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Abstract. In this study, R and M are assumed to be a commutative ring with
non-zero identity M and an R-module, respectively. Scalar Product Graph
of M, denoted by Gg(M), is a graph with the vertex-set M and two different
vertices a and b in M are connected if and only if there exists r belong to R
such that a = rb or b = ra. This paper studies some properties of such weakly
perfect graphs.
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1 Introduction

Throughout this paper, let G be a simple graph with a set of vertices V = V(G) and a set of
edges E = E(G). Let uj,uj € V(G). If u; is adjacent to uj, we have u; ~ u;. The k-coloring
of G is an appropriate form of k colors to V(G) such that no two adjacent vertices have the
same color. The smallest number k with this property, denoted by x(G), is called the chromatic
number of G. A clique of G is a complete subgraph of G and the cardinality of the largest clique
of G is called the clique number of G and denoted by w(G). A graph G is called weakly perfect
if x(G) = w(G). Maimani and et al. [4] introduced a class of such graphs. Nikandish and et al.
[5] presented a graph of ideals that are weakly perfect. The graph is perfect if every induced
subgraph is weakly perfect. Hence, every perfect graph is weakly perfect and there are several
classes that indicate that the converse may not hold in general. Fander [3] introduced a new
class of perfect graphs.

Let S C V(G). Herein, S is an independent set if the maximum degree of the subgraph induced
by V(G) is zero. Independent number, denoted by a(G), is the maximum cardinality of any
independent set. It is trivial that vertex S is a clique of G if and only if it is an independent
set of G. Thus, a(G) = w(G).

A topological index is a numerical quantity that is invariant under automorphisms of the graph.
The topological index based on the distance function was first used by H. Wiener [7]. If
u,v € V(G) are two different vertices, then d(u,v) is the length of the shortest path between u

Y dww) (1)

u,veV(G)

and v. Therefore, the Wiener index of G is:

W(G) =

N =

Suppose that R is a commutative ring with identity and W(R) is a set of non-unit elements of
R. Afkhami et al. [1] defined the Cozero-divisor graph of R, denoted by I'’(R), with vertices
W(R)* = W(R)\{0} and x,y € W(R)"(x # v); then, x ~ p if and only if x € Ry and y & Rx where Rc
is an ideal generated by ¢ € R. Suppose that M is an R-module and Wx(M) = {x € M | Rm = M}.
With R as R-module, Wg(R) is a set of all non-unit elements of R. Alibemani et al. [2] introduced
Cozero-divisor graphs in relation to R-module M in which vertices are Wr(M)* = Wr(M) \ {0}
and m,n € Wg(M)*(m = n) and then, m ~ n if and only if m ¢ Rn and n ¢ Rm. The mentioned
authors studied the properties of this graph.

The next section introduces a new class of graphs arising from weakly perfect modules. More-
over, a formula is presented for x(G) and w(G) of such graphs. In Section 3, The Wiener index
of such graphs is calculated.

2 Weakly Perfect Graphs of Modules

This section defines a scalar product graph of the module and shows that it is weakly perfect in
some cases. The definition of the join of two graphs needs to be noted here. Suppose that X and
Y are two separate graphs. X+Y is join of X and Y with a set of vertices V(X+Y) = V(X)UV(Y)
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and a set of edges E(X+Y)=E(X)UE(Y)U{xy:xe V(X),ye V(Y)}.
In addition, | V(X +Y)|=| V(X) |+ | V(Y)|and | E(X+Y)|=| E(X) |+ | E(Y) |+ | V(X) || V(Y)]|.
Also, for two graphs X and Y we have x(X+Y) = x(X)+ x(Y).

Lemma 1. Let G and H be separate graphs. Then a(G+H) = max{a(G),a(H)} and w(G+H) =
w(G)+ w(H).

Proof. Suppose that max{a(G),a(H)} = a(G) and S = {uy,uy,..., us(g)} is the maximum in-
dependent number of G. For any (u;,u;j), 1 <1i,j < a(G), i # j, and the edge u;u; is not
in E(G); thus, u;u; € E(G+ H). It is implied that S is an independent set of G+ H. Indeed,
a(G+H) = max{a(G), a(H)}. Now, for the converse, suppose that S’ is the maximum independent
number and the sum of graphs G and H. Then, S’ is not the subset of V(G) and V(H) contem-
porary. Suppose that S’ C V(G) and therefore, (G + H) < a(G) and a(G+ H) < a(H). Hence,
a(G+H) < max{a(G), a(H)}. Suppose that C is an arbitrary clique of G+ H. It can be assumed
that C = C; UC, in which C; € V(G) and C, C V(H). It is quite trivial that | C1 |< w(G) and
| C2|< w(H). Therefore, w(G+H) < w(G)+ w(H). Thus, We have w(G+H) > w(G)+w(H). O

Definition 1. [6] Suppose that R is a commutative ring with non-zero identity and M be an
R-module. We define the Scalar-product graph of R-module M, namely Gr(M), in which the
vertices of Gr(M) are elements of M and x,y € M(x # y) then, x ~ v is adjacent if and only if
there exists r belonging to R such that x =y or y = rx.

Remark 1. Let Gg(M) be a Scalar-product graph of R-module M. If x,y € M then x is adjacent
to p if and only if Rx € Ry or Ry C Rx.

Remark 2. According to the definition of the cozero-divisor graph over modules, we have the
followings:

(1) If M is an R-module, the subgraph of Gg(M) in which vertices are Wg(M)* is the complement
of the cozero-divisors graph of M.

(2) We have Gg(M) = Gy + G, where G is a complete graph with | Wp(M)* | vertices and G, is

the complement of the the cozero-divisor graph of M.

In the following, if Gg(M) is the scalar product graph of some R- module M, we compute
x(Gr(M)) and w(Gr(M)).

Lemma 2. Suppose that M is an R-module. Then, the scalar product graph Gg(M) is complete
if and only if the cyclic submodules of M are linearly ordered by inclusion relation.

Proof. Let M be an R-module and N; =< a >N, =< b > be two cyclic submodules of M in
which a # b in M. Since the scalar product graph Ggr(M) is complete, a and b are adjacent. We
have <a>C<b> or <b>C<a>and Ny C N, or N, C Ny. Conversely, Let M be an R-module
in which the cyclic submodules are linearly ordered by inclusion relation. If a # b represents
two vertices of Ggr(M) then <a >C<b > or < b >C<a>. Therefore, a and b are adjacent in
Ggr(M). Hence, Gg(M) is complete. O

Suppose that M is R-module and A, B are two non-zero submodules of M.Then, M is called
uniserial if A C B or B C A. Clearly, the valuation ring R is uniserial as a module over itself.

Also, submodules and quotients of uniserial modules are again uniserial.
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Lemma 3. Let Z, be a Z-module. If p,m are prime and positive integer numbers, then for
n=1,p,p™, the scalar product graph Gz(Z,) will be complete.

Proof. Let M be a simple module. Then, submodules of M are linearly ordered by inclusion.

Hence, submodules of Z, are uniserial. Through Lemma 2.5, the scalar product graph of Z, is

complete.

2 n-1 n
Also, an = pl,%zz D ;,é D 5,,% D...D pp”ZZ D 5,,% =0, here an is uniserial. Therefore its scalar
product graph is complete. O

Theorem 1. Suppose that p is a prime number. Then, the edge number of Gz(Z,,) is 2p? -
2p+1.

Proof. In Remark 2.5, we have Gz(Z,) = K, + G such that K, is a complete graph with p
vertices and G is the complement of the cozero-divisor graph of Z,, which is Ky, ;. By
definition 2.1, we have:

-1 -1)(p-2
| E(Gz(Zsp)) |= B + L2224 p2 = 2p2 — 2p 41 O

0

] .

Figure 1: Scalar Product of Z-module Z.

Theorem 2. Let Z, be a Z-module. If n =1,p,p™ and n = 2p, then the graph Gz(Z,) is
weakly perfect. Also, if n = 2p, we have x(Gz(Z,)) = w(Gz(Z,))=2p-1.

Proof. By Lemma 2.7, Gz(Z,) is a complete graph with n vertices. Hence, It is weakly perfect.
If n = 2p, then by Remark 2.5, we have Gz(Z,,) = K, + G, such that K, is a complete graph
with p vertices and G is the complement of cozero-divisor graph of Z;, which is Ky, ;.
Also, x(Kp) = w(Kp) = p and x(Gz) = w(Gy) = p—1. Therefore, by Lemma 2.2, we have
X(G2(Z2y) = 0(Gz(Zay)) = 29~ 1. =

Table 1 show clique, chromatic and edge number of the scalar-product graph of Z,,:

Theorem 3. Suppose that p is a prime number. Then, the edge number of Gz(Z3),) is %pz -
7
Pt 2.

Proof. By Remark 2.5, we have Gz(Z3,) = Kpp_1 + G3 such that Kj,_1 is a complete graph
with p vertices and Gj is the complement of cozero-divisor graph of Zs, which is K; , 1. By
Definition 2.1, we have:

2p-1)(2p-2 -1)(p-2
| E(G(Zsy)) = B2 1 4 L2 (2p—1).(p+ 1) = $p? - Fp+2 0
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Table 1: clique, chromatic and edge number of Gz(Z5))

p_ x(G) w(G) [EG)]
3.5 5 13
5 9 9 41
713 13 85

X
e o
S VST

Figure 2: Scalar Product of Z-module Z5.

Theorem 4. Let Z, be a Z-module. If n = 3p, then the graph Gz(Z,,) is weakly perfect. Also
x(Gz(Zy)) = w(Gz(Z,)) =3p-2.

Proof. 1f n=3p, then by Remark 2.5, we have Gz(Z3p) = Kyp_1 + G3 where Ky, 1 is a complete
graph with 2p —1 vertices and Gj is the complement of the cozero-divisor graph of Z3, which
is Ky p-1. Also, x(Kpp-1) = w(Kpp_1) =2p—1 and x(G3) = w(G3) = p— 1. Therefore, by Lemma
2.2, we have x(Gz(Z3p)) = w(Gz(Z3,)) = 3p —2. O

Table 2 shows the clique, chromatic and edge number of the scalar-product graph of Z3,:

Table 2: clique, chromatic, and edge number of Gz(Z3))

p x(G) w(G) |EQ)
5 13 13 97
7 19 19 198
11 31 31 508
13 37 37 717

Theorem 5. Suppose that p is a prime number. Then, the edge number of Gz(Zs),) is %p2 -

§p+4.

Proof. By Remark 2.5, we have Gz(Zs,) = Kyp_3+ G5 such that Ky,_3 is a complete graph with
4p -3 vertices and Gj is the complement of the cozero-divisor graph of Zs, which is Ky ,_1. By
Definition 2.1, we have:

| E(Gz(Zs,)) |= 4220008 1 g1 07072) 4 (4 3 (p+3)= Bp? - Lp+a. O
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Theorem 6. Let Z,, be a Z-module. If n = 5p, then the graph Gz(Z,,) is weakly perfect. Also,
x(Gz(Zy)) = w(Gz(Z,)) = 5p - 4.

Proof. 1f n = 5p, then by Remark 2.5, we have Gz(Zs,) = Ky4p_3 + G5 such that Ky, 3 is a
complete graph with 4p — 3 vertices and Gs is the complement of the cozero-divisor graph of
Zs, which is m. Also, x(Kgp_3) = w(Kgp_3) =4p -3 and x(G5) = w(Gs) = p— 1. Therefore,
by Lemma 2.2, we have x(Gz(Zs;)) = w(Gz(Zsp)) = 5p — 4. O

3 Wiener Index of Gr(M)

Suppose that G is a graph. The Wiener index of G is half of the sum of the distance between
two distinct vertices. For example, we have W(K,,) = %n(n —1) and W(Ky,,_1) = (n-1)%

This section computes Wiener indices of Gz(Z,,) and Gz(Z3,) for some prime p. Similar
to what we had before, the Scalar product graphs of Z-module Z;, and Z3, are the join of
complete graph and complement of a cozero-divisor graph. Therefore, we seek a formula for
the Wiener index of the join of two graphs.

Theorem 7. [8] For any two graphs X; and X,, we have:
W(X1+X) = VX)) P = VXD [+ V(X)) P = V(Xo) |
+H VXD V(X)) - E(X1) |- E(X2) |
Now, we have the following propositions.
Proposition 1. Suppose that p is a prime number. Then, we have W(Gz(Z,,)) = 2p? 1.

Proof. By Proof 1, the scalar product graph of Z,, is the join of K, and Kj ;. Thus, from

Theorem 7, we have
W(Kp +Ky,p1) =1 VK P = V(K [+] V(K ) P =1 VK p) |
+ | V(Kp) || V(Kl,pfl) | - | E(Kp) | - | E(Kl,pfl) |

1 1
=p*—p+p’—p+p’-2p(p-1)-5(p-1)(p-2)

=2p>-1.
O
Proposition 2. Suppose that p is a prime number. Then, we have W(Gz(Z3p)) = %pz +5p-2.

Proof. By Proof 3, the scalar product graph of Zj, is the join of Ky, 1 and K, 1. Thus,
according to Theorem 7, we have:
W(Kayp_1 + Ky p1) = | V(Kpo1) P = | V(Kypoy) |+ V(K por) P = | V(g po1) |
+ | V(Kprl) ” V(KZ,pfl) | - | E(Kprl) | - | E(K2,p71> |
=(2p-1)*=(2p-1)+(p+1)>=(p+1)
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Proposition 3. Suppose that p is a prime number. Then, we can have W(Gz(Zs,)) =

3p-

- 3(2p=1)2p=2)~[1+ 3(p~1)(p-2)

+(2p-1(p+1)
9,1
—Ep +§p 2.
O
Zp’+
4,

Proof. By Proof 5, the scalar product graph of Zs), is the join of Ky, 3 and Ky 1. Thus, from

Theorem 7, we have:

W(Kgp3+Kap1) =1 V(Kgp3) P =1 V(Kgp3) [ +1 V(Kgp1) P = V(Kgp) |
+1V(Kgp-3) | V(Kyp1) | = | E(Kagp3) | = | E(Kyp 1) |
=(4p-3)*~(4p-3)+(p+3)* = (p+3)

+(4p=3)(p+3)~ 5 (4p~3)(4p~4)~[6+ 3 (p~1)(p2)]
:2—25p2+ %p—4.
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