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Abstract. Location theory is an interstice field of optimization and operations
research. In the classic location models, the goal is finding the location of
one or more facilities such that some criteria such as transportation cost, the
sum of distances passed by clients, total service time and cost of servicing
are minimized. The goal Weber location problem is a special case of location
models that has been considered recently by some researchers. In this
problem the ideal is locating the facility in the distance ri, from the i-th
client. However, in most instances, the solution of this problem doesn’t exist.
Therefore, the minimizing sum of errors is considered. In the previous versions
of the goal location problem the penalty functions have been considered by
some symmetric functions such as square and absolute errors of distances
between clients and ideal point. In this paper, we consider the asymmetric
linex function as the error function. We consider the case that the distances
are measured by Lp norm. Some iterative methods are used to solve the
problem and the results are compared with some previously examined methods.
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1 Introduction

Nowadays location theory has many applications in the real life models. The Fermat-
Weber single facility location problem is one of the fundamental models in location
theory. In this problem, n existing demand points are located at known distinct points
A1, · · · , An, and a new facility should be located at a point X such that the sum of
weighted distances from it to the demand points is minimized. Let d(X,Ai) represents
the distance between points X and Ai and wi be the weight of demands on point Ai.
Then the Fermat-Weber single facility location problem is minimizing the following
function:

F (X) =
n∑

i=1

wid(X,Ai). (1)

Weiszfeld [18] in (1937) presented an iterative procedure for solving this problem with
Euclidean distance. This algorithm is widely used because of its simplicity and effec-
tiveness. The algorithm can be generalized to other location problems where the cost is
a function of the Euclidean distance rather than just being proportional to the distance
(see e.g. [5, 6, 8, 9, 16]).

Fathali et al. [11], introduced a special case of single facility location problem in
which a specified radius for every demand point is considered and we want the distance
between new facility and demand point Ai be equal to the corresponding radius, ri.
However, since in most of instances this point does not exist, they tried to minimize
the sum of square errors. Jamalian and Fathali [12] presented a linear model for the
problem with absolute error. Then in 2017, Fathali and Jamalian [10] called this
problem Goal Weber Facility Location Problem (GWFLP) and presented a particle
swarm optimization method for the model with square error. Recently, Soleimani et
al. [15] considered the square error model with Lp norm and proposed a Gauss-Newton
and imperialist competitive algorithm for solving the problem. Table 1 shows a brief
literature review of GWFLP.

As mentioned in [11] one of application of GWFLP is finding the location of a com-
pany in the vicinity of some cities with respect to the establishing and transportation
costs. Suppose that the cost of establishment a facility in the regions that is farther
than a given distance ri from the city i is very low. On the other hand, moving away
from a city causes increasing transportation costs. Therefore a trade-off between es-
tablishing and transportation costs seems to be reasonable. Some other applications
of GWFLP are in desirable and undesirable facility location models, where the facility
shouldn’t be close than a specified distance to the facility center, because of its unde-
sirability. On the other hand, if the facility is so far from the city center, the cost of
providing security, human forces, transportation and other costs will be increased.



3A. Soleimani Koorandeh, J. Fathali, A. Nezakati, M. Nazari/ COAM, 4 (1), Spring-Summer 2019

Table 1: The literature review of GWFLP models.

Norm Penalty function
Authors Symmetric Asymmetric

Absolute error Square error Linex
Fathali et al.[11] L2 - * -
Jamalian et al. [12] L1 * - -
Fathali et al. [10] L2 - * -
Soleimani et al. [15] Lp * * -
Present paper Lp * * *

In all previously presented papers on goal facility location problem the objective
function is symmetric, i.e. the cost of positive and negative errors are the same. How-
ever, in real applications these costs may not equal. Therefore, in this paper we consider
the Linex loss function as the objective function. By changing the parameters of this
function, it can cover many symmetric and asymmetric cases.

There are many iterative methods for solving nonlinear programming models (see
e.g. [13]). Among them we used BFGS method and some of its modifications which are
the most efficient quasi-Newton methods for solving unconstrained nonlinear models
(see [4] and references therein). The BFGS and six modified versions of it are examined
for solving GWFLP with Linex function and the results are compared with some other
previously presented methods.

In what follows, the preliminary and definition of loss functions are given in Section
2. In Section 3, the main properties of the presented model are proposed. Section
4 contains iterative methods and the imperialist Competitive Algorithm to solve the
considered problem. In Section 5, the computational results obtained by the proposed
methods are given.

2 Penalty Functions

Definition 1. Let θ be a given parameter and D be the set of all estimators of θ. Then
the error of estimation θ by δ ∈ D is shown by the penalty or loss function E(θ, δ) that
is satisfied in the following conditions:

1. E(θ, δ) ≥ 0, ∀δ ∈ D,

2. E(θ, δ) = 0, ⇐⇒ θ = δ.
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Two applicable symmetric loss functions are: 1- square error, E1(θ, δ) = (θ − δ)2,
2- absolute error, E2(θ, δ) = |θ − δ|.

As an asymmetric loss function we consider the following well known Linex function,
which is introduced by Varian [17].

E3(∆) = b(ea∆ − a∆− 1),

where ∆ = θ − δ, a 6= 0 and b > 0.
The Linex function is convex. Figure 1 shows the loss function E3(∆) for b = 1

and varying values of a. For the small values of |a|, this function is nearly symmetric
(see Figure 1 part b), however, for the case |a| = 1 it is not a symmetric function (see
Figure 1 part a).

(a) (b)

Figure 1: The loss function E3(∆) for b = 1 and varying values of a.

3 Goal Weber Facility Location Problems

Let n points A1, ..., An be given in the plane. The coordinate and weight of point Ai,
for i = 1, ..., n, are (ai, bi) and wi, respectively. Let ri, for i = 1, ..., n, be the given ideal
distance between the point Ai and the server. In the Goal Weber Facility Location
Problem (GWFLP) we want to find the location of a new facility X = (x, y) in the
plane such that the following function is minimized:

F (X) =
n∑

i=1

wiE(d(X,Ai)− ri), (2)

where d(X,Ai) for i = 1, ..., n, is the distance between points Ai and X.
In the case E = E2, Fathali et al. [11] showed that the objective function of model

(2) with L2 norm is non convex and the optimal solution is in the extended rectangular
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hull of the demand points. Extended rectangular hull of demand points is the smallest
rectangle which contains all the demand points with their circles. The same property
for Lp norm, in the cases E = E1 and E = E2 have been shown in [15]. In this paper
we consider the Lp norm with asymmetric linex loss function, i.e. the case E = E3.

The model of GWFLP with linex loss function under Lp norm is as follows.

minFL(X) =
n∑

i=1

wi(e
a(Lp(X−Ai)−ri) − a(Lp(X −Ai)− ri)− 1). (3)

Theorem 1. The optimal solution of problem (3) is in the extended rectangular hull
of the demand points.

Proof. Suppose ERH be the extended rectangular hull of the existing points. Then
RH1 = (amin, bmin), RH2 = (amin, bmax), RH3 = (amax, bmax) and RH4 = (amax, bmin)

are the extreme points of ERH, where

amin = min {ai − ri|i = 1, . . . , n},

amax = max {ai + ri|i = 1, . . . , n},

bmin = min {bi − ri|i = 1, . . . , n},

bmax = max {bi + ri|i = 1, . . . , n}.

Suppose X̄ = (x̄, ȳ) /∈ ERH, then the following cases may happen: 1- x̄ > amax, 2-
x̄ < amin, 3- ȳ > bmax and 4- ȳ < bmin. It is not so difficult to show that in each of
these cases X̄ is not optimal. We present the proof for the first case. The proofs of the
other cases are the same.

Consider the case x̄ > amax, then let X ′ = (amax, ȳ). For i = 1, . . . , n, we have

Lp(X̄ −Ai) = (|x̄− ai|p + |ȳ − bi|p)
1
p > (|amax − ai|p + |ȳ − bi|p)

1
p = Lp(X

′ −Xi) > ri.

Therefor,

(|x̄− ai|p + |ȳ − bi|p)
1
p − ri > (|amax − ai|p + |ȳ − bi|p)

1
p − ri > 0.

Since wi ≥ 0, for i = 1, . . . , n, thus

wi(e
a(Lp(X̄−Ai)−ri) − a(Lp(X̄ −Ai)− ri)− 1) > wi(e

a(Lp(X′
i)−ri) − a(Lp(X

′
i)− ri)− 1).

So FL(X̄) > FL(X
′) and X̄ is not an optimal solution of (3).

Now we want to find the optimal solution of problem (3). Since Linex function is
convex and wi ≥ 0, for i = 1, · · · , n, then the following lemma holds.

Lemma 1. The objective function of (3) is convex.

Note that as Fathali et al. [11] showed, the GWFLP with Euclidean norm is not
convex and local optimum may not be global. However, in the case of Linex function
if we could find a local optimum then it is also global.
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3.1 The Weiszfeld Like Method

To find the optimal solution of our considered problem, we can use the necessary
condition of optimality, i.e. ∂FL(X)

∂X = 0 to obtain a candidate optimal solution. But
FL(X) is not differentiable in the existing points. Therefore, we use the following
hyperbolic approximation of Lp norm.

Lh
p(X −Ai) = (((x− ai)

2 + ϵ)
p
2 + ((y − bi)

2 + ϵ)
p
2 )

1
p ,

where ϵ is a small positive number.
Consequently, the objective function of GWFLP with this norm is defined as follows.

F h
L(X) =

n∑
i=1

wi(e
a(Lh

p (X−Ai)−ri) − a(Lh
p(X −Ai)− ri)− 1) (4)

Lemma 2.
lim
ϵ→0

|F h
L(X)− FL(X)| = 0.

Proof. By Mankowski inequality

|wi(ea(L
h
p (X−Ai)−ri) − a(Lhp(X −Ai)− ri)− 1)− wi(e

a(Lp(X−Ai)−ri) − a(Lp(X −Ai)− ri)− 1)|

= |wi(ea(L
h
p (X−Ai)−ri) − ea(Lp(X−Ai)−ri))− awi(L

h
p(X −Ai)− Lp(X −Ai))|

≤ wi(|ea(L
h
p (X−Ai)−ri) − ea(Lp(X−Ai)−ri)|+ |a||Lhp(X −Ai)− Lp(X −Ai)|)

≤ wi(|ea(Lp(X−Ai)−ri)(e(2ϵ)
1
p − 1)|+ |a|(2ϵ)

1
p ).

Thus

|F h
L(X)− FL(X)| ≤

n∑
i=1

wi|ea(Lp(X−Ai)−ri)(e(2ϵ)
1
p − 1)|+ |a|(2ϵ)

1
p

n∑
i=1

wi.

Therefore
lim
ϵ→0

|F h
L(X)− FL(X)| = 0.

Now we use the necessary optimality condition for F h
l (X).

∂F h
L

∂x
=

n∑
i=1

awi

(
Rai(e

a(Lh
p (X−Ai)−ri) − 1)

DXi
(x− ai)

)
= 0, (5)

and
∂F h

L

∂y
=

n∑
i=1

awi

(
Rbi(e

a(Lh
p (X−Ai)−ri) − 1)

DXi
(y − bi)

)
= 0, (6)

where
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DXi = (((x− ai)
2 + ϵ)

p
2 + ((y − bi)

2 + ϵ)
p
2 )

p−1
p ,

Rai = ((x− ai)
2 + ϵ)

p−2
2 ,

and
Rbi = ((y − bi)

2 + ϵ)
p−2
2 .

Therefore, by starting with an initial point X0 = (x0, y0), we can use the following
iterative method.

xt+1 =

∑n
i=1

(
wiRati(e

a(Lh
p (Xt−Ai)−ri)−1)

DXt
i

ai

)
∑n

i=1

(
wiRati(e

a(Lh
p (Xt−Ai)−ri)−1)

DXt
i

) , (7)

and

yt+1 =

∑n
i=1

(
wiRbti(e

a(Lh
p (Xt−Ai)−ri)−1)

DXt
i

bi

)
∑n

i=1

(
wiRbti(e

a(Lh
p (Xt−Ai)−ri)−1)

DXt
i

) . (8)

The main idea of this method is the same as Weiszfeld algorithm, therefore we call it
the Weiszfeld Like Algorithm (WLA).

Since Lh
p(X

t −Ai) = (DXt
i )

1
p−1 , therefore,

xt+1 =

∑n
i=1

(
wiRati(e

a((DXt
i )

1
p−1 −ri)−1)

DXt
i

ai

)
∑n

i=1

(
wiRati(e

a((DXt
i
)

1
p−1 −ri)−1)

DXt
i

)

= x(t)−
∂Fh

L(Xt)
∂x

a
∑n

i=1

(
wiRati(e

a((DXt
i
)

1
p−1 −ri)−1)

DXt
i

) . (9)

and

yt+1 =

∑n
i=1

(
wiRbti(e

a((DXt
i )

1
p−1 −ri)−1)

DXt
i

bi

)
∑n

i=1

(
wiRbti(e

a((DXt
i
)

1
p−1 −ri)−1)

DXt
i

)

= y(t)−
∂Fh

L(Xt)
∂y

a
∑n

i=1

(
wiRbti(e

a((DXt
i
)

1
p−1 −ri)−1)

DXt
i

) . (10)
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The presented method in this section indeed is a fixed point iteration method which
is a linear convergence method. In the next section, we use a quasi-Newton method
which is faster than Wieiszfeld like algorithm.

4 The BFGS Method and Its Modified Versions

The BFGS method is the most popular quasi-Newton algorithm, named for its dis-
coverers Broyden, Flecher, Goldfarb, and Shanno. Quasi-Newton methods only used
the gradient of the objective function in each iteration and the second derivatives are
not required. Therefore, these methods are sometimes more efficient than Newton’s
methods (see [13]).

The BFGS method use the following iterative method

xk+1 = xk − αkHkgk,

where gk = ∇f(xk), Hk is an approximation of the Hessian of f in xk, and αk is the
step length that can be obtained by line search methods. Usually, αk is chosen to
satisfy the following conditions, called Wolfe conditions,

f(xk + αkdk) ≤ f(xk) + ραk∇fTk dk, (11)
f(xk + αkdk)

Tdk ≥ σ∇fTk dk, (12)

where 0 < ρ < σ < 1 and dk is the search direction in the iterative method.
In each iteration, Hk is updated as the following

Hk+1 = (I − ρksky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k , (13)

where yk = gk+1 − gk, sk = xk+1 − xk and ρk = 1
yTk sk

.
The BFGS method can be stated as the following algorithm.
There are many modifications of BFGS method for solving unconstrained optimiza-

tion problems in the literature. In the next section, we use six modified versions of
BFGS for solving GWFLP. These methods are listed in Table 2.

5 Computational Results

In this section we compare the results of BFGS methods and WLA, with Imperialist
Competitive Algorithm (ICA) and Gauss-Newton method (GN) [15].
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Algorithm 1 (BFGS)[13].
Input: The starting point x0, convergence tolerance ϵ > 0, inverse Hessian ap-
proximation H0.
Set k := 0 (iteration counter).
Iteration step:
While ||∇fk|| > ϵ do the following:

1. Compute search direction dk = −Hk∇fk.

2. Set xk+1 = xk +αkdk, where αk is computed from a line search procedure to
satisfy the Wolfe conditions (11) and (12).

3. Define sk = xk+1 − xk and yk = ∇fk+1 −∇fk.

4. Compute Hk+1 using (13).

5. Set k := k + 1.

end while

Table 2: The modifications of BFGS and their references.

Method Author/Authors
SBFGS Andrei [1]
TSBFGS Andrei [2]
MBFGS Yuan and Zengxin [19]
MMLSBFGS Babaie-Kafaki [3]
TMLSBFGS Babaie-Kafaki [4]
SMMLSBFGS Oren and Luengerger [14]

Consider the problem with n = 30 points that their coordinates, weights and ideal
distances are given in Table 3. In this table the columns with the heading ID show the
three cases of ideal distances.

In the case that the distances are measured by L2 norm, i.e. p = 2, all methods
converged to the points (8.34, 8.08), (8.30, 7.74) and (8.34, 8.09) with objective functions
45121, 12816 and 5928, respectively for the three cases of ideal distances. Table 4
contains the average CPU times of each of the examined methods.

As the results show, BFGS methods are faster than the other methods with the
same objective functions. Table 5 shows the results obtained by BFGS for varying
norms and the second case of ideal distances (ID2).
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Table 3: The coordinates, weights and ideal distances of existing points.

(x, y, w) ID (x, y, w) ID (x, y, w) ID
(1,3,3) (1,2,3) (14,15,1) (1,2,3) (10,8,1) (1,1,3)
(1,4,2) (1,2,3) (14,3,1) (1,1,3) (10,10,3) (1,2,3)
(2,15,1) (1,3,3) (14,1,2) (1,2,3) (11,4,2) (1,2,3)
(2,4,3) (1,2,3) (15,8,3) (1,2,3) (11,13,3) (1,1,3)
(3,6,2) (1,2,3) (15,10,3) (1,3,3) (13,3,1) (1,2,3)
(7,15,2) (1,2,3) (3,2,1) (1,3,3) (3,10,2) (1,2,3)
(8,3,1) (1,2,3) (4,6,1) (1,2,3) (9,11,2) (1,2,3)
(8,6,3) (1,2,3) (4,3,2) (1,3,3) (15,15,2) (1,2,3)
(8,5,1) (1,2,3) (6,8,3) (1,3,3) (7,14,2) (1,2,3)
(8,2,1) (1,3,3) (6,11,1) (1,1,3) (13,7,3) (1,3,3)

Table 4: The CPU times of examined methods.

Method CPU Time in second
ICA 14.25
GN 4.30
WLA 160.21
BFGS 2.31
SBFGS 2.29
TSBFGS 2.51
MBFGS 2.05
MMLSBFGS 1.95
TMLSBFGS 1.96
SMMLSBFGS 2.01

Table 5: The results of BFGS for varying values of p and the ideal distance ID2.

p X F (X)

1 (8.58,7.72) 386540

1.5 (8.42, 7.68) 32950
2 (8.30, 7.74) 12816
5 (8.18, 8.12) 4162

10 (8.13, 8.26) 3484

We also examined the examples with 100, 200 and 500 existing points. The coordi-
nates, weights and ideal distances are generated randomly. Table 6 shows the optimal
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points obtained by all examined methods. Since all methods find the same solution, we
compare the CPU time and number of iterations in Table 7. Since for the generated
instances the CPU times of ICA and WLA methods are extraordinarily large and BFGS
methods are very faster than GN, we just compare the results of BFGS methods.

Table 6: The results of large examples for the varying values of p.

n p X = (x, y)

100 1.5 (31.38,33.89)
100 2 (31.53,33.65)
100 3 (31.96,32.78)
200 1.5 (30.94,31.94)
200 2 (30.94,32.02)
200 3 (31.02,31.96)
500 1.5 (32.23,31.22)
500 2 (32.22,31.16)
500 3 (32.11,31.06)

Table 7: The CPU times and the number of iterations for the large examples with the varying values
of p.

Method n p = 1.5 p = 2 p = 3

CPU time iteration CPU time iteration CPU time iteration
100 11.18 8 6.20 7 8.31 6

BFGS 200 18.73 5 11.04 6 17.16 5
500 41.02 6 27.28 5 44.73 6
100 11.11 8 6.18 7 8.41 6

SBFGS 200 18.10 5 12.56 7 17.15 5
500 40.91 6 27.13 5 44.63 6
100 11.59 9 7.74 9 9.32 6

TSBFGS 200 21.95 6 13.74 7 21.84 8
500 45.19 8 30.26 6 41.25 5
100 9.87 7 5.33 4 9.39 5

MBFGS 200 17.92 6 13.54 7 17.28 5
500 34.73 4 27.20 6 42.39 5
100 7.94 6 6.03 7 8.21 6

MMLSBFGS 200 16.74 5 12.03 5 13.54 4
500 35.50 5 27.23 5 36.52 4
100 9.39 7 6.43 7 9.10 6

TMLSBFGS 200 16.61 5 12.06 5 16.46 5
500 35.65 5 27.43 5 39.06 5
100 9.38 7 6.45 7 9.10 6

SMMLSBFGS 200 16.95 5 12.32 5 16.51 5
500 35.82 5 27.27 5 38.80 5
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Efficiency comparisons were drawn using the Dolan-Mor´e performance profile [7] on
the running time and the total number of function. Performance profile gives, for every
t ≥ 1, the proportion p(t) of the test problems that each considered algorithmic variant
has a performance within a factor of t of the best. Figure 2 shows the performance
profiles of the total number of function and the CPU time for BFGS methods. The
results show that the MMLSBFGS and TMLSBFGS are computationally preferable to
the other methods.

Figure 2: Performance profiles of the total number of function and the CPU time for BFGS methods.

The properties of system were used during the tests are: core i5, 2.6 GHz and 6
GB RAM. In all instances, the parameters in the BFGS method are chosen as follows.

ρ = 10−4, σ = 0.1, X0 = (22), ϵ = 10−5, H0 = I.

6 Summary and Conclusion

In this paper we study a version of the single facility location problem in which we
want to find the location of a new facility such that the sum of weighted errors under
linex loss function is minimized. This problem is convex and we showed that optimal
solution of the problem is in the extended convex hull of demand points. We used the
iterative Weiszfeld-like and BFGS algorithms for solving the considered problem. The
results are compared with those obtained by ICA and GN algorithms. The results show
that the BFGS iterative procedures are the best in the time of solving problem.
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Other kinds of objective functions such as Hamming norm and minimax criteria
and also multiple facility location problem can be considered in the future works.
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چکیده

هدف مکانیابی، کلاسیک مدل های در است. عملیات در تحقیق و بهینه سازی در جذاب مباحث از یکی مکانیابی نظریه
پیموده فاصله مجموع نقل، و حمل هزینه قبیل از معیارهایی که قسمی به است دهنده سرویس چند یا یک مکان کردن پیدا
خاص حالت یک آرمانی وبر مکانیابی مساله شود. کمینه سرویس دهی هزینه و سرویس نهایی زمان مشتریان، توسط شده
سرویس که است این ایده آل مساله اين در است. گرفته قرار پژوهشگران توجه مورد اخیرا که است مکانیابی مسائل از
مساله در لذا نیست. جواب دارای مساله این موارد اغلب در اما گیرد. قرار iام مشتری از ri فاصله در دقیقا دهنده
متقارن، توابع صورت به جریمه تابع قبلی، مقالات در هستیم. خطا وزنی مجموع کردن کمينه دنبال به آرمانی مکانیابی
مقاله این در است. شده گرفته نظر در ایده آل نقطه و مشتریان بین فاصله خطای مجموع مطلق قدر و مجذور قبیل از
گرفته اندازه Lp نرم با فاصله ها که حالتی باشد. نامتقارن می تواند که می گیریم نظر در لینکس تابع صورت به را خطا تابع
چند از استفاده با را شده ارائه روش های و کرده بررسی مساله حل برای را تکراری روش چند می گیریم. نظر در را می شود

می کنیم. مقایسه هم با مثال
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