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1 Introduction and Problem Statement

Shape optimization is part of the field of optimal control. Typically, there is a sys-
tem governed by a partial differential equation whose solution, uΩ, depends on some
geometric variables of the shape. The problem is to minimize a given cost functional
J(uΩ) over the set S of all admissible shapes with piecewise smooth boundary. These
kinds of problems are typically solved numerically.
Unfortunately, very limited number of articles and books are available on 3-D shape
optimization; however, many industrial factors cannot be assumed in a 2-D manner
and a 3-D design is needed. But, 3-D optimal shape design methods are problematic
because of the following reasons:

i) The main challenge of most optimization methods is the description of the per-
formed shapes in terms of design variables ([20]).

ii) Mesh deformation (such as finite element method) is a major problem for 3-D
optimal shape design problems since after a few iterations, the mesh may no
longer be feasible. It may cause divergence of the optimization algorithm (see
[20]).

iii) In contrast with 2-D shape optimization problems, parameterization techniques
for 3-D problems describe the shape or the shape modifications with a large set
of constraints which cause some problems in the convergence of the optimization
process (see [4]).

iv) Iterative methods, such as the level set method, require the objective function
to be decreased; but their main drawback is the possibility of falling into a local
(and non-global) minima if the initialization is too far from a global minimum
([2]).

On the other hand, in 1986, Rubio introduced an embedding process for solving optimal
control problems governed by ordinary differential equations (see [26]), using positive
Radon measures. Then, it was employed to obtain the optimal control for systems
governed by partial differential equations (like [16] and [27]). Consequently, since 1999
till now, with the help of this method, different cases of the optimal shape design
problems have been solved (a brief report of these kinds of work was given in [11] and
we can also emphasize on [8], [9], [19], [10] and [12]). The main goal of this paper is to
extend the above-mentioned method for designing unknown general three dimensional
optimal shapes. We emphasize that this method does not depend on an initial shape
or value and can also cover the above mentioned difficulties.
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In many technological situations, a given structure whose optimal position is at rest
(for instance), starts to vibrate due to uncontrolled disturbances which we would like
to stop. One possibility is through damping mechanisms as is described, certainly in an
ideal situation, in [22]. So far, several studies have extensively investigated the problem
of optimal stabilization for the 2-D wave equation from different perspectives (see, for
instance, [5], [6], [7], [14] and [18]). The performed analysis by Hebrard et al. highlights
the effect of the over-damping phenomenon characteristic of this damped wave equation
[15]. Freitas [14] and Lopez [18] solved the mentioned problem in which the dissipation
vanishes for large values of the constant damping coefficient. In 2006, Munch et al. used
Young measure to solve a similar problem and presented a solution method (at least for
the problem with a constant damping function); for this purpose, first, the problem was
transferred to a variational form (called relax problem) by applying a theorem about
Young measure properties. In that study, the damping coefficient was fixed and the
best unknown internal region was determined by the use of descend gradient method
[21]. In sequence, the best damping coefficient and damping set were determined at
different times using level set method [22].

Having a bounded domain Ω of R3, in this paper, the problem of finding an optimal
observation domain ω ⊂ Ω or general damping wave equations is modeled and solved.
he aim is to optimize not only the placement but also the shape of ω, over all possible
measurable subsets of Ω having a certain prescribed measure. Although such questions
are frequently posed in engineering applications, they are under-researched in mathe-
matics. In this regard, for the first time, we consider a shape optimization problem to
find the optimal place of a sensor, modeled by a three-dimensional wave equation with
a fixed damping coefficient. The objective is to find the shape of the damping set that
minimizes the energy at some given end time ([23] and [24]).

2 Optimal Wave Damping Problem

Let Ω ⊂ R3 be a domain with piecewise smooth boundary and consider the three-
dimensional damping wave equation with Dirichlet boundary conditions. Consider
additionally that ω is a subset of Ω of positive Lebesgue measure and independent of the
time t ∈ (0, T ). Moreover, the damping potential a is such that a(x) = a > 0 a.e. x ∈ ω

. The resulting equation for the displacement of the sensor is then ([22] and [3])
ü−∆u+ a(x)u̇ = 0, (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ Ω.

(1)
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We refer to ω as the damping set which is an unknown region in Ω, ∂ω is a smooth and
simple closed curve boundary, which must be identified, ü, u0 and u1 are also indicated
as ∂2u

∂t2
, initial position and velocity, respectively. The energy of the system is known to

be [31]
E(ω, a, t) =

1

2

∫
Ω
(|u̇(x, t)|2 + |∇u(x, t)|2)dv. (2)

The objective is to minimize the total energy of the membrane at some fixed end time
T :

Minω∈S E(ω, a, T ).

This is a shape optimization problem the solution of which depends on the chosen
constants a and T . In this study, we choose a moderate in such a way to avoid any
problems related to the phenomena of overdamping, and T is large enough so that
observability problems related to the finite propagation speed of waves do not occur.
Not having any kind of constraint on the damping set, we will obtain the trivial solution
ω∗ = Ω; furthermore, we introduce the area constraint

VL = {ω ⊂ Ω : |ω| = L|Ω|, 0 < L < 1}, (3)

in which |ω| indicates the measure of ω. This constraint can be shown by the following
integral relation: ∫

ω
dv = L

∫
Ω
dv. (4)

System (1) is well-posed (see [17]) and its energy is satisfied in the following dissipation
law (see [30]):

Ė(ω, a, t) = −
∫
Ω
a(x)|u̇(x, t)|2dv ≤ 0.

Here, u denotes the transversal displacement at point x in time t.
The mentioned optimal shape design (OSD) problem is defined based on the un-

known geometrical pair (ω, ∂ω); this pair consists of a measurable set that can be
regarded as a nonempty region, and a simple closed surface which is its boundary.
The unknown shape which is bounded and has a specified volume is placed on the
top of the plane (r, θ). Its boundaries include the unknown surface ∂ω with equation
z = f(r, θ) : D → A and its image in the plane (r, θ) is region D; that is, a simple
smooth closed curve. Also, its height is bounded between zmin and zmax. If region D is
known, we can obtain the unknown ∂ω according to the method presented in the next
sections. Therefore, we intend to find the optimal unknown surface ∂ω and the optimal
unknown region D simultaneously so that a given performance criterion is minimized.
Moreover, a curve can be approximated by broken lines so that ∂D (and hence D) can
be approximated with a number M of its points (corners of broken lines belonging to



19H. Alimorad, A. Fakharzadeh Jahromi/ COAM, 4 (1), Spring-Summer 2019

∂D) which is called the M-representation of D. For a fixed number M, the points in
the M-representation set can have the fixed θ-components like θi = θ

′
i, i = 1, 2, . . . ,M

without losing generality. Hence, each admissible M-representation set called DM can
be characterized by M variables r1, r2, . . . , rM . Consequently, ∂D defined by a finite
set of M real variables (r1, r2, . . . , rM ). Therefore, we introduce the set of admissible
surfaces as follow:

ωA = {(∂ω,D)|ω = ∂ω ∪D,D ∈ DM , zmin ≤ z ≤ zmax,

∫
ω
dv = L

∫
Ω
dv},

where region D ⊂ R2 is defined as follow:

D = {(r, θ)| 0 ≤ r ≤ h(θ), 0 ≤ θ ≤ 2π},

where h(θ) is an unknown continuous function. We prefer to solve appropriate prob-
lems in cylindrical coordinates since where 0 ≤ θ ≤ 2π and r > 0, the curve ∂D is
automatically simple. This simple fact is an essential part in our calculations and also
in numerical simulations. Then, we have:

|∇u| = [(
∂u

∂r
)2 +

1

r2
(
∂u

∂θ
)2 + (

∂u

∂z
)2],

and therefore:

E(ω, a, T ) =
1

2

∫
Ω
[|u̇(r, θ, z, T )|2 + (

∂u

∂r
)2 +

1

r2
(
∂u

∂θ
)2 + (

∂u

∂z
)2]rdrdθdz. (5)

It is worth mentioning that the nature of Ω has not changed but its representation has
changed; therefore, we use the same symbol so that at the end, the optimal shape is
shown in cylindrical coordinates.

In the present study, for the first time, we determined 3-D unknown w by a lin-
earization method based on the properties of Radon measure. We attempt to find the
unknown region ω through a two-phase optimization procedure which is based on an
embedding technique. To apply this method, first, we represent the problem into a vari-
ational form; next, it is transferred into a new measure theoretical problem in which two
unknown positive Radon measures in a product space of measures are sought. Then,
the solution procedure is explained and finally, by a 2-phase optimization technique, a
nearly optimal shape as well as the minimizing value of system energy are constructed.

The paper is organized as follows: the next section is devoted to the basic deforma-
tion in variational form. Section 4 is deals with embedding process and approximation
schemes. In Section 5, based on the previous discussions, we present the solution al-
gorithm. Then, a numerical simulation is presented in Section 6. Concluding remarks
are also presented in Section 7.
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3 Basic Deformation

In general, it is difficult to identify a classical solution for problem (1); thus, attempts
have usually been made to find a weak (or generalized) solution of the problem, which
is more applicable in our work. The main idea in this replacement is to change the
problem into the variational form. To this end, by multiplying (1) with a function
φ ∈ H1

0 ((Ω× (0, T ))) and using Green theorem ([28]), we have:∫
Ω
üφdv −

∫
Ω
u∆φdv +

∫
Ω
a(r, θ, z)u̇φdv = 0. (6)

Integrating both sides of (6) with respect to t over [0, T ] gives:∫ T

0

∫
Ω
üφdvdt−

∫ T

0

∫
Ω
u∆φdvdt+

∫ T

0

∫
Ω
a(r, θ, z)u̇φdvdt = 0, (7)

By part-by-part integrating the first left expression with respect to t twice and inte-
grating the third expression of (7), we can conclude that:∫ T

0

∫
Ω üφdvdt =

∫
Ω[u̇(T )φ(T )− u̇(0)φ(0)− u(T )φ̇(T ) + u(0)φ̇(0)]dv

+
∫ T
0

∫
Ω uφ̈dvdt;∫ T

0

∫
Ω a(r, θ, z)u̇φdvdt =

∫
Ω a(r, θ, z)[u(T )φ(T )− u(0)φ(0)−

∫ T
0 uφ̇dt]dv

=
∫
Ω a(r, θ, z)[u(T )φ(T )− u(0)φ(0)]dv −

∫ T
0

∫
Ω a(r, θ, z)uφ̇dvdt.

(8)

Now, by substituting initial conditions (1.c) in (8), we have:∫ T
0

∫
Ω üφdvdt =

∫
Ω[u̇(T )φ(T )− u1φ(0)− u(T )φ̇(T ) + u0φ̇(0)]dv

+
∫ T
0

∫
Ω uφ̈dvdt;∫ T

0

∫
Ω a(r, θ, z)u̇φdvdt =

∫
Ω a(r, θ, z)[u(T )φ(T )− u0φ(0)]dv

−
∫ T
0

∫
Ω a(r, θ, z)uφ̇dvdt.

(9)

By applying (9), the equality (7) is changed to:∫
Ω u̇(T )φ(T )dv −

∫
Ω u(T )φ̇(T )dv −

∫ T
0

∫
Ω u∆φdvdt+

∫
Ω a(r, θ, z)u(T )φ(T )dv

−
∫
Ω a(r, θ, z)u0φ(0)dv −

∫ T
0

∫
Ω a(r, θ, z)uφ̇dvdt+

∫ T
0

∫
Ω uφ̈dvdt

=
∫
Ω[u1φ(0)− u0φ̇(0)]dv, φ ∈ H1

0 (Ω× (0, T ))

(10)
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Moreover, for all (r, θ, z, t) ∈ ∂Ω×[0, T ] by the initial condition, we have u(r, θ, z, t) = 0;
to applying this condition and using Green theorem, we have:∫

∂Ω
u(r, θ, z, t)φ(r, θ, z, t).ndσ =

∫
Ω
div(u(r, θ, z, t)φ(r, θ, z, t))dv = 0, (11)

where n is outward normal vector on boundary Ω. With the definition of a(r, θ, z), we
have: ∫

Ω a(r, θ, z)u(T )φ(T )dv =
∫
ω au(T )φ(T )dv∫

Ω a(r, θ, z)u0φ(0)dv =
∫
ω au0φ(0)dv∫ T

0

∫
Ω a(r, θ, z)uφ̇dvdt =

∫ T
0

∫
ω auφ̇dvdt.

Due to the nature of surface ∂ω (smooth and continuous), we can change the volume
integrals on ω into surface integrals in order to simplify the calculations as follow:∫

ω dv =
∫ ∫

D

∫ z
zmin

dv =
∫ ∫

D(z − zmin)dA = L
∫
Ω dv;∫

ω au(T )φ(T )dv = a
∫ ∫

D

∫ z
zmin

u(T )φ(T )dv = a
∫ ∫

D z(u(T )φ(T ))dA,

without loss of generality, by just moving plane (r, θ) to plane z = zmin, we can assume
zmin = 0.

Therefore, problem of obtaining the optimal shape for minimizing energy of system
(1) in cylindrical coordinates has the following generalized presentation:

min E(ω, a, T ) =
1

2

∫
Ω
[|u̇(r, θ, z, T )|2 + (

∂u

∂r
)2 +

1

r2
(
∂u

∂θ
)2 + (

∂u

∂z
)2]rdrdθdz,

s.t. ∫
Ω
u̇(T )φ(T )rdrdθdz −

∫
Ω
u(T )φ̇(T )rdrdθdz −

∫ T

0

∫
Ω
u∆φrdrdθdzdt

+

∫
Ω
a(r, θ, z)u(T )φ(T )rdrdθdz −

∫
Ω
a(r, θ, z)u0 φ(0)rdrdθdz

−
∫ T

0

∫
Ω
a(r, θ, z)uφ̇rdrdθdzdt+

∫ T

0

∫
Ω
uφ̈rdrdθdzdt = Φ;∫

Ω
div(u(r, θ, z, t)φ(r, θ, z, t))rdrdθdz = 0, ∀φ ∈ H1

0 (Ω× (0, T ));∫
ω
rdrdθdz = L

∫
Ω
rdrdθdz, (12)

in which
Φ =

∫
Ω
[u1(r, θ, z)φ(0)− u0(r, θ, z)φ̇(0)]rdrdθdz.

To solve (12), situations are ready to use an embedding process; therefore, we
change the problem and consider a new one with a different formulation. By applying
this method, we show how one can obtain optimal region ω and the amount of the
minimized energy simultaneously.
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4 Embedding the Solution Space: Metamorphosis

The solution method which is based on an embedding process involves several stages
to set up a linear programming problem whose solution is converged to the solution
of the original problem (see [26]). This is one of the outstanding advantages of this
method even for strongly nonlinear problems. In this manner, we present a new version
of shape measure method to solve the optimal shape design (12). First, by defining
a new variational formulation, for each obtained surface, an optimal control problem
equivalent to the original problem is obtained. Then, a measure theoretical approach
with two-stage of approximation is used to convert the optimal control problem to a
finite dimensional LP. The solution of this LP is used to construct an approximation
solution for the original optimal shape problem in which when the approximation is
finer and finer, the solution converges to the solution of the original problem. Thus, the
proposed approach is practical and accurate enough whose accuracy can be improved
as far as desired (see [9]).

4.1 Step 1: Displaying the problem in variational form

The following conditions put on the functions as well as sets will serve two important
purposes. First, they are reasonable conditions which are usually met when considering
classical problems. Second, they will allow us to modify these classical problems, which
has more advantageous.
We consider function ψ(r, θ) that is infinite differentiable inside region D (say =(D0))
which has compact support; consider φ1(θ, r, z) = zψ(r, θ). Hence, we define function
Ψ so that the absolute continuous condition of path function can be imposed on the
problem:

Ψ =
1

r
(2 (r − 1) frψθ + ψfθ + fψθ + (r − 1) (frθψ + fθψr + fψrθ)) .

Since each differentiable function with finite derivatives satisfies the Lipschitz condition
and is absolutely continuous, function ψ(r, θ) is also absolutely continuous with respect
to each of the independent variables r and θ; if z is absolutely continuous, then, function
zψ(r, θ) is also absolutely continuous (see [25]). Now, we suppose F = (φ1r, φ1θ, φ1z)

and φ1(θ, r, z) = zψ(r, θ), then, for all ψ ∈ C(D), we have:

∇× F = (1r
∂φ1z
∂θ − ∂φ1θ

∂z )r̂ + (
∂φ1r
∂z − ∂φ1z

∂r )θ̂ + 1
r (

∂(rφ1θ
)

∂r − ∂φ1r
∂θ )ẑ,

and since the surface equation is z = f(θ, r), one can conclude that∇f = (−fr, −1
r fθ, 1),

and according to Stoke,s theorem, we have:
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∮
∂D

Fdr =

∫ ∫
S
∇× F.n dσ =

∫ ∫
D
∇× F.∇f dA =

∫ ∫
D
Ψ(θ, r, z, ui)rdrdθ

=

∫ ∫
D

1

r
(2 (r − 1) frψθ + ψfθ + fψθ + (r − 1) (frθψ + fθψr + fψrθ))rdrdθ = 0.

Since supp(ψ) ⊂ D0, the boundary of D is outside of its support and the right hand
side of the above integral is equal to zero.

We consider sphere B so that D × A ⊂ B and show the space of real-valued and
continuously differentiable functions with the first and second order bounded contin-
uous derivatives on B by C ′

(B). Based on similar reasons for the choice ψ(r, θ), the
second class of functions in C ′

(B) is selected as the functions that only depend on the
independent variables θ and r; we show the set of these functions with C1(B). In this
case, we have:∫

ω

1√
1
r2
f
2

θ
+ f2r + 1

f (θ, r) dσ =

∫ ∫
D
f (θ, r) rdrdθ ≡ af ; f ∈ C1 (B).

Therefore, problem (12) can be displayed in a new variational form as follow:

min E(ω, a) =
1

2T

∫ T

0

∫
Ω
[|u̇(r, θ, z, T )|2 + (

∂u

∂r
)2 +

1

r2
(
∂u

∂θ
)2 + (

∂u

∂z
)2]rdrdθdz,

s.t.

1

T
(

∫ T

0

∫
Ω
(u̇(T )φ(T )− u(T )φ̇(T ))rdrdθdzdt−

∫ T

0

∫
Ω
u∆φrdrdθdzdt)

+

∫ ∫
D
au(T )φ(T )(z − zmin)rdrdθ −

1

T
(

∫ T

0

∫
Ω
au0(r, θ, z)φ(0)rdrdθdzdt)

−
∫ T

0

∫
Ω
auφ̇rdrdθdzdt+

∫ T

0

∫
Ω
uφ̈rdrdθdzdt = Φ;

1

T

∫ T

0

∫
Ω
div(u(r, θ, z, t)φ(r, θ, z, t))rdrdθdzdt = 0, ∀φ ∈ H1

0 (Ω× (0, T ));∫ ∫
D
(z − zmin)dA =

L

T
(

∫ T

0

∫
Ω
rdrdθdzdt).∫ ∫

D

1

r
(2 (r − 1) frψθ + ψfθ + fψθ + (r − 1) (frθψ + fθψr + fψrθ))rdrdθ = 0;∫ ∫

D
f (θ, r) rdrdθ = af . (13)

Now, by determining a suitable control function, we rewrite the problem in the form
of an optimal control one.
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4.2 Step 2: Embedding into measure space

By considering the vector of functions (r, z, u) as the trajectory and the vector
(u̇, ur, uθ, uz, fr, fθ, frθ) as controls, problem (13) can be considered as an optimal con-
trol problem. In this way, the following definitions need to be presented:

Definition 1. p = (z, u, u̇, ur, uθ, uz, fr, fθ, frθ) is called admissible when it satisfies
the following conditions:

1. The control functions u̇ , ur , uθ , uz , fr, fθ and frθ are bounded and continuous
and take their values on compact sets U̇ , Ur , Uθ , Uz , Fr, Fθ and Frθ which are
subsets of R;

2. z = f(θ, r) is an absolutely continuous function;

3. u is the bounded solution of the linear damped wave system (1);

4. The relations (13) are satisfied.

The set of all admissible vector p is denoted by P . We also suppose that P is
nonempty; in other words, we suppose that the system is controllable (this can be seen
in [26], for instance).

Let D′ = [0, T ]×D×U × U̇ ×Uθ ×Uz ×Ur and D′′ = D×A× Fr × Fθ × Frθ. For
any admissible p ∈ P , we define the linear, positive and bounded functionals ΛP and
ΓP on C(D′) and C(D′′) in the following way:

ΓP (F ) =
∫ T
0

∫
Ω Frdrdθdzdt, ∀F ∈ C(D′);

ΛP (G) =
∫
DGrdθdr, ∀G ∈ C(D

′′
).

(14)

Since R8 is a locally compact space, according to the Heine-Borel theorem ([28]), D′ ⊆
R8 is a compact Hausdorff space. Also, for the same reason, D′′ is also a Hausdorff
compact space. Therefore, for every given p, Riesz’s representation theorem ([28])
indicates two positive Radon measures , µP and λP uniquely, so that:

ΓP (F ) =
∫
D′ FdµP ≡ µP (F ), ∀F ∈ C(D′);

ΛP (G) =
∫
D′′ GdλP ≡ λP (G), ∀G ∈ C(D

′′
).

(15)

Consequently, any admissible element can be displayed as (15) by a unique pair of
measures, say (µP , λP ), in a subset F of M+(D′)×M+(D′′), where M+(X) is the set
of all positive Radon measures on X. Therefore, one can transfer the problem (13) into
a measure space by:
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(z, u, u̇, ur, uθ, uz, fr, fθ, frθ) ∈ P 7−→ (µP , λP ) ∈ M+(D′)×M+(D′′);

It was proved that such a transformation is an injection (see [10]). To obtain something
new, we expand the underlying space and take into account the problem of finding a
minimizer pair of measures, say (µ∗, λ∗), on the space of all positive related Radon
measures which are just satisfied to the conditions of (13)(not only those inferred from
Riesz Representation theorem); therefore, our method is somehow global.

Regarding the famous properties of admissible elements of P and the definitions of
the pair of measures (µ, λ) in (15), problem (13) can now be displayed as follows in
which the measures λ and µ are its unknown variables:

min E(µ, λ) =
1

2T
µ[|u̇(r, θ, z, T )|2 + (

∂u

∂r
)2 +

1

r2
(
∂u

∂θ
)2 + (

∂u

∂z
)2],

s.t.

1

T
µ(u̇(T )φ(T )− u(T )φ̇(T )− µ(u∆φ))

+ λ(au(T )φ(T )(z − zmin))−
1

T
µ(au0(r, θ, z)φ(0))

− µ(auφ̇+ uφ̈) = Φ, ∀φ ∈ H1
0 (Ω× (0, T ));

1

T
µ(div(u(r, θ, z, t)φ(r, θ, z, t))) = 0, ∀φ ∈ H1

0 (Ω× (0, T ));

λ(z − zmin) =
L

T
µ(1);

λ(
1

r
(2 (r − 1) frψθ + ψfθ + fψθ + (r − 1) (frθψ + fθψr + fψrθ))) = 0;

λ(f (θ, r)) = af . (16)

We remind that the theoretical measure problem (16) is linear even though the initial
problem is highly nonlinear.

Space M+(D′) × M+(D′′) is a linear space which will become a locally convex
topological vector space when it gives the weak∗topology. This can be defined by the
family of semi-norms (µ, λ) 7→ |µ(F )| + |λ(G)| for F ∈ C(D′), G ∈ C(D′′) and ϵ > 0,
which can be on the basis of a family of neighborhoods of zero for M+(D′)×M+(D′′);
this family is defined by:

Uϵ = {(µ, λ) ∈M+(D′)×M+(D′′) : |µ(Fj)|+ |λ(Gj)| < ϵ; j = 1, 2, ..., r}

which makes a basis for a weak∗topology on spaceM+(D′)×M+(D′′) (many properties
of this topology can be found in the literature such as [32]); in this way, M+(D′) ×
M+(D′′) under this topology is a Hausdorff space ([28]).

The proof of the following theorems can be found in [9], [11] and [26].



Finding the Optimal Place of Sensors.../ COAM, 4 (1), Spring-Summer 201926

Theorem 1. a) Q ⊆ M+(D′)×M+(D′′) is compact under the weak∗ topology on
M+(D′)×M+(D′′)

b) Objective function i(µ, λ) in problem (16) is continuous.

c) There exists a pair of measures (µ∗, λ∗) which is optimal for (16) in set Q ⊂
M+(D′)×M+(D′′); that is, for every (µ, λ) ∈ Q, we have:

i(µ∗, λ∗) ≤ i(µ, λ).

Even (16) has an optimal solution in Q, it is still very difficult to achieve the
exact solution because the underlying spaces are not finite-dimensional: the number
of equations is not finite and the unknowns are measures. Therefore, it is totally
acceptable to look for a sub-optimal solution. Thus, first, by choosing suitable dense
subsets in the appropriate spaces and then, by choosing the finite number of them, we
approximate the problem using a semi-finite linear programming one.

4.3 Identifying a Nearly Optimal Solution

It is possible to approximate the solution of (16) by the solution of a finite-dimensional
linear one of sufficiently large dimensions. Besides, by increasing the dimension of the
problem, the accuracy of the approximation can be increased. First, we consider the
minimization of (16) not only over set Q, but also over its subset called Q(M1,M2,M3)

and defined by only a finite number of constraints to be satisfied. This will be achieved
by choosing countable sets of functions whose linear combinations are dense in appro-
priate spaces and then by selecting a finite number of constraints. Let {φi : i ∈ N},
{ψi : i ∈ N} and {fi : i ∈ N} be countable dense (in the converge topology sense) sets
in spaces H1

0 (Ω× (0, T )), H1
0 (D) and C1(D), respectively. By choosing a finite number

of functions in each set, the solution of (16) can be approximated by the following
solution:

min E(µ, λ) =
1

2T
µ[|u̇(r, θ, z, T )|2 + (

∂u

∂r
)2 +

1

r2
(
∂u

∂θ
)2 + (

∂u

∂z
)2],

s.t.

1

T
µ(u̇(T )φi(T )− u(T )φ̇i(T )− µ(u∆φi))

+ λ(au(T )φi(T )(z − zmin))−
1

T
µ(au0(r, θ, z)φi(0))

− µ(auφ̇i + uφ̈i) = Φ, ∀φi ∈ H1
0 (Ω× (0, T ));
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1

T
µ(div(u(r, θ, z, t)φi(r, θ, z, t))) = 0, ∀φi ∈ H1

0 (Ω× (0, T )), i = 1, 2, ...,M1;

λ(z − zmin) =
L

T
µ(1);

λ(
1

r
(2 (r − 1) frψθj + ψjfθ + fψθj + (r − 1) (frθψj + fθψrj + fψrθj ))) = 0,

λ(fsk (θ, r)) = afsk , j = 1, 2, ...,M2; s = 1, 2, ...,M3, k = 1, 2, ...,M4.(17)

The density property of the selected sets in (17) causes its solutions to tend to the
solution of (16) whenM1,M2, ...,M4 → ∞; thus, if numbersM1,M2, ...,M4 are selected
large enough, (17) is a good approximation of our main problem. Now, the number of
constrains of the problem is finite but the problem is still infinite since the underlying
space is a subspace of measures. It would be more convenient if we could approximate
the solution just by a solution of a simple finite LP.

In [9], Fakharzadeh et al. presented that the pair of optimal measures of (17) is in
the form of λ∗ =

∑M
m=1 β

∗
mδ(q

∗
m) and µ∗ =

∑N
n=1 α

∗
nδ(Q

∗
n) in which Q∗

n and q∗m belong
to dense subsets of D′ and D′′, respectively; moreover, δ(t) is a unitary atomic measure
with support at the singleton set t. Substituting these forms in (17), it might seem that
the problem has been made even more difficult, since it is transferred into a non-linear
one. But, if function i(µ, λ) can be minimized only with respect to the coefficients
α∗
n and β∗m, it will be turned into a linear programming problem. In other words,

the solution can be obtained approximately by solving just the simple finite linear
programming like below. If one chooses the points Q∗

n and q∗m from a dense subsets of
D′ and D′′, this fact could be achieved in the second step of our approximation. (see
[9] for more details):

min E =
1

2T

N∑
n=1

αn[|u̇(Qn)|2 + (
∂u(Qn)

∂rn
)2 +

1

r2n
(
∂u(Qn)

∂θn
)2 + (

∂u(Qn)

∂zn
)2],

s.t.

1

T

N∑
n=1

αn(u̇(Qn, T )φi(Qn, T )− u(Qn, T )φ̇i(Qn, T ))

−
N∑

n=1

αn(u(Qn)∆φi(Qn)) +
M∑

m=1

βm(au(qm, T )φi(qm, T )(z − zmin))

− 1

T

N∑
n=1

αn(au0(Qn)φi(0))−
N∑

n=1

αn(au(Qn)φ̇i(Qn) + u(Qn)φ̈i(Qn) = Φ,

1

T

N∑
n=1

αn(div(u(Qn)φi(Qn))) = 0, i = 1, 2, . . . ,M1;
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M∑
m=1

βm(zm − zmin) =
L

T

N∑
n=1

αn(1);

M∑
m=1

βm(
1

rm
(2 (rm − 1) frmψθj(qm) + ψj(qm)fθm + fmψθj (qm)

+ (rm − 1) (frθmψj(qm) + fθmψrj (qm) + fmψrθj (qm)))) = 0,

j = 1, 2, . . . ,M2;

M∑
m=1

βm(fsk(qm)) ≡ afskm , s = 1, 2, . . . ,M3, k = 1, 2, . . . ,M4. (18)

Problem (18) is still non-linear because qm = (θm, rm, zm, frm , fθm , frθm) and Qn =

(tn, θn, rn, un, u̇n, uθn , uzn , urn) and rm are unknowns. Now, by using simultaneous
two-phase search techniques for (18), the optimal vector (r1, r2, . . . , rM ) (and hence
the optimal domain D) and the optimal coefficients α∗

1, . . . , α
∗
N , β

∗
1 , . . . , β

∗
M would be

found; one is able to construct the pair of optimal shape and optimal domain in the
manner which will be explained in the next section.

5 Algorithm

To apply the mentioned method for solving problem (18) practically, here we present
an algorithmic path for the solution procedure. Regarding previous statements, we are
able to identify the optimal control and optimal damping set by using the following
four-step algorithm:
Step 1: The given sets [0, T ], D, U, U̇ , Uθ, Ur and Uz are divided into n1, n2, ..., n8 equal
parts, and also the sets D,A, Fr, Fθ and Frθ into n2, n3,m1,m2,m3 and m4 equal parts,
respectively; so that, the N = n1.n2.n3.n4.n5.n6.n7.n8, number of 8-dimensional cells
and the M = n2.n3.m1.m2.m3, number of 5-dimensional cells in the related spaces
are obtained. Then, in each of these 8-dimensional and 5-dimensional cells arbitrary
points Qi = (ti, θi, ri, ui, u̇i, uθi , uzi , uri) and qj = (θj , rj , zj , frj , fθj , frθj ) are selected,
respectively.

Step 2: For fixed numbers M1,M2 and M3 and M4, we select M1 number of φk(Q),
M2 of ψl(q) and M3 ×M4 of fs(q) functions, respectively. Now, one is able to set up
the finite linear programming (18) with N +M variables andM1+M2+(M3×M4)+1

constrains, which is dependent on variables r1, ..., rM .

Step 3: To solve problem (18), we use an iterative method with two loops (one in
another) and apply two phases of optimization approaches. In this section, a procedure
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is developed for finding the optimal value of the same functional over the set of all
admissible domains DM ; in fact, we aim to solve the above-mentioned problem in
(18) by determining the optimal surface and its related optimal image to achieve the
minimum value of the objective function I(S,D) on Q(M1, ...,M4). Each domain D ∈
DM , as explained, is determined by a set of finite points (θm, rm) , m = 1, 2, . . . ,M .
Thus, for a given D ∈ DM , by solving (18), the nearly optimal value for I(α∗, β∗, D)

is found as a function of variables r1, r2, . . . , rM . Consequently, one can define the
following vector function:

J :(r1, r2, . . . , rM ) ∈ RM → I(α∗, β∗, D) ∈ R

The global minimizer of vector function J , say (r1, r2, . . . , rM ), can be identified by
using a suitable search technique (like Honey-Bee-Method [1]). Such a method normally
needs an initial value (initial domain) for starting the process of minimization. Each
time the algorithm calculates a value for J , finite linear programming problem (18)
should be solved; thus, the optimal coefficients α∗

i , β
∗
j are characterized. Whenever it

reaches the minimum value, the minimizer (r∗1, r∗2, . . . , r∗M ) (optimal domain D∗) and
therefore its associated optimal surface have been obtained. So, the optimal domain
and the optimal surface are determined at the same time.

Remark: In each stage where the alternative optimal case is happened, it is enough
to select one of them arbitrarily.

Step 4: We summarize the procedure of constructing optimal control functions and
path function z derived from a solution of linear programming problem (18): after
solving problem (18), we identify the indices n such that the components β∗n of the
extreme point are positive and the corresponding value θnand rn associated with them
make θ = θn ,r = rn , u (r, θ, z) = un and z(r, θ) = zn. Then, we have optimal points
(θn, rn, zn) and by using curve fitting tool box of MATLAB software, we fit the surface
on these points in Cartesian coordinates.

5.1 Total sets

To restrict the number of constriants (17), we considered countable sets of functions
whose linear combinations are dense in the specific space. In this section, we attempt
to introduce some suitable cases for such sets. In this manner, we explain how one can
choose total sets for the constraints of (18). Infinitely differentiable functions consist
of functions such as exponential and trigonometric functions. However, exponential
functions can never be zero. Therefore, we make use of trigonometric functions whose
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linear combinations can make Fourier series for each periodic arbitrary function. We
choose these functions in the following way and we consider ψ′

jis as:

ψ1i = (r − h(θ ))(sin(iπθ ));

ψ2i = (r − h(θ ))(cos(iπθ ));

ψ3i = (r − h(θ ))(cos(iπθ )sin(iπθ )).

Obviously, the linear combinations of these functions are uniformly dense in space
C1(Ω), infinitely differentiable inside region D and has compact support (see [9]).

To be able to characterize the optimal coefficients of (18), an arbitrary domain will
be divided into finite parts and then, an attempt will be made to determine the optimal
surface in each part. In this manner, a finite number of angles θ = θi, i = 1, 2, . . . , l

from the uniform dense subset of [0, 2π] would be considered. Then, domain D can be
divided into l parts by half-lines θ = θi. Also, the i-th part of D (i = 1, 2, . . . , l) can be
approximated by sector Ri =

ri+ri+1

2 , when θi ≤ θ ≤ θi+1 and (r1, r2, . . . , rM ) is the
optimal value in (θ1, θ2, . . . θM ), say Dj . Then, if the number of angles is sufficiently
large, the union of Dj ’s can approximate D arbitrarily. So, we consider fsk as follow:

fsk (θ, r) =

{
1, if θ ∈ J1s, r ∈ J2k,

0, otherwise,

where J1s and J2k are determined as follow:

J1s = [
(s− 1) θi
M3

,
(s) θi
M3

) and J2k = [
(k − 1)Ri

M4
,
(k)Ri

M4
) .

Hence:∫ ∫
D
fsk (θ, r) r drdθ =

∫ rk

rk−1

∫ θs

θs−1

r drdθ =
1

2
(θs − θs−1)(r

2
k − r2k−1) ≡ afsk .

6 Examples

In this section, by giving a numerical example, we examine the efficiency of the method
explained in the previous sections.

As mentioned in the introduction, this problem is resolved in many papers in
the one- or two-dimensional spaces. But, so far, it has not been solved in a three-
dimensional space. Therefore, we have taken the initial and final conditions from
reference [22] and if necessary, we extended these conditions to a three-dimensional
situation.
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By defining Ω as an cylinder with radius
√
2 and selecting a = 1.5 (constant), for

chosen initial conditions:{
u0(θ, r, z) = sin(πr cos θ) sin(πr sin θ) sin(πz),

u1(θ, r, z) = 0, (θ, r, z) ∈ Ω,

and final conditions as follows ([3] and [29]):

u(T = 1) = u̇(T = 1) = 1.

We supposed L = (1/3), the volume of the unknown region ω was equal to 2π
3 . Then,

we chose: zmin = 0, zmax = 2, 0 ≤ θ ≤ 2π,0 ≤ t ≤ 1.

To discretize D′
= [0, T ]×D × U × U̇ × Uθ × Uz × Ur, we chose N = 62 × 56 point

in these sets by selecting

1. 6 points in [0, T ] for t : 0, 15 ,
2
5 ,

3
5 ,

4
5 , 1;

2. 6 points in [0, 2π] for θ: 0, 2π5 ,
4π
5 ,

6π
5 ,

8π
5 , 2π;

3. 5 points in [0,
√
2] for r: 0,

√
2
5 ,

2
√
2

5 , 3
√
2

5 , 4
√
2

5 ,
√
2;

4. 5 points in U̇ for u̇: 0, 14 ,
2
4 ,

3
4 , 1;

5. 5 points in Uθ for uθ: −1, −1
2 , 0,

1
2 , 1;

6. 5 points in Uz for uz: −1, −1
2 , 0,

1
2 , 1;

7. 5 points in Ur for ur: 0, 14 ,
2
4 ,

3
4 , 1;

Also, to discretize D” = D × A× Fr × Fθ × Frθ, we chose M = 14× 55 point in these
sets by selecting

1. 5 points in Fr for fr : 0, 14 ,
2
4 ,

3
4 , 1;

2. 5 points in Fθ for fθ: −1, −1
2 , 0,

1
2 , 1;

3. 5 in Frθ for frθ: −1, −1
2 , 0,

1
2 , 1;

4. 14 angles in [0, 2π] for θ:

0,
2π

13
,
4π

13
,
6π

13
,
8π

13
,
10π

13
,
12π

13
,
14π

13
,
16π

13
,
18π

13
,
20π

13
,
22π

13
,
24π

13
, 2π;
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5. 5 value in A = [0, 2] for r: 0, 12 , 1,
3
2 , 2.

Then, by selecting the following functions and setting them in (18) for M1 = 2,M2 =

9,M3 = 8,M4 = 3 as:

ψl1 = (r − h(θ ))(sin(l1πθ ));

ψl2 = (r − h(θ ))(cos(l2πθ ));

ψl3 = (r − h(θ ))(cos(l3πθ ) sin(l3πθ )).

fsk (θ, r) =

{
1, if θ ∈ J1s, r ∈ J2k

0, otherwise

where J1s and J2k are determined as follow:

J1s = [ (s−1)θi
M3

, (s)θi
M3

) and J2k = [ (k−1)Ri

M4
, (k)Ri

M4
) for unknown region D. Where

Ri =
ri+ri+1

2 , the unknowns ri are optimal solution for J(r1, r2, ..., rM ) and obtained in
Step 3. Hence:∫ ∫

D
fsk (θ, r) r drdθ =

∫ rk

rk−1

∫ θs

θs−1

r drdθ =
1

2
(θs − θs−1)(r

2
k − r2k−1) ≡ afsk .

Also, for i = 2, 3 we selected φi = (r −
√
2)i sin(iθ)t; therefore:

φi(T ) = (r −
√
2)i sin(iθ)T, φ̇i = (r −

√
2)i sin(iθ),

φ̈i = 0,

∆φi = (r −
√
2)i−2 sin(iθ)t(i(i− 1) + i

r (r −
√
2)− i2

r (r −
√
2)2).

(19)

we setup the corresponding LP with M +N variables and 38 constrains.
It is noteworthy that, the number of basic functions is chosen arbitrarily and by

increasing their number, we will have a better approximate solution.
In 2012, Fakharzadeh et al. dealt with the best standard algorithm to identify

the optimal solution for an OSD sample problem governed by an elliptic boundary
control problem. Their goal in that paper was to examine and evaluate six different
methods according to their ability to find optimality of function. In the mentioned
paper, some references (references related to applications or discussions) were given for
each method [13]. They conducted a computational examination of several existing
derivative free optimization methods to apply solution procedure of OSD problems by
the shape-measure technique. These methods consist of Random search, Nelder-Mead
algorithm, Hook and Jeeves algorithm, Simulated annealing algorithm, Genetic and
Honey bee mating optimization algorithm. The results showed that Random search
and Honey bee mating optimization algorithm are more appropriate for use in shape
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measure method than other algorithms [13]. In this manner, we use Honey Bee Mating
optimization algorithm (HBM) to obtain the optimal value of J(r1, r2, . . . , rM ) and the
modified Simplex method from MATLAB 7.13 to obtain the optimal value of I(β,D).

After solving this problem by 30 iterations, we obtained optimal points (θn, rn, zn)
corresponding to optimal coefficients β∗n > 0 in the manner explained in Section 5.
Then, we specify the optimal points (xn, yn, zn) with respect to the relationships xn =

rncos(θn) and yn = rnsin(θn). For a fixed a = 1.5, we obtained the nearly optimal
region D (see Figure 1), nearly optimal domain (Figure 2), the curve of the objective
value in terms of iterations in the LP solver (Figure 3) and the energy value as 6.7495×
10−20.

In places with damping of waves, installing sensors is not recommended. Therefore,
searching for a place with the least damping of waves for installing sensors is important.
In the Figure 2, the spherical area defines ωA. This area is the damping set and
installing sensors in this place is not suitable. In this area, the waves have the highest
damping rate and the least energy.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: Nearly optimal region D in Example 1.
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−1
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1.5

Figure 2: Nearly optimal domain with constant damping coefficient a = 1.5.
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Figure 3: Objective value in terms of iterations of HBM algorithm.

7 Conclusion

By doing an embedding process and using the property of positive Radon measures, we
presented a new and very useful technique for solving the problem of minimizing energy
of a 3-D damped wave system in an unknown region. In this method, the problem
was solved by a 2-phase optimization search technique where the unknown region and
unknown damping set were found optimally. The most important characteristic of our
method is its simplicity and its independence of the solution of the initial shape. To
obtain the optimal domain, we just need to use two-search techniques while solving
linear programming problems.
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چکیده

یک در را ثابت میرایی با بعدی سه موج معادلات برای حسگرها نصب بهینه محل و شکل تعیین مساله مقاله، این در
یک از زیردامنه ای وسیله به حسگرها گرفتن قرار محل می کنیم. حل و مدلسازی بعدی، سه فضای از پیوسته مجموعه زیر
به معادلات دستگاه ابتدا، نشاندن، روش مبنای بر تقریب یک از استفاده با است. شده مدلسازی مشخص اندازه با ناحیه
شد. خواهد بازنویسی اندازه ها فضای در مساله مثبت، رادن اندازه دو تعریف با سپس، شده؛ فرمولبندی تغییراتی صورت
شده تضمین آن جواب وجود که شده تبدیل نامتناهی خطی برنامه ریزی مساله یک به شکل طراحی مساله روش، این در
دو جستجوی روش با بهینه) انرژی و ناحیه بهینه، (کنترل بهینه جواب تقریب، گام دو از استفاده با مرحله، این در است.

است. شده آورده روش ها دیگر با جدید روش مقایسه برای عددی سازی شبیه این، بر علاوه می گردد. تعیین مرحله ای

کلیدی کلمات

شکل. بهینه  سازی جستجو، روش رادن، اندازه پراکندگی، کنترل بعدی، سه موج معادله
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