C̃T⊗X̃) ≥ R(C̃T⊗Ỹ ) for the maximization problem and R(C̃T⊗X̃) ≤
R(C̃T ⊗ Ỹ ) for the minimization problem.

Definition 11. [11] Suppose that X̃ = [x̃j ]n×1 is the fuzzy optimal solution for full fuzzy
linear problem (P1). If there exist any non-negative fuzzy number such as Ỹ = [ỹj ]n×1, then
Ã ⊗ Ỹ ⋞,≈,⋟ b̃, and R(C̃T ⊗ X̃) = R(C̃ ⊗ Ỹ ), then Ỹ = [ỹj ]n×1 is called a fuzzy optimal
solution of (P1). Suppose that c̃j = (c1j , c

m
j , c

u
j ), x̃j = (x1j , x

m
j , x

u
j ), ãij = (a1ij , a

m
ij , a

u
ij) and

b̃j = (b1i , b
m
i , b

u
i ) represents triangular fuzzy numbers. Then, the fuzzy decision parameters and

variables in the model (P1) are converted as follows:

Z̃ = max (or min)
( n∑

j=1

(c1j , c
m
j , c

u
j )⊗ (x1j , x

m
j , x

u
j )
)

subject to
m∑
j=1

(a1ij , a
m
ij , a

u
ij)⊗ (x1j , x

m
j , x

u
j ) ⋞,≈,⋟ (b1i , b

m
i , b

u
i ) ∀i;

(x1j , x
m
j , x

u
j ) ⋟ 0̃ ∀j (p2)

After performing the mathematical operations discussed in Section 2-2, the model (P2) is
converted to the following form:

Z̃ = max (or min)
( n∑

j=1

cljx
l
j ,

n∑
j=1

cmj x
m
j ,

n∑
j=1

cuj x
u
j

)
subject to

( n∑
j=1

alijx
l
j ,

n∑
j=1

amijx
m
j ,

n∑
j=1

auijx
u
j

)
⋞,≈,⋟ (bli, b

m
i , b

u
i ) ∀i;

(xlj , x
m
j , x

u
j ) ⋟ 0̃ ∀ j (P3)

Now, using Nasseri et al.’s algorithm [11] and the ranking method, the FFLP (P2) turns into a
precise linear programming problem. The steps in the algorithm are briefly summarized below:
Step 1: Transform full fuzzy objective function using its ranking function(
R
(∑n

j=1 c
l
jx

l
j ,
∑n

j=1 c
m
j x

m
j ,
∑n

j=1 c
u
j x

u
j

))
into the crisp format.

Step 2: Full fuzzy constraints of the model (P2) using the following ranking functions are:
n∑

j=1

alijx
l
j ≤,=,≥ b1i ∀i

n∑
j=1

amijx
m
j ≤,=,≥ bmi ∀i

n∑
j=1

auijx
u
j ≤,=,≥ bui ∀i

Step 3: The non-negative Fuzzy constraints, that is, (x1j , xmj , xuj ) ⋟ 0̃ ∀j in the model (P2),
which guarantees the decision variables assessment as non-triangular fuzzy numbers, will be as
follows:

x1j ≥ 0, xmj − x1j ≥ 0, xuj − xmj ≥ 0, ∀j
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Therefore, using the above steps, the model (P2) turns into the exact linear programming
problem:

Z = max (or min)R
( n∑

j=1

cljx
l
j ,

n∑
j=1

cmj x
m
j ,

n∑
j=1

cuj x
u
j

)
subject to

n∑
j=1

alijx
l
j ≤,=≥ bli ∀i

n∑
j=1

amijx
m
j ≤,=≥ bmi ∀i (P4)

n∑
j=1

auijx
u
j ≤,=≥ bui ∀i

xlj ≥ 0, xmj − xlj ≥ 0, xuj − xmj ≥ 0, ∀ j

Theorem 1. Each feasible solution in the model (P4) is also a feasible solution in the model
(P3). Argument in [13].

Theorem 2. The optimal solution of the model (P4) is the optimal solution for the model
(P3) Argument in [13].

4 Revenue Efficiency in DEA

The output-oriented DEA model under the assumption of variable return to scale can be used
for calculation of output-oriented technical efficiency and revenue efficiency. Output-oriented
model under the assumption of variable return to scale can be written in the following form:

max φ0

subject to xio ≥
n∑

j=1

λjxij , i = 1, · · · ,m

φ0y0 ≤
n∑

j=1

λjyj

n∑
j=1

λj = 1

λj ≥ 0 ∀j

Where φ0 is output-oriented technical efficiency of DMUo in the output-oriented DEA model.
To calculate revenue efficiency the following revenue maximisation DEA problem is necessary
to solve [5]:
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max poy

subject to xio ≥
n∑

j=1

λjxij , i = 1, · · · ,m

y ≤
n∑

j=1

λjyj

λj ≥ 0 ∀j

Where po is vector output prices for DMUo. The overall revenue efficiency is defined as the
ratio of observed revenue to maximum revenue for the DMUo [5]:

α∗ = poyo/poy
∗
o

where y∗o is an optimal solution for model [Revenue].

4.1 Single output case

In this section, we deal with n DMUs with m inputs xxx = (x1, x2, · · · , xm) to produce one output
of y(> 0). For a DMUo(o = 1, · · · , n), let the inputs and output be xoxoxo = (x1o, x2o, · · · , xmo)

and yo (> 0)respectively, and the unit price of output yo be po (> 0).
Between the two efficiency measures (technical efficiency φ∗ and revenue efficiency α∗) we

have the following theorem.

Theorem 3. For the single output case, α∗ = 1/φ∗.

Proof. Let us denote y as φyo in [Revenue] and change the variable from y to φyo. Then, noting
yo > 0 and po > 0, [Revenue] becomes:

max poφyo

subject to xio ≥
n∑

j=1

λjxij , i = 1, · · · ,m

φyo ≤
n∑

j=1

λjyj

λj ≥ 0 ∀j

This program is equivalent to [CCR] and its optimal objective value is φ∗poyo. Thus we have

α∗ =
poyo
φ∗poyo

=
1

φ∗

Definition 12. (Allocative efficiency): The allocative efficiency γ∗ of DMUo is defined as the
ratio of revenue efficiency to technical efficiency, ie, γ∗ = α∗

φ∗ . The allocative efficiency γ∗ is less
than or equal to one, and DMUo is called allocatively efficient when γ∗ = 1 holds



85E. Poudineh, M. Rostamy-Malkhalifeh, A. Payan/ COAM, 3(2), Autumn-Winter 2018

4.2 General case

Here we observe a more general case where we have m inputs xxx = (x1, x2, · · · , xm) and s outputs
yyy = (y1, y2, · · · , ys). Suppose that DMUs A and B have the same amount of inputs and outputs,
ie, xxxA = xxxB and yyyA = yyyB . Assume further that the unit price of DMU A is twice that of DMU
B for each output, ie, pppA = 2pppB . Under these assumptions, we have the following theorem:

Theorem 4. Both DMUs A and B have the same price (overall) and allocative efficiencies.

Proof. Since DMUs A and B have the same inputs and outputs, they have the same technical
efficiency, ie, φ∗

A = φ∗
B .

The revenue efficiency of DMU A (or DMU B) can be obtained by solving the following
LP:

max pppAyyy(= 2pppByyy)

subject to xiA(= xiB) ≥
n∑

j=1

λjxij , i = 1, · · · ,m

yr ≤
n∑

j=1

λjyrj , r = 1, · · · , s

λj ≥ 0 ∀j

Apparently, DMUs A and B have the same optimal solution (outputs) yyy∗A = yyy∗B , and hence the
same revenue efficiency, since we have:

α∗
A = pppAyyyA/pppAyyy

∗
A = 2pppByyyB/2pppByyy

∗
B = pppByyyB/pppByyy

∗
B = α∗

B .

They also have the same allocative efficiency by definition 1. This also sounds very strange,
since DMUs A and B have the same revenue and allocative efficiencies even though the price
of DMU B is half that of DMU A.

4.3 A new scheme

The previous two sections reveal the shortcomings and irrationality of the revenue and allocative
efficiencies proposed thus far.

These shortcomings are caused by the structure of the supposed production possibility set
P as defined by:

P =
{
(x, y)

∣∣x ≥ Xλ, y ≤ Y λ, λ ≥ 0
}

The production possibility set P is defined only on the basis of the technical factors X =

(x1, · · · , xn) ∈ Rm×n and Y = (y1, · · · , yn) ∈ Rs×n and has no concern with the prices of the
outputs P = (p1, · · · , pn). Banihashemi and Tohidi [2] define a set of new production possibility
set based on revenue as follows:
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Pp =
{
(x, ȳ)

∣∣x ≥ Xλ, ȳ ≤ Ȳ λ, λ ≥ 0
}

where Ȳ = (ȳ1, · · · , ȳn) and ȳj assuming that the matrices P and Y are non-negative, and all
inputs are revenue-oriented. Another assumption is that the elements ȳij = (pij , yij) ∀(i, j) are
in homogeneous units, e.g., $, so that the multiplication of these elements is significant. Based
on the definition of the set of new possible generation Pp, the new technical efficiency φ̄∗ is
given as the optimal solution to the linear programming problem:

φ̄∗ = max φ̄

subject to xo ≥ Xλ

φ̄ȳo ≤ Ȳ λ

λ ≥ 0

The new revenue efficiency ᾱ∗ is as follows:

ᾱ∗ = eȳo/eȳ
∗
o

where e ∈ Rm, is a row vector with the elements 1 and ȳ∗o is the solution to the linear program-
ming problem below:

[Nrevenue] max eȳ

subject to xo ≥ Xλ

φȳ ≤ Ȳ λ

λ ≥ 0

5 Network Data Envelopment Analysis Based on SBM Model

The common DEA models which measure the relative efficiency of multiple input/ output
decision-maker units may experience drawbacks such as neglecting intermediate products or
linked activities. In this section, the network data envelopment analysis and the parameters of
its production probability set are discussed.

Suppose n is the decision maker available in SectionK. mk and rk are the numbers of inputs
and outputs in the kth section. The link from division k to division h is represented by (h, k) and
the set of all links is shown by L. The observed data is {xkj ∈ Rmk

+ }(j = 1, · · · , n, k = 1, · · · ,K),
{ykj ∈ Rrk

+ }(j = 1, · · · , n, k = 1, · · · ,K) and {z(k,h)j ∈ R
t(k,h)

+ }(j = 1, · · · , n, (k, h) ∈ L).
Thus, the production possibility set in network data envelopement analysis will be:

P =
{
(xk, yk, z(h,k))

∣∣xk ≥ Xkλk, yk ≤ Y kλk, z(k,h) = z(k,h)λk (as outputs k), z(k,h)

= z(k,h)λh(as inputs h), λ ≥ 0
}

Assume that the following model (with input nature) has a variable returns to scale and DMUo,
(o = 1, · · · , n) unit under evaluation. Since the SBM model needs to have positive data, this
paper assumes that all data are positive.
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[NSBM ] θ0 = min

K∑
k=1

wk

[
1− 1

mk

( mk∑
i=1

sk−i
xkio

)]
subject to xko = Xkλk + sk−

yko = Y kλk − sk+

λk, λh, sk−, sk+ ≥ 0

z(k,h)o = z(k,h)λk
(
∀(k, h)

)
, (a)

z(k,h)o = z(k,h)λh
(
∀(k, h)

)
,

or

z(k,h)λk = z(k,h)λh
(
∀(k, h)

)
, (b)

Where z Where z(k,h) =
(
z
(k,h)
1 , · · · , z(k,h)n

)
∈ Rt(k,h)×n, Xk = (xk1 , · · · , xkn) ∈ Rmk×n, yk =

(yk1 , · · · , ykn) ∈ Rrk×n, sk− (sk+) are slacks vectors of the input (output). Given the link
constraints, there are several choices that can be made in two possible ways:

(a) In the first case, the values   of fixed intermediate current are taken into account.

z(k,h)o = z(k,h)λk
(
∀(k, h)

)
, (a)

z(k,h)o = z(k,h)λh
(
∀(k, h)

)
(b)In the second case, the values of the average flow in the link can be freely reduced or

increased.
z(k,h)λk = z(k,h)λh

(
∀(k, h)

)
, (b)

6 Revenue Efficiency in Network DEA

In this section we deal New Network Revenue Efficiency (NNRE) on Network Slack Based
Measure (NSBM) that prices play a role in the PPS on output. The production possibility set
based on price for the network data envelopment analysis is [2]:

Pp =
{
(xk, ȳk, z̄(k,h))

∣∣xk ≥ Xkλk, ȳk ≤ Ȳ kλk, z̄(k,h) = z̄(k,h)λk(as outputs k), z(k,h)

= z(k,h)λh(as inputs h), eλk = 1, λ ≥ 0
}

where

Ȳ k = (ȳk1 , · · · , ȳkn), ȳkj = (pk1jy
k
1j , · · · , pkrkjy

k
rkj

)

z̄(k,h) =
(
z̄
(k,h)
1 , · · · , z̄(k,h)n

)
, z̄

(k,h)
j =

(
ck1jz

(k,h)
1j , · · · , ckrkjz

(k,h)
rkj

)
Based on this set, a new production possibility, ᾱ∗k, is obtained from the following linear
programming problem:



A Fully Fuzzy Method of Network ... / COAM, 3(2), Autumn-Winter 201888

[NNRE] max

K∑
k=1

ȳk +
∑
h

z̄(k,h)

subject to xko ≥ Xkλk, k = 1, · · · ,K

ȳk ≤ Ȳ kλk, k = 1, · · · ,K

z̄(k,h)o = z̄(k,h)λh
(
∀(k, h)

)
(a)

z(k,h)o = z(k,h)λk
(
∀(k, h)

)
,

or

z̄(k,h)λk = z̄(k,h)λh
(
∀(k, h)

)
(b) (P5)

eλk = 1,

λk, λh ≥ 0

and

ᾱ∗k =

K∑
k=1

ȳ∗ko +
∑
h

z̄(k,h)o

/ K∑
k=1

ȳ∗ko +
∑
h

z̄∗(k,h)o

Where e ∈ Rm, a row vector with elements, equals 1 and ȳ∗o , z̄∗o are optimal solutions for model
(P5).

7 Proposed Fuzzy Revenue Efficiency Method in Fully Fuzzy Network Data
Analysis

In the real world, input-output data and their corresponding prices are not accurately observed
and may be available in inappropriate forms such as fuzzy numbers, in particular triangular
fuzzy numbers. Many researchers investigated the revenue efficiency with fuzzy and interme-
diate data. In these studies only, the decision parameters are considered as fuzzy and the
decision variables are precise quantifiers. However, in this paper, we use full-fuzzy models of
network data envelopment analysis to measure the revenue efficiency in a fully fuzzy environ-
ment in which all decision-making parameters and variables are represented by triangular fuzzy
numbers.

To measure fuzzy revenue efficiency in network data envelopment analysis, we extend the
model (4) to a completely fuzzy environment. Suppose that the decision maker unit is available
in Section K. mk and rk are the number of fuzzy inputs and outputs in the k-section. The link
from section k to part h is represented by (k, h) and the set of all links with L. The observed
fuzzy data j = 1, · · · , n, k = 1, · · · ,K x̃kj , ỹkj , z̃(k,h)j and p̃kj respectively contain the input and
Fuzzy outputs in each section, fuzzy link activities from section k to section h as well as the
revenue of the fuzzy input units in each section. If these data are triangular fuzzy numbers, we
will have:
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x̃kj =
(
xl,kj , xm,k

j , xu,kj

)
, j = 1, · · · , n, k = 1, · · · ,K

ỹkj =
(
yl,kj , ym,k

j , yu,kj

)
, j = 1, · · · , n, k = 1, · · · ,K

p̃kj =
(
pl,kj , pm,k

j , pu,kj

)
, j = 1, · · · , n, k = 1, · · · ,K

z̃
(k,h)
j =

(
z
l,(k,h)
j , z

m,(k,h)
j , z

u,(k,h)
j

)
, j = 1, · · · , n, (k, h) ∈ L

According to the above, the model (P5) will become a fully fuzzy model as follows:

[FFNNRE] min

K∑
k=1

˜̄yk ⊕
∑
h

˜̄z(k,h)

subject to x̃ko ≽
n∑

j=1

X̃k
j ⊗ λ̃kj , k = 1, · · · ,K

˜̄yk ≼
n∑

j=1

˜̄ykj ⊗ λ̃kj , k = 1, · · · ,K (P6)

˜̄z(k,h)o ≈
n∑

j=1

z̃
(k,h)
j ⊗ λ̃kj , ∀(k, h) (a)

˜̄z(k,h)o ≈
n∑

j=1

z̃
(k,h)
j ⊗ λ̃hj , ∀(k, h)

or
n∑

j=1

˜̄z
(k,h)
j ⊗ λ̃kj ≈

n∑
j=1

˜̄z
(k,h)
j ⊗ λ̃hj , ∀(k, h) (b)

n∑
j=1

λ̃kj ≈ 1̃

λ̃kj , λ̃
h
j ≽ 0̃ ∀j, k

The model (P6) is a fuzzy revenue envelopment model in the Fuzzy Network Data Envelopment
Analysis. After replacing the triangular fuzzy variables and parameters in model (P6) and using
mathematical operations on triangular fuzzy numbers and steps of the Nasseri algorithm, the
full-fuzzy linear programming model (P6) becomes the crisp linear programming:

max
1

4

[
K∑

k=1

ȳl,k +
∑
h

z̄l,(k,h) + 2
( K∑

k=1

ȳm,k +
∑
h

z̄m,(k,h)
)
+

K∑
k=1

ȳu,k +
∑
h

z̄u,(k,h)

]

subject to xl,ko ≥
n∑

j=1

X l,k
j λl,kj , k = 1, · · · ,K

xm,k
o ≥

n∑
j=1

Xm,k
j λl,kj , k = 1, · · · ,K

xu,ko ≥
n∑

j=1

Xu,k
j λl,kj , k = 1, · · · ,K
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ȳl,k ≤
n∑

j=1

ȳl,kj λl,kj , k = 1, · · · ,K (P7)

ȳm,k ≤
n∑

j=1

ȳm,k
j λm,k

j , k = 1, · · · ,K

ȳu,k ≤
n∑

j=1

ȳu,kj λu,kj , k = 1, · · · ,K

z̄l,(k,h)o =

n∑
j=1

z̄
l,(k,h)
j λl,kj , ∀(k, h)

z̄m,(k,h)
o =

n∑
j=1

z̄
m,(k,h)
j λm,k

j , ∀(k, h)

z̄u,(k,h)o =

n∑
j=1

z̄
u,(k,h)
j λu,kj , ∀(k, h)

zl,(k,h)o =

n∑
j=1

z
l,(k,h)
j λl,hj , ∀(k, h) (a)

zm,(k,h)
o =

n∑
j=1

z
m,(k,h)
j λm,h

j , ∀(k, h)

zu,(k,h)o =

n∑
j=1

z
u,(k,h)
j λu,hj , ∀(k, h)

or
n∑

j=1

z̄
l,(k,h)
j λl,kj =

n∑
j=1

z̄
l,(k,h)
j λl,hj , ∀(k, h)

n∑
j=1

z̄
m,(k,h)
j λm,k

j =

n∑
j=1

z̄
m,(k,h)
j λm,h

j , ∀(k, h) (b)

n∑
j=1

z̄
u,(k,h)
j λu,kj =

n∑
j=1

z̄
u,(k,h)
j λu,hj , ∀(k, h)

n∑
j=1

λl,kj = 1,

n∑
j=1

λm,k
j = 1,

n∑
j=1

λu,kj = 1, k = 1, · · · ,K

λl,kj ≥ 0, λm,k
j − λl,kj ≥ 0, λu,kj − λm,k

j ≥ 0 ∀j, k

ȳl,kj ≥ 0, ȳm,k
j − ȳl,kj ≥ 0, ȳu,kj − ȳm,k

j ≥ 0 ∀j, k

z̄l,kj ≥ 0, z̄m,k
j − z̄l,kj ≥ 0, z̄u,kj − z̄m,k

j ≥ 0 ∀j, k

Theorem 5. Model (P7) is a feasible model.

Proof. This model has a feasible solution as follows :
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λl,ko = 1, λl,kj = 0, j ̸= o

λm,k
o = 1, λm,k

j = 0, j ̸= o

λu,ko = 1, λu,kj = 0, j ̸= o

λl,ho = 1, λl,hj = 0, j ̸= o

λm,h
o = 1, λm,h

j = 0, j ̸= o

λu,ho = 1, λu,hj = 0, j ̸= o

ȳl,k = ȳl,ko ȳm,k = ȳm,k
o ȳu,k = ȳu,ko

And with considering (b)

z̄l,(k,h)o = z̄l,(k,h)o z̄m,(k,h)
o = z̄m,(k,h)

o , z̄u,(k,h)o = z̄u,(k,h)o

Theorem 6. The optimal solution for the model (P7) will be a model optimization solution
(P6). The proof of this is similar to the proof of Theorem 1.

Definition 13. The fuzzy cost efficiency of the ith DMU in the FFDEA is defined as the ratio
of the minimum fuzzy cost to the observed fuzzy cost of DMUi:

˜̄α∗k
i =

∑K
k=1

˜̄y∗k
i ⊕

∑
h
˜̄z
∗(k,h)
i∑K

k=1
˜̄xk
i ⊕

∑
h
˜̄z
∗(k,h)
i

=

(∑K
k=1 ȳ

l,k
i +

∑
h z̄

l,(k,h)
i ,

∑K
k=1 ȳ

m,k
i +

∑
h z̄

m,(k,h)
i ,

∑K
k=1 ȳ

u,k
i +

∑
h z̄

u,(k,h)
i

)
(∑K

k=1 ȳ
l,k∗
i +

∑
h z̄

l,(k,h)∗
i ,

∑K
k=1 ȳ

m,k∗
i +

∑
h z̄

m,(k,h)∗
i ,

∑K
k=1 ȳ

u,k∗
i +

∑
h z̄

u,(k,h)∗
i

)
=

( ∑K
k=1 ȳ

l,k
i +

∑
h z̄

l,(k,h)
i ,

∑K
k=1 ȳ

m,k
i +

∑
h z̄

m,(k,h)
i ,

∑K
k=1 ȳ

u,k
i +

∑
h z̄

u,(k,h)
i∑K

k=1 ȳ
u,k∗
i +

∑
h z̄

u,(k,h)∗
i ,

∑K
k=1 ȳ

m,k∗
i +

∑
h z̄

m,(k,h)∗
i ,

∑K
k=1 ȳ

l,k∗
i +

∑
h z̄

l,(k,h)∗
i

)

where (ȳl,k∗i , ȳm,k∗
i , ȳu,k∗i ∀i, k, h) (z̄

l,(k,h)∗
i , z̄

m,(k,h)∗
i , z̄

u,(k,h)∗
i ) are the optimal solutions ob-

tained from model (p6).

Definition 14. ith DMU in the network data envelopment analysis is called Fuzzy Cost Effi-
ciency if the observed Fuzzy Cost and the minimum Fuzzy Cost equal DMUi, that is,

K∑
k=1

˜̄yki ⊕
∑
h

˜̄z
(k,h)
i ≈

K∑
k=1

˜̄y∗i ⊕
∑
h

˜̄z
∗(k,h)
i

R
( K∑

k=1

˜̄yki ⊕
∑
h

˜̄z
(k,h)
i

)
≈ R

( K∑
k=1

˜̄y∗i ⊕
∑
h

˜̄z
∗(k,h)
i

)

8 Numerical example

In this section, an illustrative example of electric power companies are presented for describing
network DEA. As we know, the vertically integrated electric power companies consist of sev-
eral divisions such as generation, transmission and distribution. For illustrative purpose, ten
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vertically integrated electric power companies in the U.S in 1994 [16]. The inputs, outputs and
links are as follows:
Generation (Div1):
Input1 = Labor input (number of employees)
Transmission (Div2):
Input2 = Labor input (number of employees)
Output2 = Electric power sold to large customers
Distribution (Div3):
Input3 = Labor input (number of employees)
Output3 = Electric power sold to small customers
Link (1-2) = Electric power generated (output from Generation Devision and input to Trans-
mission Devision)
Link (2-3) = Electric power sent (output from Transmission Devision and input to Distribution
Devision) Here, it is assumed that the intermediate flow rates are able to rise or fall freely in the
link, so that the proposed model for evaluating the fuzzy revenue efficiency will be as follows:

max
1

4

[
K∑

k=1

ȳl,k +
∑
h

z̄l,(k,h) + 2
( K∑

k=1

ȳm,k +
∑
h

z̄m,(k,h)
)
+

K∑
k=1

ȳu,k +
∑
h

z̄u,(k,h)

]

subject to xl,ko ≥
n∑

j=1

X l,k
j λl,kj , k = 1, · · · ,K

xm,k
o ≥

n∑
j=1

Xm,k
j λm,k

j , k = 1, · · · ,K

xu,ko ≥
n∑

j=1

Xu,k
j λu,kj , k = 1, · · · ,K

ȳl,k ≤
n∑

j=1

ȳl,kj λl,kj , k = 1, · · · ,K

ȳm,k ≤
n∑

j=1

ȳm,k
j λm,k

j , k = 1, · · · ,K

ȳu,k ≤
n∑

j=1

ȳu,kj λu,kj , k = 1, · · · ,K

n∑
j=1

z̄
l,(k,h)
j λl,kj =

n∑
j=1

z
l,(k,h)
j λl,hj , ∀(k, h)

n∑
j=1

z̄
m,(k,h)
j λm,k

j =

n∑
j=1

z
m,(k,h)
j λm,h

j , ∀(k, h)

n∑
j=1

z̄
u,(k,h)
j λu,kj =

n∑
j=1

z
u,(k,h)
j λu,hj , ∀(k, h)

λl,kj ≥ 0, λm,k
j − λl,kj ≥ 0, λu,kj − λm,k

j ≥ 0 ∀j, k

ȳl,kj ≥ 0, ȳm,k
j − ȳl,kj ≥ 0, ȳu,kj − ȳm,k

j ≥ 0, ∀j, k
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z̄
l,(k,h)
j ≥ 0, z̄

m,(k,h)
j − z̄

l,(k,h)
j ≥ 0, z̄

u,(k,h)
j − z̄

m,(k,h)
j ≥ 0, ∀j, k, h

Table 1 contains the fuzzy inputs, fuzzy outputs, and fuzzy revenues of each division.

Figure 2: Vertically integrated electric power companies

The revenue of the input and output links is also given in Table 2.

Table 1: Fuzzy inputs, fuzzy outputs, fuzzy input cost in three divisions

Div1 Div2 Div3

DMU Input1 Input2 Output3 P2 Input3 Output3 P3

A (0.836,0.838,0.840) (0.275,0.277,0.279) (0.876,0.879,0.881) (896,900,903) (0.960,0.962,0.965) (0.335,0.337,0.340) (685,687,689)

B (1.231,1.233,1.235) (0.130,0.132,0.133) (0.535,0.538,0.540) (737,739,742) (0.440,0.443,0.445) (0.15,0.18,0.20) (190,194,196)

C (0.318,0.321,0.323) (0.042,0.045,0.048) (0.909,0.911,0.914) (138,142,145) (0.482,0.485,0.487) (0.195,0.198,0.200) (280,285,287)

D (1.480.1.483,1.485) (0.110,0.111,0.113) (0.55,0.57„0.59) (860,863,865) (0.465,0,467,0.470) (0.488,0.491,0.495) (398,401,404)

E (1.590,1.592,1.595) (0.205,0.208,0.211) (1.085,1.086,1.089) (305,307,310) (1.070,1.073,1.075) (0.370,0.372,0.375) (175,179,182)

F (0.76,0.79,0.81) (0.136,0.139,0.141) (0.720,0.722,0.724) (1198,1200,1203) (0.543,0.545,0.548) (0.250,0.253,0.255) (1052,1054,1056)

G (0.449,0.451,0.454) (0.073,0.075,0.077) (0.507,0.509,0.511) (268,270,273) (0.365,0.366,0.368) (0.238,0.241,0.244) (390,394,396)

H (0.405,0.408,0.410) (0.072,0.074,0.076) (0.617,0.619,0.621) (985,987,990) (0.226,0.229,0.231) (0.095,0.097,0.099) (272,276,280)

I (1.860,1.864,1.865) (0.059,0.061,0.063) (1.021,1.023,1.025) (354,356,358) (0.689,0.691,0.693) (0.35,0.38,0.40) (838,840,843)

J (1.220,1.222,1.225) (0.147,0.149,0.151) (0.765,0.769,0.771) (467,470,472) (0.336,0.337,0.339) (0.175,0.178,0.180) (159,161,164)

The above model is solved using GAMS software and the results are shown in Table 3.
As Table 3 shows none of the decision making units are revenue efficiency. Indeed, one of

the major drawbacks of the network models is that the full efficiency cannot be achieved in
most of the cases. To solve this issue, efficiency of each unit can be devided to the maximum
efficiency, resulting to deriving the relative efficiency (Table 3, column 4). In this case, unit H
is the relative revenue efficiency and units A, C, D, F and G have the relative revenue efficiency
more than half.
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Table 2: Fuzzy unit input link revenue

Link
Link12 Lp1 Link23 Lp2
(0.891,0.894,0.897) (945,947,950) (0.360,0.362,0.365) (1031,1034,1036)
(0.675,0.678,0.780) (680,682,685) (0.185,0.188,0.190) (986,989,992)
(0.835,0.836,0.838) (700,705,708) (0.205,0.207,0.210) (750,752,755)
(0.865,0.869,0.872) (1125,1128,1130) (0.514,0.516,0.520) (1109,1111,1113)
(0.690,0.693,0.695) (490,492,495) (0.405,0.407,0.410) (850,852,855)
(0.961,0.966,0.970) (665,670,673) (0.265,0.269,0.273) (640,642,645)
(0.645,0.647,0.650) (1085,1087,1090) (0.255,0.257,0.259) (820,824,826)
(0.752,0.756,0.760) (924,926,930) (0.101,0.103,0.105) (970,973,975)
(1.189,1.191,1.194) (630,634,638) (0.400,0.402,0.405) (910,913,915)
(0.790,0.792,0.795) (775,779,782) (0.185,0.187,0.190) (645,647,650)

Table 3: Evaluating and ranking revenue efficiency

DMUs ˜̄α∗k R( ˜̄α∗k) Relative Efficiency Rank
A (0.433,.0.648,0.734) 0.648 0.733 4
B (0.130,0.331,0.450) 0.331 0.374 8
C (0.435,0.680,0.872) 0.680 0.769 3
D (0.435,0.553,0.754) 0.553 0.625 6
E (0.125,0.263,0.365) 0.263 0.297 10
F (0.534,0.709,0.845) 0.709 0.802 2
G (0.456,0.647,0.745) 0.647 0.732 5
H (0.534,0.884,0.915) 0.884 1 1
I (0.234,0.403,0.478) 0.403 0.456 7
J (0.25,0.33,0.56) 0.33 0.373 9

9 Conclusion

Given the importance of revenue efficiency in the management and economic sectors as well
as inaccuracies in real-world data, this paper proposes a new idea of the extension of classical
NNRE model to fully fuzzy environments for dealing with the practical situations more realisti-
cally. A FFNNRE model has been developed where input–output data and their corresponding
prices are taken in triangular membership forms. A method based on ranking function ap-
proach is presented to transform FFNNRE model into the crisp linear programming problem.
The final FFNNRE measures are then defined as TFNs. Finally, using the presented ranking
function in the article, the DMUs are ranked based on revenue efficiency.

Since revenue efficiency sensitivity analysis helps the manager or decision maker to modify
the amount of outputs under evaluation to maximize revenue . Therefore, future work can
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include sensitivity analysis of performance, as well as finding the appropriate stability area to
maintain revenue efficiency in precise and imprecise network data envelopment analysis.
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چکیده

داده ها دقیق اندازه گیری می باشد. فازی تمام شبکه ای داده های پوششی تحلیل در درآمد کارایی ارزیابی مقاله، این هدف
یکی نمی باشد. درستی فرض مسائل، حل در داده ها بودن دقیق فرض بنابراین نمی باشد، امکان پذیر عملا واقعی دنیای در
مدل تبدیل برای خطی، رتبه بندی توابع از مقاله این در می باشد. فازی داده های نادقیق، داده های با مواجهه راه های از
درآمد کارایی مثلثی، فازی اعداد فرض با و می شود استفاده دقیق خطی برنامه ریزی مسئله یک به درآمد کارایی فازی تمام

می دهد. نشان را پیشنهادی روش عددی مثال یک پایان، در می شود. اندازه گیری تصمیم گیرنده ها فازی
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