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1 Introduction

System identification is an important field of science that focuses on organizing the knowledge
about the systems, and it is necessary for many disciplines of applied sciences such as physics,
economics, biology, and control engineering. In the literature, the dynamic systems are classified
into two categories: discrete-time and continuous-time nonlinear systems (CTNSs). Most of
the system identification techniques are developed for discrete-time nonlinear systems, and a
few works are done for the identification of CTNSs [6, 7, 9, 27, 28, 32]. However, there are some
reasons that continuous-time models are more reliable than discrete-time models. Most of the
physical laws and classical theories such as Newton’s laws, Faraday’s laws, Laplace transforms,
and PID controllers are created in the continuous-time description. During the transformation
of continuous-time description of a system into the discrete-time description, loss of information
may occur. The effects of noises on the discrete-time models are more than their effects on
continuous-time models.

One of the most important approaches for identifying nonlinear systems is the employment
of neural networks as identifiers [1, 18, 22, 23, 24]. The abilities of neural networks in system
identification and control are shown during the last decades. However, there are a few works on
the identification of CTNSs. Radial basis function networks have been used for the identification
of CTNSs [22].

For increasing the abilities of neural networks to overcome the uncertainties in the ap-
plications, they are combined with the theories concerning the uncertainty. In this regard,
based on rough set theory, Lingras proposed the rough-neural networks (R-NNs) [21]. More-
over, he defined the rough neuron as a pair of upper and lower bound neurons where the
information exchanges between them. Rough-neural networks are used in different contexts
successfully, such as predicting traffic amount, image processing, classification, wind speed pre-
diction [5, 10, 11, 16, 17, 31]. Recently, Ahmadi et al. utilized R-NNs to identify discrete
dynamic nonlinear systems [2, 3, 4].

Due to the existence of many parameters in the structure of R-NNs, their training is time-
consuming. To overcome this problem, we propose the rough extreme learning machine (RELM)
for the identification of CTNSs. RELM is an R-NN with one hidden layer where the parameters
between the inputs and hidden neurons are arbitrarily chosen and never updated. In 2006,
Huang et al. proposed an extreme learning machine (ELM) for the first time [12]. The training
of ELMs is done significantly faster than the traditional feedforward neural networks. They have
been used for different purposes in recent years, such as identification and control of nonlinear
systems, classification, and so on [8, 18, 19, 30].

Recently, the authors published some works in the contexts of chaotic system identification
using neural networks and R-NNs. Lamamra et al. utilized the multilayer perceptron to model
the chaotic systems where the parameters are adjusted with a genetic algorithm [20]. Pan et al.
employed the multilayer perceptron with a hybrid learning based on the genetic algorithm and
the steepest descent method for the identification of chaotic systems [29]. Jahangir et al. used
R-NNs to forecast the electricity price [17]. In their proposed model, the inputs are crisp, the
rough neurons have only one particular output, and all of the parameters are adjusted using
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the backpropagation algorithm. Feng et al. proposed the rough ELM for the classification of
uncertain data [8]. In their model, the input data must be crisp, and the authors utilized the
upper and lower approximation sets to adjust the parameters.

In this paper, we propose the RELM for the identification of CTNSs in the presence of noises.
We adjust the parameters of RELM with an online Lyapunov-based learning algorithm, and
we prove the global asymptotically convergence of this algorithm. This model admits interval
data as input through their upper and lower bounds. We use the proposed methodology to
identify the chaotic systems, Duffing’s oscillator, and Lorentz system. Simulation results show
the better performances of RELMs compared with that of ELMs.

We can summarize the contributions of this work as follows:

• In this work, we consider the problem of CTNS identification in the presence of uncer-
tainties where, despite its importance, in the literature, there are a few works in this
context.

• On the base of R-NNs, we propose a new structure of ELMs called RELM and utilize it
for the identification of nonlinear systems.

• We propose an online Lyapunov-based learning algorithm for adjusting the trainable
parameters of RELM.

• We utilize the proposed methodology for the identification of chaotic systems, Duffing’s
oscillator and Lorentz system in the presence of noises.

The paper is organized as follows. Section 2 gives the structure of RELM. In Section 3,
we use the RELMs to identify the CTNSs. In Section 4, we utilize an online Lyapunov-based
learning algorithm for training RELMs and prove the global asymptotically convergence of this
algorithm. Section 5 carries out the simulation results, and Section 6 states the conclusions.

2 Structure of Rough Extreme Learning Machines

RELM is a rough neural network with one hidden layer where the parameters between the
inputs and hidden neurons are randomly assigned and never updated. This Section gives the
structure of RELM and computes the output vector. Consider the RELM where the hidden
neurons are rough and the output neurons are conventional, as shown in Figure 1. We show
the output vector of RELM with ŷ and the input vector of RELM with

x = [x1, x1, x2, x2, . . . , xm, xm, 1]T ,

where xi (i ∈ {1, 2, . . . ,m}) is the lower bound, and xi (i ∈ {1, 2, . . . ,m}) is the upper bound
of xi. The component 1 in the vector x shows the input corresponding to the biases. Let V r
and V r be the parameters between the inputs and lower bound neurons in the hidden layer and
the parameters between the inputs and upper bound neurons in the hidden layer, respectively.
According to the definition of RELM, V r and V r are some randomly chosen numbers and
remain unchanged during the training process. Suppose that W and W be the parameters
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Figure 1: Structure of RELM.

between the hidden lower bound neurons and output neurons and the parameters between the
hidden upper bound neurons and output neurons, respectively.

Further, let I, I, O, and O be the inputs into the lower bound neurons in the hidden layer,
the inputs into the upper bound neurons in the hidden layer, the outputs of lower bound neurons
in the hidden layer, the outputs of upper bound neurons in the hidden layer, respectively.
Besides, ϕ shows the activation function in the hidden layer. Then, we have

I = V rx, I = V rx,
O = min

(
ϕ(I), ϕ(I)

)
, O = max

(
ϕ(I), ϕ(I)

)
,

and the output vector ŷ of RELM is given by

ŷ = WO +WO

= W min
(
ϕ(V rx), ϕ(V rx)

)
+W max

(
ϕ(V rx), ϕ(V rx)

)
. (1)

For simplicity, we use the following notations:

ϕ = ϕ(V rx), ϕ = ϕ(V rx). (2)

Therefore, we can write equation (1) as

ŷ = W min
(
ϕ, ϕ

)
+W max

(
ϕ, ϕ

)
. (3)

Remark 1. We can state the main differences of RELM with other ELMs as follows:

• RELM contains rough neurons in the hidden layer.
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• Rough patterns can be used as the inputs of RELM through their upper and lower bounds.

These properties increase the capabilities of neural models to cope with the uncertainties and
noises in the identification of nonlinear systems.

Remark 2. Recently, a particular type of ELM, called rough ELM is used to classify uncertain
data [8]. The proposed structure and learning algorithm in the current paper is different from
that work. In [8], the input data of the proposed model needs to be crisp. However, in this
work, RELM admits rough patterns as inputs during the upper and lower bounds of features,
which increases the flexibility of the model. Also, in [8], the upper and lower approximation sets
are utilized to adjust the parameters. Nevertheless, this work uses a Lyapunov-based learning
algorithm to train the RELM.

3 RELM as an Identifier

We can state a multi-input multi-output (MIMO) CTNS as follows:

ż = f(z,u), (4)

where u and z denote the system inputs and outputs, respectively. Suppose that (4) is com-
pletely controllable and observable, and the solution of (4) is existed and unique. In the
presence of noises, the components of z are uncertain. Suppose that z and z are the lower and
upper bounds for z, respectively. Besides, u and u show the lower and upper bounds for u,
respectively.

The system (4) can be restated as

ż = Az + g(z,u), (5)

where we represent the system nonlinearity with g(z,u) = f(z,u) − Az, and A is a Hurwitz
matrix. Suppose that the RELM can model g in equation (5), using the parameters W ⋆ and
W ⋆ with an accuracy of ϵ. Therefore, using equation (3), we can write

ż = Az +W ⋆min
(
ϕ, ϕ

)
+W ⋆max

(
ϕ, ϕ

)
+ ϵ, (6)

where x contains the upper and lower bounds of inputs and states of RELMs. Then, we can
construct the parametric model of the system (4) as

˙̂z = Aẑ + Ŵ min
(
ϕ, ϕ

)
+ Ŵ max

(
ϕ, ϕ

)
, (7)

where Ŵ and Ŵ represent the parameters to estimate W ⋆ and W ⋆, respectively.

Remark 3. According to the universal approximation theorems, the neural networks can ap-
proximate the continuous functions with arbitrary precision [14]. Also, universal approximation
has been proved for ELMs [13]. On the base of these theories, in this work, we suppose that
RELM can model the function g with the unknown ideal parameters W ⋆ and W ⋆. Therefore,
in the applications, a learning algorithm is used to estimate these parameters.
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Using equations (6) and (7), we have

ė = ż − ˙̂z
= Ae + W̃ min

(
ϕ, ϕ

)
+ W̃ max

(
ϕ, ϕ

)
+ ϵ, (8)

where

W̃ =W ⋆ − Ŵ , W̃ =W ⋆ − Ŵ . (9)

4 Lyapunov-Based Learning Algorithm for RELMs

In this Section, based on the Lyapunov stability theory, an online learning algorithm is proposed
for RELM. In the proof of Theorem 1, the definition of function spaces L2 and L∞ would be
needed [15]. For continuous function f , the L2 norm is defined as follow:

‖f‖2 =

(∫ ∞

0

|f(t)|2dt
)1/2

. (10)

If ‖f‖2 exists, then we say f ∈ L2. The L∞ norm is defined as follow:

‖f‖∞ = sup
t≥0

|f(t)|. (11)

If ‖f‖∞ exists, then we say f ∈ L∞.

Theorem 1. Suppose that the model RELM, which is given by (7), is utilized for the identi-
fication of the system (4) and it is trained by the following laws:

˙̂
W = e

[
min(ϕ, ϕ)

]T
Γ−1
1 , (12)

˙̂
W = e

[
max(ϕ, ϕ)

]T
Γ−1
2 , (13)

where the symmetric matrices Γ1 and Γ2 are the gains of learning. Assume that

‖e‖ ≥ ‖ϵ‖
|λmin(A)|

, (14)

where λmin(A) is the eigenvalue of A with the least absolute value. In this case, the modeling
error e converges to zero. Besides, the weights Ŵ , Ŵ , and the predictions ẑ are bounded.

Proof. Let

v =
1

2
eTe +

1

2
tr
(
W̃Γ1W̃

T
)
+

1

2
tr
(
W̃Γ2W̃

T
)
, (15)

where Γ1 and Γ2 represent the gains of learning. Then, according to (8), we have

v̇ = eT ė + tr
(
˙̃
WΓ1W̃

T
)
+ tr

(
˙̃
WΓ2W̃

T
)
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= eTAe + eT W̃ min
(
ϕ, ϕ

)
+ eT W̃ max

(
ϕ, ϕ

)
+ ϵ+ tr

(
˙̃
WΓ1W̃

T
)

+tr
(

˙̃
WΓ2W̃

T
)

= eTAe + eT ϵ+ tr
(

e
[
min

(
ϕ, ϕ

)]T
W̃

T
)
+ tr

(
e
[
max

(
ϕ, ϕ

)]T
W̃

T
)

+tr
(
˙̃
WΓ1W̃

T
)
+ tr

(
˙̃
WΓ2W̃

T
)

= eTAe + eT ϵ+ tr
(

e
[
min

(
ϕ, ϕ

)]T
W̃

T
+

˙̃
WΓ1W̃

T
)

+tr
(

e
[
max

(
ϕ, ϕ

)]T
W̃

T

+
˙̃
WΓ2W̃

T
)
. (16)

From the fact that

W̃ =W ⋆ − Ŵ , W̃ =W ⋆ − Ŵ , (17)

we have
˙̃
W = − ˙̂

W,
˙̃
W = −

˙̂
W. (18)

Therefore

v̇ = eTAe + eT ϵ+ tr
(

e
[
min(ϕ, ϕ)

]T
W̃

T
−

˙̂
WΓ1W̃

T
)
+ tr

(
e
[
max(ϕ, ϕ)

]T
W̃

T

−
˙̂
WΓ2W̃

T
)

= eTAe + eT .ϵ (19)

In (19), the last equality is the result of assumptions (12) and (13). Now, we have

v̇ = eTAe + eT ϵ
≤ −‖e‖2|λmin(A)|+ ‖e‖‖ϵ‖. (20)

However, the expression (20) is a polynomial of degree 2 in ‖e‖ and according to (14), we have
v̇ < 0. Therefore, v is a decreasing function and for every t > 0, we have v < v(0). Due to the
positive definiteness of v, for every t > 0 we have v > 0. Then, for every t > 0, 0 < v < v(0)

and v ∈ L∞. Also, e ∈ L∞. From (20), we have

0 <

∫ ∞

0

‖e‖2λmin(A)dt−
∫ ∞

0

‖e‖‖ϵ‖dt

≤ −
∫ ∞

0

v̇dt = v(0)− v(∞) <∞, (21)

that implies e ∈ L2. Using these results, e ∈ L∞ ∩ L2. Then, by employing the Barbalat’s
lemma [15], we have e −→ 0 as t −→ ∞. Therefore, according to (12) and (13),

˙̂
W,

˙̂
W −→ 0. (22)

Moreover, Ŵ and Ŵ are bounded.

As a result, the modeling error converges to zero, and the weights and predictions are
bounded.
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5 Simulation Results

This Section uses RELMs with the learning laws (12) and (13) to identify chaotic systems Duff-
ing’s oscillator and Lorentz system with noises, and we compare their performances with that
of ELMs. A chaotic system is a dynamic system that is very sensitive to initial conditions. The
identification of chaotic systems is an active field of research [26, 29, 20]. Chaotic systems have
many applications in different fields of science and engineering. We use the NARX configura-
tion in these models. Simulation results show a better performances of RELMs compared with
that of ELMs.

When the state z of the nonlinear dynamic system is noisy, to implement the RELMs,
the upper and lower bounds z and z are required. In these simulations, to approximate z
and z, we repeat the adding noise with a specified signal-to-noise ratio (SNR) to the data set
multiple times. The performance metric is the identification mean squared errors (MSEs). For
implementing this methodology on digital computers, we use the Runge-Kutta method of order
four.

5.1 Duffing’s Oscillator

Consider the following chaotic system called Duffing’s equation:

ẍ = −pẋ− p1x− p2x
3 + u. (23)

Duffing’s equation describes a specific nonlinear circuit, observed in many mechanical problems.
Here, t is the time variable, p, p1, p2 and q are real constants, and u is the control input
u = q cos(ωt) where ω is the frequency.We can write it as{

ż1 = z2,

ż2 = −pz2 − p1z1 − p2z
3
1 + u.

(24)

For this simulation, p = 0.4, p1 = 1.1, p2 = 1, ω = 1.8, q = 1.65 and z1(0) = z2(0) = 0 are
considered. The system (24) with noise (SNR=15 dB) is identified by ELM and RELM. In
their hidden layer, we use the hyperbolic tangent as activation function. The initial values of
trainable parameters Ŵ , Ŵ and Ŵ are some random numbers between -1 and 1. The constant
parameters Vr, V r and V r are random numbers between −2 and 2. The input vector of ELM
is x = [u, z1, z2, 1]

T and the input vector of RELM is

x = [u, z1, z1, z2, z2, 1]
T
.

We choose the design matrix A as

A =

[
−5 0

0 −5

]
. (25)

Remark 4. According to the presented theory, the matrix A must be Hurwitz (every eigen-
value of A has strictly negative real part). In the simulation results, we choose the matrix A
empirically, and it is possible to choose a nondiagonal matrix.
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Table 1: Performances comparison of ELM and RELM models in the identification of noisy Duffing’s
Oscillator (SNR=15 dB). We show the number of (rough) neurons in the hidden layer, in column nh.

Model nh Parameters Train MSE Test MSE

ELM 20 40 0.0036 0.0010

ELM 30 60 0.0023 0.0008

ELM 40 80 0.0014 0.0008

ELM 50 100 0.0013 0.0008

ELM 70 140 0.0014 0.0007

RELM 10 40 0.0014 0.0003

RELM 15 60 0.0010 0.0002

RELM 20 80 0.0009 0.0002

RELM 25 100 0.0007 0.0001

RELM 35 140 0.0007 0.0001

The design parameters of the learning algorithm for ELM are selected as follows:

nh = 20, 30, 40, 50, 70, Γ1 = 100Inh×nh
, (26)

where Γ1 denotes the learning rates. The design parameters of the learning algorithm for RELM
are selected as follows:

nh = 10, 15, 20, 25, 35, Γ1 = 100Inh×nh
, Γ2 = 100Inh×nh

, (27)

where Γ1 and Γ2 denote the learning rates. It must be mentioned that for generating the data
set and the simulation aspects of the proposed methodology, solving the differential equations
by one of the numerical methods are necessary. Here, we use the Runge-Kutta method of order
four. We choose the sampling time for this simulation as 0.01.

In identifying (24), we list the training and testing MSEs of ELM and RELM models in
Table 1. In this Table, the models with an equal number of trainable parameters are comparable.
Due to the number of parameters, we can compare the performances of ELM with 20, 30, 40,
50, and 70 hidden neurons with the performances of RELM with 10, 15, 20, 25, and 35 hidden
rough neurons, respectively. For example, the training MSE of ELM with 50 hidden neurons is
0.0013, and the testing MSE is 0.0008, where the training MSE of RELM with 25 hidden rough
neurons is 0.0007, and the testing MSE is 0.0001.

Figure 2 shows the parameter evolution and error convergence in the training of ELM with
50 hidden neurons for the noisy Duffing’s oscillator (SNR=15 dB). Figure 3 show the parameter
evolution and error convergence in the training of RELM with 25 hidden rough neurons for the
noisy Duffing’s oscillator (SNR=15 dB).
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Figure 2: Parameter evolution and error convergence in the training of ELM with Fifty neurons in the
hidden layer, in the identification of noisy Duffing’s oscillator (SNR=15 dB).

Figure 3: Parameter evolution and error convergence in the training of RELM with Twenty-five hidden
rough neurons, in the identification of noisy Duffing’s oscillator (SNR=15 dB).

The colored line graphs in these figures show some of the parameters (weights) in the models
which are chosen randomly. Figures 4 and 5 show the true states, the estimated states, and
the errors in the testing of ELM with 50 neurons in the hidden layer and RELM with 25 rough
neurons in the hidden layer, in the identification of noisy Duffing’s oscillator (SNR=15 dB).
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Figure 4: The actual states, the estimated states, and the errors in the testing of ELM with Fifty
hidden neurons, in the identification of noisy Duffing’s oscillator (SNR=15 dB).

Figure 5: The actual states, the estimated states, and the errors in the testing of RELM with Twenty-
five hidden rough neurons, in the identification of noisy Duffing’s oscillator (SNR=15 dB).

From Table 1 and Figures 2-5, we can conclude that in the presence of noise, the perfor-
mance of RELM in the identification of (28) is better than that of ELM. According to Table 1,
increasing the number of hidden neurons generally results in decreasing the identification error.
Therefore, to achieve a better model, we can increase the number of hidden neurons.
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5.2 Lorentz System

The dynamic equations of Lorentz oscillator are as follows:
ż1 = σ(z2 − z1),

ż2 = rz1 − z2 − z1z3,

ż3 = z1z2 − bz3,

(28)

where σ, r, b > 0 are system parameters. For this simulation, σ = 10, r = 28, b = 8/3

and z1(0) = 7.5, z2(0) = −9, z3(0) = 28 are considered. The identification of noisy Lorentz
oscillator (28) where SNR=15 dB, is done by ELM and RELM. In the hidden layer of these
models, the hyperbolic tangent is used as an activation function. In this simulation, all data is
normalized to be in the interval [−1, 1]. The initial values of trainable parameters Ŵ , Ŵ , and
Ŵ are some random numbers between -1 and 1. The constant parameters Vr, V r, and V r are
random numbers between −1 and 1. The input vector of ELM is x = [z1, z2, z3, 1]

T and the
input vector of RELM is

x = [z1, z1, z2, z2, z3, z3, 1]
T
.

We choose the design matrix A as

A =

 −60 0 0

0 −60 0

0 0 −120

 . (29)

We select the design parameters of the learning algorithm for ELM as

nh = 20, 30, 40, 50, 80, 100, Γ1 = 20Inh×nh
, (30)

where Γ1 denotes the learning rates. We select the design parameters of the learning algorithm
for RELM as

nh = 10, 15, 20, 25, 40, 50, Γ1 = 20Inh×nh
, Γ2 = 20Inh×nh

, (31)

where Γ1 and Γ2 denote the learning rates. It must be mentioned that for generating the data
set and the simulation aspects of the proposed methodology, solving the differential equations
by one of the numerical methods are necessary. Here, we use the Runge-Kutta method of order
four. We choose the sampling time for this simulation as 0.01.

We list the MSEs of identifying (28) with ELM and RELM models in training and testing in
Table 2. In this Table, the models with an equal number of trainable parameters are comparable.
Due to the number of parameters, the performance of ELM with 20, 30, 40, 50, 80, and 100
neurons in the hidden layer are comparable with the performance of RELM with 10, 15, 20,
25, 40, and 50 rough neurons in the hidden layer, respectively. For example, the training MSE
of ELM with 50 hidden neurons is 0.0025, and the testing MSE is 0.0012, where the training
MSE of RELM with 25 hidden rough neurons is 0.0013, and the testing MSE is 0.0003.

Figures 6 and 7 show the parameter evolution and error convergence in the training of ELM
with 50 neurons in the hidden layer and RELM with 25 rough neurons in the hidden layer, for
the same data set of noisy Lorentz system (SNR=15 dB), respectively. The colored line graphs
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Table 2: Performances comparison of ELM and RELM models in the identification of noisy Lorentz
system (SNR=15 dB). The number of (rough) neurons in the hidden layer is shown in column nh. The
MSEs are normalized.

Model nh Parameters Train MSE Test MSE

ELM 20 60 0.0039 0.0015

ELM 30 90 0.0028 0.0013

ELM 40 120 0.0025 0.0013

ELM 50 150 0.0025 0.0012

ELM 80 240 0.0018 0.0011

ELM 100 300 0.0015 0.0010

RELM 10 60 0.0055 0.0014

RELM 15 90 0.0038 0.0009

RELM 20 120 0.0016 0.0004

RELM 25 150 0.0013 0.0003

RELM 40 240 0.0009 0.0002

RELM 50 300 0.0007 0.0002

in these figures show some of the parameters (weights) in the models which are chosen randomly.
Figures 8 and 9 show the actual states and the estimated states in the testing of ELM with 50
hidden neurons and RELM with 25 hidden rough neurons, in the identification of noisy Lorentz
system (SNR=15 dB), respectively. Also, Figure 10 shows the parameter evolution and error
convergence in the training of RELM with 25 hidden rough neurons in the identification of the
Lorentz system (28) without noises. This Figure confirms the modeling error convergence to
zero as it is shown in Theorem 1. Nevertheless, in Figures 2, 3, 6, and 7, the noises influence
the convergence of the identification error to zero. According to Table 2, increasing the number
of hidden neurons generally results in decreasing the identification error. Therefore, to achieve
a better model, we can increase the number of hidden neurons.
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Figure 6: Parameter evolution and error convergence in the training of ELM with Fifty hidden neurons,
in the identification of noisy Lorentz system (SNR=15 dB).

Figure 7: Parameter evolution and error convergence in the training of RELM with Twenty-five hidden
rough neurons, in the identification of noisy Lorentz system (SNR=15 dB).

From Table 2 and Figures 6-9, we can conclude that the performance of RELM in identifying
(28) with noise is better than that of ELM. According to Table 2, increasing the number of
hidden neurons generally results in decreasing the identification error. Therefore, to achieve
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Figure 8: The actual states, the estimated states, and the errors in the testing of ELM with Fifty
hidden neurons, in the identification of noisy Lorentz system (SNR=15 dB).

Figure 9: The actual states, the estimated states, and the errors in the testing of RELM with Twenty-
five hidden rough neurons, in the identification of noisy Lorentz system (SNR=15 dB).

a better model we can increase the number of hidden neurons. Moreover, as a result, the
identification error tends to zero.
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Figure 10: The parameter evolution and error convergence in the training of RELM with Twenty-five
hidden rough neurons in the identification of the Lorentz system without noises.

6 Conclusion

Rough-neural networks (R-NNs) are some powerful models in dealing with the uncertainty in the
identification of nonlinear systems. Nevertheless, the training of R-NNs is time-consuming. In
this paper, to overcome the problem mentioned above, we used the extreme learning machines
(RELMs) to identify the continuous-time nonlinear systems with noises in a series-parallel
configuration. The trainable parameters of RELMs are less than R-NNs, and therefore, the
training process takes less time. Based on the Lyapunov stability theory, we developed an
online parameter adjustment algorithm to train the RELM. In the simulation results, the noise
reduction ability and the fast error convergence of RELMs against the ELMs are shown. Our
future work focuses on designing the controllers for dynamic nonlinear systems based on RELMs.
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چکیده

ورودی ها بین پارامترهای آنها در که هستند پنهان لایه یک با راف−عصبی شبکه های راف حدی یادگیری ماشین های
یادگیری ماشینهای مقاله، این در نمی شوند. روز به هرگز و می شوند انتخاب تصادفی صورت به پنهان نورون های و
نویزها حضور در زمان−پیوسته غیرخطی سیستمهای شناسایی برای را پایدار برخط یادگیری الگوریتم یک با راف حدی
یادگیری الگوریتم سراسری مجانبی همگرایی لیاپانوف، پایداری نظریه از استفاده با و می کنیم پیشنهاد عدم قطعیت ها و
سیستم و دافینگ نوسانگر آشوبی سیستم های شناسایی برای شده پیشنهاد روش از سپس، می کنیم. اثبات را شده پیشنهاد

می دهد. نشان را پیشنهادی مدل کارآمدی شبیه سازی نتایج می گیریم. بهره لورنز
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لیاپانوف. پایداری نظریه راف، حدی یادگیری ماشین راف−عصبی، شبکه حدی، یادگیری ماشین سیستم، شناسایی
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