Control and Optimization in Applied Mathematics (COAM)
DOI. 10.30473/coam.2020.51754.1138
Vol. 4, No. 1, Spring-Summer 2019 (53-63), ©2016 Payame Noor University, Iran

Global Forcing Number for Maximal Matchings under Graph Operations

M. Tavakoli*
Department of Applied Mathematics, Faculty of Mathematical Sciences,
Ferdowsi University of Mashhad,
P.O. Box. 1159, Mashhad 91775, Iran

Received: February 27, 2020; Accepted: July 9, 2020.

Abstract

Let $S=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be an ordered subset of edges of a connected graph G. The edge S-representation of an edge set $M \subseteq E(G)$ with respect to S is the vector $r_{e}(M \mid S)=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$, where $d_{i}=1$ if $e_{i} \in M$ and $d_{i}=0$ otherwise, for each $i \in\{1, \ldots, k\}$. We say S is a global forcing set for maximal matchings of G if $r_{e}\left(M_{1} \mid S\right) \neq r_{e}\left(M_{2} \mid S\right)$ for any two maximal matchings M_{1} and M_{2} of G. A global forcing set for maximal matchings of G with minimum cardinality is called a minimum global forcing set for maximal matchings, and its cardinality, denoted by $\varphi_{g m}$, is the global forcing number (GFN for short) for maximal matchings. Similarly, for an ordered subset $F=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of $V(G)$, the F-representation of a vertex set $I \subseteq V(G)$ with respect to F is the vector $r(I \mid F)=\left(d_{1}, d_{2}, \ldots, d_{k}\right)$, where $d_{i}=1$ if $v_{i} \in I$ and $d_{i}=0$ otherwise, for each $i \in\{1, \ldots, k\}$. We say F is a global forcing set for independent dominatings of G if $r\left(D_{1} \mid F\right) \neq r\left(D_{2} \mid F\right)$ for any two maximal independent dominating sets D_{1} and D_{2} of G. A global forcing set for independent dominatings of G with minimum cardinality is called a minimum global forcing set for independent dominatings, and its cardinality, denoted by $\varphi_{g i}$, is the GFN for independent dominatings. In this paper we study the GFN for maximal matchings under several types of graph products. Also, we present some upper bounds for this invariant. Moreover, we present some bounds for $\varphi_{g m}$ of some well-known graphs.

Keywords. Global forcing set, Global forcing number, Maximal matching, Maximal independent dominating, Product graph.

MSC. 05C70, 05C76.

[^0]
1 Introduction

All graphs considered in this paper are connected and simple. For a graph G we denote by V_{G} the set of its vertices and by E_{G} the set of its edges. The number of vertices of G is the order of G and the number of edges of G is the size of G.

Let $G=\left(V_{G}, E_{G}\right)$ be a graph. A subset M_{G} of E_{G} is called a matching of G if no two edges of M are adjacent. The vertices incident to the edges of a matching M_{G} are said to be saturated(or $M_{G^{-}}$-saturated) by M_{G}; the others are said to be unsaturated (or $M_{G^{-}}$ unsaturated). If there does not exist a matching M_{G}^{\prime} in G such that $\left|M_{G}\right|<\left|M_{G}^{\prime}\right|$, then M_{G} is called a maximum matching of G, and its cardinality is denoted by $v(G)$. A matching M_{G} is maximal if it cannot be extended to a larger matching in G, see [17]

The concept of forcing set is one of the most applicable graph-theoretical concepts which was first introduced by Klein and Randić in [10]. One can see [19, 20] for application of forcing set in large-scale computations. Also, $[6,10]$ are recommended to get information about relation between the innate degree of freedom in mathematical chemistry and the forcing set in graph theory. On the other hand, several purely graph-theoretical literatures on forcing set, such as $[1,2,14,16,22]$, show importance of this parameter in graph theory. Recently, Vukičević et al. [13] have extended the concepts of global forcing set and global forcing number to maximal matchings as follows.

Let $S=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be an ordered subset of edges of a connected graph G. The edge S-representation of an independent edge set $M \subseteq E(G)$ with respect to S is the vector $r_{e}(M \mid S)=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$, where $d_{i}=1$ if $e_{i} \in M$ and $d_{i}=0$ otherwise, for $i \in\{1, \ldots, k\}$. We say S is a global forcing set for maximal matchings of G if $r_{e}\left(M_{1} \mid S\right) \neq r_{e}\left(M_{2} \mid S\right)$ for any two maximal matchings M_{1} and M_{2}. A global forcing set for maximal matchings of G with minimum cardinality is called a minimum global forcing set for maximal matchings, and its cardinality, denoted by $\varphi_{g m}$, is the global forcing number (GFN) for maximal matchings.

A set of non-adjacent vertices of a graph G is called independent set. The size of a largest independent set is called the independence number of G and denoted by $\alpha(G)$.

For a graph $G=\left(V_{G}, E_{G}\right)$, we say $D_{G} \subseteq V_{G}$ is an independent dominating set in G if D_{G} is a set of non-adjacent vertices and each vertex of $V_{G} \backslash D_{G}$ is adjacent to at least one vertex in D_{G}. The independent domination number of G, denoted by $i(G)$, is the minimum cardinality of an independent dominating set of G, see [18]. If we drop the requirement of independence, we obtain dominating sets, and the smallest cardinality of a dominating set in G is the domination number of G, denoted by $\gamma(G)$, see [8].

For stating our results, we need to expand the concept of forcing independent spectrum of graphs which was introduced in [15] as follows.
Let $F=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an ordered subset of vertices of a connected graph G. The F representation of an independent set $I \subseteq V(G)$ with respect to F is the vector $r(I \mid F)=$ $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$, where $d_{i}=1$ if $v_{i} \in I$ and $d_{i}=0$ otherwise, for $i \in\{1, \ldots, k\}$. We say F is a global forcing set for independent dominatings of G if $r\left(D_{1} \mid F\right) \neq r\left(D_{2} \mid F\right)$ for any two maximal independent dominating sets D_{1} and D_{2}. A global forcing set for independent
dominatings of G with minimum cardinality is called a minimum global forcing set for independent dominatings, and its cardinality, denoted by $\varphi_{g i}$, is the GFN for independent dominatings.

According to this fact that computing GFN even for quite restricted classes of graphs is algorithmically difficult, we are interested in studying this invariant via graph products. As applications of our results, we compute the GFN for maximal matching number of some fullerene graphs. We also present some upper bounds for this invariant by line and the GFN of maximal independent dominatings.

We remind that all notations and terminologies are standard here and taken mainly from the standard books of graph theory. For instance, as usual we denote the maximum degree and the minimum degree of a graph G by $\Delta\left(\right.$ or $\left.\Delta_{G}\right)$ and $\delta\left(\right.$ or $\left.\delta_{G}\right)$, respectively. Also, the hypercube Q_{n} is a graph in which vertices are n-tuples $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where $t_{i} \in\{0,1\}$ and two vertices are adjacent when their n-tuples differ in exactly one coordinate. Moreover, we denote the path and cycle graphs of order n by P_{n} and C_{n}, respectively.

2 Main Results

For stating our results, we need the below results:

Proposition 1. [13] Let $S \subseteq E_{G}$ be a set of edges such that the graph induced by $E_{G} \backslash S$ has only one maximal matching. Then S is a global forcing set for maximal matchings.

Corollary 1. [13] Let M be any matching in G. Then $E_{G} \backslash M$ is a global forcing set for maximal matchings in G.

Theorem 1. [13] Let G be a simple graph on n vertices and m edges. Then $\varphi_{g m}(G) \leq m-\nu(G)$.

2.1 Generalized hierarchical product

Let G and H be two graphs and U be a nonempty subset of V_{G}. The generalized hierarchical product of G and $H, G(U) \sqcap H$, is a graph whose vertex and edge sets are defined as follow:

$$
\begin{aligned}
V_{G(U) \sqcap H} & =\left\{(g, h) \mid g \in V_{G} \text { and } h \in V_{H}\right\}, \\
E_{G(U) \sqcap H} & =\left\{(g, h)\left(g^{\prime}, h^{\prime}\right) \mid\left(g g^{\prime} \in E_{G} \text { and } h=h^{\prime}\right) \text { or }\left(g=g^{\prime} \in U \text { and } h h^{\prime} \in E_{H}\right)\right\} .
\end{aligned}
$$

This product has several applications in other branches of science such as computer science. We refer interested readers to study $[3,9,12]$.

Theorem 2. If G and H are two graphs with n and m vertices, respectively, and U is a nonempty subset of V_{G}, then

$$
\varphi_{g m}(G(U) \sqcap H) \leq m\left|E_{G}\right|+|U|\left|E_{H}\right|-\max _{X \subseteq U}\left\{m \nu(G-X)+\left|U \backslash V_{G\left(M_{G-X}\right)}\right| \nu(H)\right\}
$$

Proof. Let $X \subseteq U, M_{G-X}$ be a maximum matching of $G-X$ (which has minimum meet with U among all maximum matchings of $G-X$), and M_{H} be a maximum matching of H. Set

$$
M=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right) \mid\left(g g^{\prime} \in M_{G-X} \text { and } h \in V_{H}\right) \text { or }\left(g=g^{\prime} \in X \text { and } h h^{\prime} \in M_{H}\right\} .\right.
$$

It is clear that M is a matching in $G(U) \sqcap H$. We claim M is maximal. To prove our claim, let $e=(g, h)\left(g^{\prime}, h^{\prime}\right)$ be an edge of $G(U) \sqcap H$ which is not in M. Thus, e can be in the following two possible forms:
case 1. $g=g^{\prime} \in U$ and $h h^{\prime} \in E_{H}$. In order to e is not in M then $h h^{\prime} \in E_{H} \backslash\left(M_{H}\right)$ and so $h h^{\prime}$ cannot be added to M_{H} for constructing a larger matching, and consequently e cannot be added to M to obtain a larger matching.
case 2. $h=h^{\prime}$ and $g g^{\prime} \in E_{G}$. Since e is not in M, then $g g^{\prime} \in E_{G} \backslash M_{G-X}$. Thus M_{G} cannot be extended to $M_{G-X} \cup\left\{g g^{\prime}\right\}$ as a matching for G, and so M cannot be extended to $M \cup\{e\}$ as a matching in $G(U) \sqcap H$.

Therefore, M is a maximal matching in $G(U) \sqcap H$. So, according to Corollary 1, $E_{G(U) \sqcap H} \backslash M$ is a global forcing maximal matching in $G(U) \sqcap H$. On the other hand, the cardinality of M is equal to $m \nu(G-X)+\left|U \backslash V_{G\left(M_{G-x}\right)}\right| \nu(H)$. Thus, by Theorem 1,

$$
\varphi_{g m}(G(U) \sqcap H) \leq m\left|E_{G}\right|+|U|\left|E_{H}\right|-\max _{X \subseteq U}\left\{m \nu(G-X)+\left|U \backslash V_{G\left(M_{G-x}\right)}\right| \nu(H)\right\},
$$

which completes our proof.
Corollary 2. Let G and H be two graphs with n and m vertices, respectively, and U be a nonempty subset of V_{G}. If G has a maximum matching which has no meet with U, then

$$
\varphi_{g m}(G(U) \sqcap H) \leq m\left(\left|E_{G}\right|-\nu(G)\right)+|U|\left(\left|E_{H}\right|-\nu(H)\right) .
$$

A Zig-Zag Polyhex Lattice, $H_{r, 2 t+1}$, is a planar graph with $2 t+1$ rows of hexagonals such that there are r and $r-1$ hexagonals in each row, alternatively. Look at Figure 1 for more illustration.

Let $P_{2 r+1}:=v_{1}, v_{2}, \ldots, v_{2 r+1}$ be a path. The graph $H_{r, 1}$ is isomorphic to $P_{2 r+1}(U) \sqcap P_{2}$ where $U=\left\{v_{i} \in V_{P_{2 r+1}} \mid i\right.$ is an odd number $\}$. Thus, the function $f=2 \nu\left(P_{2 r+1}-X\right)+\mid U \backslash$ $V_{P_{2 r+1}\left(M_{P_{2 r+1}-x}\right)} \mid$, from the power set of U to \mathbb{N}, attains its maximum at $X=\left\{v_{1}\right\}$; because v_{1} is the just vertex of $P_{2 r+1}$ which is not saturated; on the other hand, $\nu\left(H_{r, 1}-X\right)$ is decreasing when $|X|$ is increasing. Therefore, by replacing $\nu\left(P_{2 r+1}\right)=r$ and $X=\left\{v_{1}\right\}$ in Theorem 2, we have $\varphi_{g m}\left(H_{r, 1}\right) \leq 3 r$.
Parts (a) and (b) of Figure 1 show $H_{7,1}$ and $H_{7,3}$, respectively. Black vertices in these figures are elements of U and bold edges in this figure are elements of the global forcing set for maximal matchings of $H_{7,1}$ and $H_{7,3}$, respectively, which is defined in the proof of Theorem 2. By replacing $r=7$ in $\varphi_{g m}\left(H_{r, 1}\right) \leq 3 r$, we have $\varphi_{g m}\left(H_{r, 1}\right) \leq 21$; on the other hand, one can check that the exact value of $\varphi_{g m}\left(H_{r, 1}\right)$ is equal to 21 . This shows the presented upper bound for $\varphi_{g m}\left(H_{r, 1}\right)$ is sharp.

Corollary 3. For every positive integer number r and $t \in\left\{2^{i}-1\right\}_{i=1}^{\infty}$,

$$
\varphi\left(H_{r, 2 t+1}\right) \leq 6 r t+5 r+t+1-2^{\log _{2}^{t+1}}(2 r+1)
$$

(a)

$\sqcap!=$

(b)

Figure 1: Graphs $H_{7,1}$ and $H_{7,3}$ with their global forcing set for maximal matchings.

Proof. It is not difficult to check that $H_{r, 2 t+1}=H_{r, t}(U) \sqcap P_{2}$. Then, by Theorem 2,

$$
\begin{aligned}
\varphi_{g m}\left(H_{r, 2 t+1}\right) & =\varphi_{g m}\left(H_{r, t}(U) \sqcap P_{2}\right) \leq 2\left|E_{H_{r, t}}\right|+|U| \\
& -\max _{X \subseteq U}\left\{2 \nu\left(H_{r, t}-X\right)+\left|U \backslash V_{H_{r, t}\left(M_{H_{r, t}-x}\right)}\right|\right\}
\end{aligned}
$$

So, it is enough to obtain $\left|E_{H_{r, t}}\right|, \nu\left(H_{r, t}\right)$ and X. Consider the function $f=2 \nu\left(H_{r, t}-X\right)+$ $\left|U \backslash V_{G\left(M_{H_{r, t}-x}\right)}\right|$, from the power set of U to \mathbb{N}. Function f is decreasing; because if the size of X increases, then $\nu\left(H_{r, t}-X\right)$ decreases (as much as $\left|U \backslash V_{G\left(M_{H_{r, t}-x}\right)}\right|$ increases). Therefore, f attains its maximum at $X=\emptyset$. On the other hand, $\left|E_{H_{r, t}}\right|=3 r t+2 r+\frac{t+1}{2}$ and $\nu\left(H_{r, t}\right) \geq$ $2^{\log _{2}^{t+1}-1}(2 r+1)$ which completes our proof.

(a)

(b)

$\sqcap i=$

(c)

Figure 2: Graphs $G_{7,1}, G_{7,2}$ and $A_{7,8}$ with their global forcing maximal matching.
A Zig-Zag Polyhex Lattice-like, $G_{r, k}$ is a planar graph with $2^{k}-1$ rows of hexagonals such that there are r and $r+1$ hexagonals in each row, alternatively, and there is a pendent vertex at both ends of its first and last level. See parts (a) and (b) of Figure 2. In part (a), $G_{7,1}$ has one row of hexagonals and two levels (note that each row is formed by two levels).

Armchair graph $A_{r, k}$ is a tube whose surface is covered with hexagonals such that there are k rows of hexagonals on it such that there are r and $r+1$ hexagonals in the rows, alternately. Part (c) of Figure 2 shows armchair graph $A_{7,8}$.

Corollary 4. If r is a positive integer number and $k \in\left\{2^{i+1}\right\}_{i=1}^{\infty}$, then $\varphi\left(A_{r, k}\right) \leq 2^{2+\log _{2}^{\frac{k}{2}}}(r+1)$.
Proof. By the definition of generalized hierarchical product, we can say $A_{r, k}$ isomorphic to $G_{r, l o g_{2}^{\frac{k}{2}}}(U) \sqcap P_{2}$ where U is independent vertices of the first and last level of $G_{r, l o g_{2}^{\frac{k}{2}}}$. So, by applying Theorem 2, we have

$$
\begin{aligned}
\varphi_{g m}\left(A_{r, k}\right) & \left.=\varphi_{g m}\left(G_{r, l o g_{2}^{\frac{k}{2}}}(U) \sqcap P_{2}\right) \leq 2 \right\rvert\, E_{G_{r, l o g_{2}^{\frac{k}{2}}}|+|U|} \\
& \left.\left.-\max _{X \subseteq U}\left\{2 \nu\left(G_{r, l \log _{2}^{\frac{k}{2}}}-X\right)+\left\lvert\, U \backslash V_{G\left(M_{G}\right.}^{r, l \log _{2}^{\frac{k}{2}}}-x\right.\right) \right\rvert\,\right\} .
\end{aligned}
$$

So, it is sufficient to obtain X and compute the value of $\left|E_{G_{r, l o g}^{\frac{k}{2}}}\right|$ and $\nu\left(G_{r, l o g_{2}^{\frac{k}{2}}}\right)$. On the oher hand, $\left|E_{G_{r, \log }^{2}}\right|=2^{\log _{2}^{\frac{k}{2}}}\left(3 r+\frac{7}{2}\right)-(r+2)$ and $\nu\left(G_{r, \log _{2}^{\frac{k}{2}}}\right) \leq 2^{\log _{2}^{\frac{k}{2}}}\left(r+\frac{3}{2}\right)-1$, and so we obtain X. If $f=\nu\left(G_{r, l \log _{2}^{\frac{k}{2}}}-X\right)+\left|U \backslash V_{G\left(M_{G}\right.}{ }_{\left.r, \log 2_{2}^{\frac{k}{2}}-x\right)}\right|$ is a function from the power set of U to \mathbb{N}, then f attains its maximum at $X=\{v, w\}$ where v and w are two pendent vertices of $G_{r, l o g_{2}^{\frac{k}{2}}}$. For more illustration, see part (c) of Figure 2. In this figure, there is the generalized hierarchical product of $G_{7,2}$ and P_{2} where U is the set of all back vertices in $G_{7,2}$. Also, bold edges in $A_{7,8}$ are elements of the global forcing maximal matching in $A_{7,8}$ which is defined in the proof of Theorem 2. Moreover, part (a) of Figure 2 shows constructing $G_{7,1}$ from P_{17} and P_{2} where U is the set of all back vertices in P_{17}; similarly, part (b) of Figure 2 shows constructing $G_{7,2}$ from $G_{7,1}$ and P_{2} where U is the set of all back vertices in $G_{7,1}$.

Generalized hierarchical product of $G(U) \sqcap H$ is known as hierarchical product where $|U|=$ 1. The hierarchical product of G and H is usually denoted by $G \sqcap H$. By the previous theorem, we can say the next result about GFN for maximal matchings of hierarchical product of graphs.

Theorem 3. Let G and H be two graphs with n and m vertices, respectively, and $U=\{r\}$ be a nonempty subset of V_{G}. Then

$$
\varphi_{g m}(G \sqcap H) \leq \begin{cases}m\left(\left|E_{G}\right|-\nu(G)\right)+\left|E_{H}\right|, & \text { if } \nu(G)-\nu(G-r) \geq 1 \\ m\left(\left|E_{G}\right|-\nu(G)\right)+\left|E_{H}\right|-\nu(H), & \text { if } \nu(G)-\nu(G-r)=0\end{cases}
$$

Octanitrocubane is the most powerful chemical explosive. Let G be the graph of this molecule, see Figure 2. As shown in Figure 2, G is formed by hierarchical product of P_{2} and Q_{3} where U is a vertex of P_{2}. Since $\nu(G)-\nu(G-r)=1$, then by Theorem $3, \varphi_{g m}(G)=$ $\varphi_{g m}\left(P_{2} \sqcap O_{3}\right) \leq 12$. On the other hand, the exact value of $\varphi_{g m}(G)$ is equal to 12 which shows the upper bound in Theorem 3 is sharp.

Generalized hierarchical product of $G(U) \sqcap H$ is known as Cartesian product where $U=V_{G}$. The Cartesian product of G and H is usually denoted by $G \times H$.

Figure 3: Octanitrocuban with its global forcing maximal matching.

Theorem 4. Let G and H be two graphs with n and m vertices, then

$$
\varphi_{g m}(G \times H) \leq m\left|E_{G}\right|+n\left|E_{H}\right|-\max _{X \subseteq V_{G}}\left\{m \nu(G-X)+\left|V_{G} \backslash V_{G\left(M_{G-x}\right)}\right| \nu(H)\right\}
$$

3 Global Forcing Maximal Matching Number as Global Forcing Maximal Independent Domination Number

For a graph G, the line graph of G, denoted $L(G)$, is a graph whose vertices are edges of G and two vertices are adjacent if and only if their corresponding edges are adjacent in G.
It is clear that matchings in G correspond to independent sets in $L(G)$. Also, it is not difficult to show that maximal matchings in a graph G are in a one-to-one correspondence with independent dominating sets in $L(G)$. Thus, if V^{\prime} is a minimum global forcing set for independent dominatings of $L(G)$, then the edges corresponding to the vertices of V^{\prime} form a global forcing set E^{\prime} for maximal matchings of G. Moreover, E^{\prime} is minimum, because if there was a minimum global forcing set $E^{\prime \prime}$ for maximal matchings of G such that $\left|E^{\prime \prime}\right|<\left|E^{\prime}\right|$, then the corresponding vertices in $L(G)$ would be a global forcing set V " for independent dominatings in $L(G)$ of cardinality smaller than $\left|V^{\prime}\right|$, a contradiction. Hence we can say the following result.

Theorem 5. For each graph G,

$$
\varphi_{g m}(G)=\varphi_{g i}(L(G))
$$

Theorem 6. Let G be a simple graph on n vertices. Then $\varphi_{g i}(G) \leq n-\alpha(G)$.
Proof. At first, we prove that if V^{\prime} is a subset of V_{G} such that $G-V^{\prime}$ is an empty graph, then V^{\prime} is a global forcing set for independent dominatings in G. To do this, assume to the contrary that D_{1} and D_{2} are two different maximal independent dominating sets in G such that $r\left(D_{1} \mid G-V^{\prime}\right)=r\left(D_{2} \mid G-V^{\prime}\right)$. Since $D_{1} \neq D_{2}$, then there exists a vertex $v_{i} \in\left(V_{G} \backslash V^{\prime}\right) \cap D_{1}$ which is not in D_{2}. Thus, there must be a vertex v_{j} in $V^{\prime} \cap D_{1}$ that $v_{i} v_{j} \in E_{G}$, since D_{1} is a dominating set; and so d_{j} is equal to zero in $r\left(D_{1} \mid G-V^{\prime}\right)$. On the other hand, d_{j} is equal to one in $r\left(D_{2} \mid G-V^{\prime}\right)$, since D_{2} is a dominating set and $v_{i} \notin D_{2}$, a contradiction.

By above argument $G-I$ is global forcing independent dominating set where I is a largest independent set of G. Therefore, $\varphi_{g i}(G) \leq n-\alpha(G)$.

Theorem 7. [11] If G is a graph of order n containing no clique of size q, then $\alpha(G) \geq \frac{2 n}{\Delta_{G}+q}$.
Applying Theorem 6 and Theorem 7 we have:
Theorem 8. If G is a graph of order n containing no clique of size q, then $\varphi_{g i}(G) \leq n-\frac{2 n}{\Delta_{G}+q}$.
Using Theorem 5 and Theorem 8 leads to the next theorem.
Theorem 9. If G is a graph of order n whose line containing no clique of size q, then $\varphi_{g m}(G) \leq$ $m-\frac{2 m}{\Delta_{L(G)}+q}$.

Theorem 10. [5, 21] If G is a graph, then

$$
\alpha(G) \geq \sum_{u \in V_{G}} \frac{1}{\operatorname{deg}_{G}(u)+1} .
$$

By Theorem 6 and Theorem 10 we can write:
Theorem 11. If G is a graph of order n, then

$$
\varphi_{g i}(G) \leq n-\sum_{u \in V_{G}} \frac{1}{d e g_{G}(u)+1}
$$

Proof. By Theorem 6, we have

$$
\begin{equation*}
\varphi_{g i}(G) \leq n-\alpha(G) \tag{1}
\end{equation*}
$$

Also, by Theorem 10, we have

$$
\begin{equation*}
\alpha(G) \geq \sum_{u \in V_{G}} \frac{1}{\operatorname{deg}_{G}(u)+1} \tag{2}
\end{equation*}
$$

By replacing relation (2) in relation (1), $\varphi_{g i}(G) \leq n-\sum_{u \in V_{G}} \frac{1}{d e g_{G}(u)+1}$.
Combining Theorem 5 and Theorem 11 leads to the next theorem.
Theorem 12. If G is a graph of size m, then

$$
\varphi_{g m}(G) \leq m-\sum_{u \in V_{L(G)}} \frac{1}{\operatorname{deg}_{L(G)}(u)+1}
$$

In following, let $\omega(G)$ show the clique number of G.
Theorem 13. [11] If G is a graph of order n, then

$$
\alpha(G) \geq \frac{2 n}{\Delta_{G}+\omega(G)+1}
$$

According to Theorem 6 and Theorem 13 we can say:

Theorem 14. If G is a graph of order n, then

$$
\varphi_{g i}(G) \leq n-\frac{2 n}{\Delta_{G}+\omega(G)+1}
$$

Based on Theorem 5 and Theorem 14 we can conclude that:
Theorem 15. If G is a graph of size m, then

$$
\varphi_{g m}(G) \leq m-\frac{2 m}{\Delta_{L(G)}+\omega(L(G))+1} .
$$

Theorem 16. [7] Let G be a graph of order n. If p is an integer such that for every clique C of G, there is a vertex u in C with $\operatorname{deg}_{G}(u)+|C|+1 \leq p$, then $\alpha(G) \geq \frac{2 n}{p}$.

By Theorem 6 and Theorem 16 we can say:
Theorem 17. Let G be a graph of order n. If p is an integer such that for every clique C of G, there is a vertex u in C with $\operatorname{deg}_{G}(u)+|C|+1 \leq p$, then $\varphi_{g i}(G) \leq n-\frac{2 n}{p}$.

Using Theorem 5 and Theorem 17 we conclude that:
Theorem 18. Let G be a graph of size n. If p is an integer such that for every clique C of $L(G)$, there is a vertex u in C with $\operatorname{deg}_{L(G)}(u)+|C|+1 \leq p$, then $\varphi_{g m}(G) \leq m-\frac{2 m}{p}$.

4 Concluding Remarks

Global forcing number for maximal matchings of graphs is algorithmically difficult to compute and very applicable. In this paper we have studied this invariant under three graph products. We have also obtained some sharp bounds. It would be interesting to study this invariant under other graph operations such as lexicographic, splice and link.

References

[1] Adams P., Mahdian M., Mahmoodian E.S. (2004). "On the forced matching numbers of bipartite graphs", Discrete Mathematics, 281, 1-12.
[2] Afshani P., Hatami H., Mahmoodian E. S. (2004). "On the spectrum of the forced matching number of graphs", Australasian Journal of Combinatorics, 30, 147-160.
[3] Barriére L., Dafló C., Fiol M. A., Mitjana M. (2009). "The generalized hierarchical product of graphs", Discrete Mathematics, 309, 3871-3881.
[4] Berge C. (1973). "Graphs and Hypergraphs", North-Holland, Amsterdam.
[5] Caro Y. (1979). "New results on the independence number", Technical Report, Tel-Aviv University.
[6] Harary F., Klein D. J., Živković T. P. (1991). "Graphical properties of polyhexes: perfect matching vector and forcing", Journal of Mathematical Chemistry, 6, 295-306.
[7] Henning M. A., Löwenstein C., Southey J., Yeo A. (2014). "A new lower bound on the independence number of a graph and applications", Electronic Journal of Combinatorics, 21, 1-38.
[8] Henning M. A., Schiermeyer I., Yeo A. (2011). "A new bound on the domination number of graphs with minimum degree two", Electronic Journal of Combinatorics, 18, 12.
[9] Klavžar S., Tavakoli M. (2020). "Local metric dimension of graphs: Generalized hierarchical products and some applications", Applied Mathematics and Computation, 364, 124676.
[10] Klein D. J., Randić M. (1986). "Innate degree of freedom of a graph", Journal of Computational Chemistry, 8, 516-521.
[11] Fajtlowicz S. (1978). "On the size of independent sets in graphs", Congressus Numerantium, 21, 269-274.
[12] Tavakoli M., Rahbarnia F., Ashrafi A. R. (2014). "Applications of the generalized hierarchical product of graphs in computing the vertex and edge PI indices of chemical graphs", Ricerche di Matematica, 63, 59-65.
[13] Vukičević D., Zhao S., Sedlar J., Xu S. J., Došlić T. (2018). "Global forcing number for maximal matchings", Discrete Mathematics, 341, 801-809.
[14] Pachter L., Kim P. (1998). "Forcing matchings in square grids", Discrete Mathematics, 190, 287-294.
[15] Pushpalatha A. P., Jothilakshmi G., Suganthi S., Swaminathan V. (2011). "Forcing independent spectrum in graphs", International Journal of Computer Applications, 21, 1-6.
[16] Riddle M. E. (2002). "The minimum forcing number for the torus and hypercube", Discrete Mathematics, 245, 283-292.
[17] Song W., Miao L., Wang H., Zhao Y. (2014). "Maximal matching and edge domination in complete multipartite graphs", International Journal of Computer Mathematics, 91, 857-862.
[18] Sun L., Wang J. (1999). "An upper bound for the independent Domination Number", Journal of Combinatorial Theory. Series B, 76, 240-246.
[19] Vukičević D., Kroto H. W., Randić M. (2005). "Atlas of Kekulé valence structures of buckminsterfullerene", Croatica Chemica Acta, 78, 223-234.
[20] Vukičević D., Randić M. (2005). "On Kekulé structures of buckminsterfullerene", Chemical Physics Letters, 401, 446-450.
[21] Wei V. (1981). "A lower bound on the stability number of a simple graph", Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ.
[22] Zhang F. J., Li X. L. (1995). "Hexagonal systems with forcing edges", Discrete Mathematics, 140, 253-263.

عدد فورسينگ عمومى براى تطابقهاى ماكسيمال تحت اعمال گراف

$$
\begin{aligned}
& \text { توكلى، م. } \\
& \text { Il09 الشگاه فردوسى مشهد، دانشكده علوم رياضى، گروه رياضى كاربردى، صندوق پستى } \\
& \text { m_ tavakoli@um.ac.ir }
\end{aligned}
$$

فرض كنيد $S=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ يى زيرمجموعه مرتب از يالهاى يی گراف همبند G باشد. S S يانمايش يالى از

 عمومى براى تطابقهاى ماكسيمال از G با با مينيمم اندازه را مجموعه فورسينگ عموا

 آكر

 كلمات كليدى

مجموعه فورسينگ سراسرى، عدد فورسينگ سراسرى، تطابق ماكسيمال، غالب مستقل ماكسيمال، ضرب گراف.

[^0]: * Corresponding author
 m__ tavakoli@um.ac.ir
 http://mathco.journals.pnu.ac.ir

