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Abstract. In this study, R and M are assumed to be a commutative ring with
non-zero identity M and an R-module, respectively. Scalar Product Graph
of M, denoted by GR(M), is a graph with the vertex-set M and two different
vertices a and b in M are connected if and only if there exists r belong to R
such that a = rb or b = ra. This paper studies some properties of such weakly
perfect graphs.
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1 Introduction

Throughout this paper, let G be a simple graph with a set of vertices V = V (G) and a set of
edges E = E(G). Let u1,uj ∈ V (G). If ui is adjacent to uj , we have ui ∼ uj . The k-coloring
of G is an appropriate form of k colors to V (G) such that no two adjacent vertices have the
same color. The smallest number k with this property, denoted by χ(G), is called the chromatic
number of G. A clique of G is a complete subgraph of G and the cardinality of the largest clique
of G is called the clique number of G and denoted by ω(G). A graph G is called weakly perfect
if χ(G) = ω(G). Maimani and et al. [4] introduced a class of such graphs. Nikandish and et al.
[5] presented a graph of ideals that are weakly perfect. The graph is perfect if every induced
subgraph is weakly perfect. Hence, every perfect graph is weakly perfect and there are several
classes that indicate that the converse may not hold in general. Fander [3] introduced a new
class of perfect graphs.
Let S ⊆ V (G). Herein, S is an independent set if the maximum degree of the subgraph induced
by V (G) is zero. Independent number, denoted by α(G), is the maximum cardinality of any
independent set. It is trivial that vertex S is a clique of G if and only if it is an independent
set of Ḡ. Thus, α(G) = ω(Ḡ).
A topological index is a numerical quantity that is invariant under automorphisms of the graph.
The topological index based on the distance function was first used by H. Wiener [7]. If
u,v ∈ V (G) are two different vertices, then d(u,v) is the length of the shortest path between u
and v. Therefore, the Wiener index of G is:

W (G) =
1
2

∑
u,v∈V (G)

d(u,v) (1)

Suppose that R is a commutative ring with identity and W (R) is a set of non-unit elements of
R. Afkhami et al. [1] defined the Cozero-divisor graph of R, denoted by Γ ′(R), with vertices
W (R)∗ =W (R)\{0} and x,y ∈W (R)∗(x , y); then, x ∼ y if and only if x < Ry and y < Rx where Rc
is an ideal generated by c ∈ R. Suppose that M is an R-module and WR(M) = {x ∈M | Rm ,M}.
With R as R-module, WR(R) is a set of all non-unit elements of R. Alibemani et al. [2] introduced
Cozero-divisor graphs in relation to R-module M in which vertices are WR(M)∗ =WR(M) \ {0}
and m,n ∈WR(M)∗(m , n) and then, m ∼ n if and only if m < Rn and n < Rm. The mentioned
authors studied the properties of this graph.
The next section introduces a new class of graphs arising from weakly perfect modules. More-
over, a formula is presented for χ(G) and ω(G) of such graphs. In Section 3, The Wiener index
of such graphs is calculated.

2 Weakly Perfect Graphs of Modules

This section defines a scalar product graph of the module and shows that it is weakly perfect in
some cases. The definition of the join of two graphs needs to be noted here. Suppose that X and
Y are two separate graphs. X+Y is join of X and Y with a set of vertices V (X+Y ) = V (X)∪V (Y )
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and a set of edges E(X +Y ) = E(X)∪E(Y )∪ {xy : x ∈ V (X), y ∈ V (Y )}.
In addition, | V (X +Y ) |=| V (X) | + | V (Y ) | and | E(X +Y ) |=| E(X) | + | E(Y ) | + | V (X) || V (Y ) |.
Also, for two graphs X and Y we have χ(X +Y ) = χ(X) +χ(Y ).

Lemma 1. Let G and H be separate graphs. Then α(G+H) =max{α(G),α(H)} and ω(G+H) =
ω(G) +ω(H).

Proof. Suppose that max{α(G),α(H)} = α(G) and S = {u1,u2, . . . ,uα(G)} is the maximum in-
dependent number of G. For any (ui ,uj ), 1 ≤ i, j ≤ α(G), i , j, and the edge uiuj is not
in E(G); thus, uiuj < E(G +H). It is implied that S is an independent set of G +H . Indeed,
α(G+H) ≥max{α(G),α(H)}. Now, for the converse, suppose that S ′ is the maximum independent
number and the sum of graphs G and H . Then, S ′ is not the subset of V (G) and V (H) contem-
porary. Suppose that S ′ ⊂ V (G) and therefore, α(G +H) ≤ α(G) and α(G +H) ≤ α(H). Hence,
α(G+H) ≤max{α(G),α(H)}. Suppose that C is an arbitrary clique of G+H . It can be assumed
that C = C1 ∪C2 in which C1 ⊆ V (G) and C2 ⊆ V (H). It is quite trivial that | C1 |≤ ω(G) and
| C2 |≤ω(H). Therefore, ω(G+H) ≤ω(G)+ω(H). Thus, We have ω(G+H) ≥ω(G)+ω(H).

Definition 1. [6] Suppose that R is a commutative ring with non-zero identity and M be an
R-module. We define the Scalar-product graph of R-module M, namely GR(M), in which the
vertices of GR(M) are elements of M and x,y ∈M(x , y) then, x ∼ y is adjacent if and only if
there exists r belonging to R such that x = ry or y = rx.

Remark 1. Let GR(M) be a Scalar-product graph of R-moduleM. If x,y ∈M then x is adjacent
to y if and only if Rx ⊆ Ry or Ry ⊆ Rx.

Remark 2. According to the definition of the cozero-divisor graph over modules, we have the
followings:
(1) IfM is an R-module, the subgraph of GR(M) in which vertices areWR(M)∗ is the complement
of the cozero-divisors graph of M.
(2) We have GR(M) = G1 +G2 where G1 is a complete graph with |WR(M)∗ | vertices and G2 is
the complement of the the cozero-divisor graph of M.

In the following, if GR(M) is the scalar product graph of some R- module M, we compute
χ(GR(M)) and ω(GR(M)).

Lemma 2. Suppose thatM is an R-module. Then, the scalar product graph GR(M) is complete
if and only if the cyclic submodules of M are linearly ordered by inclusion relation.

Proof. Let M be an R-module and N1 =< a >,N2 =< b > be two cyclic submodules of M in
which a , b in M. Since the scalar product graph GR(M) is complete, a and b are adjacent. We
have < a >⊆< b > or < b >⊆< a > and N1 ⊆ N2 or N2 ⊆ N1. Conversely, Let M be an R-module
in which the cyclic submodules are linearly ordered by inclusion relation. If a , b represents
two vertices of GR(M) then < a >⊆< b > or < b >⊆< a >. Therefore, a and b are adjacent in
GR(M). Hence, GR(M) is complete.

Suppose that M is R-module and A,B are two non-zero submodules of M.Then, M is called
uniserial if A ⊆ B or B ⊆ A. Clearly, the valuation ring R is uniserial as a module over itself.
Also, submodules and quotients of uniserial modules are again uniserial.
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Lemma 3. Let Zn be a Z-module. If p,m are prime and positive integer numbers, then for
n = 1,p,pm, the scalar product graph GZ(Zn) will be complete.

Proof. Let M be a simple module. Then, submodules of M are linearly ordered by inclusion.
Hence, submodules of Zp are uniserial. Through Lemma 2.5, the scalar product graph of Zp is
complete.
Also, Zpn =

1Z
pnZ ⊃

pZ
pnZ ⊃

p2Z
pnZ ⊃ . . . ⊃

pn−1Z
pnZ ⊃

pnZ
pnZ = 0, here Zpn is uniserial. Therefore its scalar

product graph is complete.

Theorem 1. Suppose that p is a prime number. Then, the edge number of GZ(Z2p) is 2p2 −
2p+1.

Proof. In Remark 2.5, we have GZ(Z2p) = Kp +G2 such that Kp is a complete graph with p

vertices and G2 is the complement of the cozero-divisor graph of Z2p which is K1,p−1. By
definition 2.1, we have:
| E(GZ(Z2p)) |=

p(p−1)
2 + (p−1)(p−2)

2 + p2 = 2p2 − 2p+1

Figure 1: Scalar Product of Z-module Z10.

Theorem 2. Let Zn be a Z-module. If n = 1,p,pm and n = 2p, then the graph GZ(Zn) is
weakly perfect. Also, if n = 2p, we have χ(GZ(Zn)) = ω(GZ(Zn)) = 2p − 1.

Proof. By Lemma 2.7, GZ(Zn) is a complete graph with n vertices. Hence, It is weakly perfect.
If n = 2p, then by Remark 2.5, we have GZ(Z2p) = Kp +G2 such that Kp is a complete graph
with p vertices and G2 is the complement of cozero-divisor graph of Z2p which is K1,p−1.
Also, χ(Kp) = ω(Kp) = p and χ(G2) = ω(G2) = p − 1. Therefore, by Lemma 2.2, we have
χ(GZ(Z2p)) = ω(GZ(Z2p)) = 2p − 1.

Table 1 show clique, chromatic and edge number of the scalar-product graph of Z2p:

Theorem 3. Suppose that p is a prime number. Then, the edge number of GZ(Z3p) is 9
2p

2 −
7
2p+2.

Proof. By Remark 2.5, we have GZ(Z3p) = K2p−1 +G3 such that K2p−1 is a complete graph
with p vertices and G3 is the complement of cozero-divisor graph of Z3p which is K2,p−1. By
Definition 2.1, we have:
| E(GZ(Z3p)) |=

(2p−1)(2p−2)
2 +1+ (p−1)(p−2)

2 + (2p − 1).(p+1) = 9
2p

2 − 7
2p+2



65M. Nouri Jouybari, Y. Talebi, S. Firouzian/ COAM, 4 (2), Autumn - Winter 2019

Table 1: clique, chromatic and edge number of GZ(Z2p)

p χ(G) ω(G) | E(G) |
3 5 5 13
5 9 9 41
7 13 13 85
11 21 21 145

Figure 2: Scalar Product of Z-module Z15.

Theorem 4. Let Zn be a Z-module. If n = 3p, then the graph GZ(Zn) is weakly perfect. Also
χ(GZ(Zn)) = ω(GZ(Zn)) = 3p − 2.

Proof. If n = 3p, then by Remark 2.5, we have GZ(Z3p) = K2p−1+G3 where K2p−1 is a complete
graph with 2p − 1 vertices and G3 is the complement of the cozero-divisor graph of Z3p which
is K2,p−1. Also, χ(K2p−1) = ω(K2p−1) = 2p − 1 and χ(G3) = ω(G3) = p − 1. Therefore, by Lemma
2.2, we have χ(GZ(Z3p)) = ω(GZ(Z3p)) = 3p − 2.

Table 2 shows the clique, chromatic and edge number of the scalar-product graph of Z3p:

Table 2: clique, chromatic, and edge number of GZ(Z3p)

p χ(G) ω(G) | E(G) |
5 13 13 97
7 19 19 198
11 31 31 508
13 37 37 717

Theorem 5. Suppose that p is a prime number. Then, the edge number of GZ(Z5p) is 25
2 p

2 −
13
2 p+4.

Proof. By Remark 2.5, we have GZ(Z5p) = K4p−3+G5 such that K4p−3 is a complete graph with
4p−3 vertices and G3 is the complement of the cozero-divisor graph of Z5p which is K4,p−1. By
Definition 2.1, we have:
| E(GZ(Z5p)) |=

(4p−3)(4p−4)
2 +6+ (p−1)(p−2)

2 + (4p − 3).(p+3) = 25
2 p

2 − 13
2 p+4.



Weakly Perfect Graphs of Modules/ COAM, 4 (2), Autumn - Winter 201966

Theorem 6. Let Zn be a Z-module. If n = 5p, then the graph GZ(Zn) is weakly perfect. Also,
χ(GZ(Zn)) = ω(GZ(Zn)) = 5p − 4.

Proof. If n = 5p, then by Remark 2.5, we have GZ(Z5p) = K4p−3 + G5 such that K4p−3 is a
complete graph with 4p − 3 vertices and G5 is the complement of the cozero-divisor graph of
Z5p which is K4,p−1. Also, χ(K4p−3) = ω(K4p−3) = 4p − 3 and χ(G5) = ω(G5) = p − 1. Therefore,
by Lemma 2.2, we have χ(GZ(Z5p)) = ω(GZ(Z5p)) = 5p − 4.

3 Wiener Index of GR(M)

Suppose that G is a graph. The Wiener index of G is half of the sum of the distance between
two distinct vertices. For example, we have W (Kn) =

1
2n(n− 1) and W (K1,n−1) = (n− 1)2.

This section computes Wiener indices of GZ(Z2p) and GZ(Z3p) for some prime p. Similar
to what we had before, the Scalar product graphs of Z-module Z2p and Z3p are the join of
complete graph and complement of a cozero-divisor graph. Therefore, we seek a formula for
the Wiener index of the join of two graphs.

Theorem 7. [8] For any two graphs X1 and X2, we have:

W (X1 +X2) = | V (X1) |2 − | V (X1) | + | V (X2) |2 − | V (X2) |

+ | V (X1) || V (X2) | − | E(X1) | − | E(X2) | .

Now, we have the following propositions.

Proposition 1. Suppose that p is a prime number. Then, we have W (GZ(Z2p)) = 2p2 − 1.

Proof. By Proof 1, the scalar product graph of Z2p is the join of Kp and K1,p−1. Thus, from
Theorem 7, we have

W (Kp +K1,p−1) = | V (Kp) |2 − | V (Kp) | + | V (K1,p−1) |2 − | V (K1,p−1) |

+ | V (Kp) || V (K1,p−1) | − | E(Kp) | − | E(K1,p−1) |

=p2 − p+ p2 − p+ p2 − 1
2
p(p − 1)− 1

2
(p − 1)(p − 2)

=2p2 − 1.

Proposition 2. Suppose that p is a prime number. Then, we have W (GZ(Z3p)) =
9
2p

2+ 1
2p−2.

Proof. By Proof 3, the scalar product graph of Z3p is the join of K2p−1 and K2,p−1. Thus,
according to Theorem 7, we have:

W (K2p−1 +K2,p−1) = | V (K2p−1) |2 − | V (K2p−1) | + | V (K2,p−1) |2 − | V (K2,p−1) |

+ | V (K2p−1) || V (K2,p−1) | − | E(K2p−1) | − | E(K2,p−1) |

=(2p − 1)2 − (2p − 1) + (p+1)2 − (p+1)
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+ (2p − 1)(p+1)− 1
2
(2p − 1)(2p − 2)− [1 + 1

2
(p − 1)(p − 2)]

=
9
2
p2 +

1
2
p − 2.

Proposition 3. Suppose that p is a prime number. Then, we can have W (GZ(Z5p)) =
25
2 p

2 +
3
2p − 4.

Proof. By Proof 5, the scalar product graph of Z5p is the join of K4p−3 and K4,p−1. Thus, from
Theorem 7, we have:

W (K4p−3 +K4,p−1) = | V (K4p−3) |2 − | V (K4p−3) | + | V (K4,p−1) |2 − | V (K4,p−1) |

+ | V (K4p−3) || V (K4,p−1) | − | E(K4p−3) | − | E(K4,p−1) |

=(4p − 3)2 − (4p − 3) + (p+3)2 − (p+3)

+ (4p − 3)(p+3)− 1
2
(4p − 3)(4p − 4)− [6 + 1

2
(p − 1)(p − 2)]

=
25
2
p2 +

3
2
p − 4.

References

[1] Afkhami M., Khashyarmanesh K. (2011). “The cozero-divisor graph of a commutative
ring”, Southeast Asian Bulletin of Mathematics, 35, 753-762.

[2] Alibemani A., Hashemi E., Alhevaz A. (2018). “The cozero-divisor graph of a module”,
Asian-European Journal of Mathematics, 11, DOI: 10.1142/S1793557118500924.

[3] Fander M.R. (2015). “Chromatic and clique number of a class of perfect graph”, Transac-
tions on Combinatorics, 4, 1-4.

[4] Maimani H.R., Pournaki M.R., Yassemi S. (2010). “A class of weakly perfect graphs”,
Czechoslovak Mathematical Journal, 60, 1037-1041.

[5] Nikandish R., Maimani H.R., Izanloo H. (2016). “The annihilating-ideal graph of Zn is
weakly perfect”, Contributions to Discrete Mathematics 11, 16-21.

[6] Nouri Jouybari M., Talebi Y., Firouzian S. (2019). “Scalar Product Graphs of Modules”,
International Journal of Nonlinear Analysis and Applications, 10, Special Issue (Nonlinear
Analysis in Engineering and Sciences), 75-82.

[7] Wiener H. (1947). “Structural Determination of Paraffin Boiling Points”, Journal American
Chemistry Society, 69, 17-20.

[8] Yeh Y., Gutman I. (1994). “On the some of all Distances in Composite Graphs”, Discrete
Mathematics, 135, 359-365.



۶۷ تا ۶۱ صص. (۲۰۱۹ (پاييز−زمستان ۲ شماره ،۴ جلد کاربردی، ریاضیات در بهینه سازی و ۸۶کنترل

مدول ها روی تام ضعیف طور به گراف های

م. جویباری، نوری
مازندران، دانشگاه دکتری دانشجوی

ایران، بابلسر، محض، ریاضی گروه ، ریاضی علوم دانشکده مازندران، دانشگاه
mostafa.umz@gmail.com

ی. رستمی، طالبی
مازندران دانشگاه ریاضی دانشیار

ایران، بابلسر، محض، ریاضی گروه ریاضی، علوم دانشکده مازندران، دانشگاه
talebi@umz.ac.ir

مسئول نویسنده − س. فیروزیان،
نور پیام دانشگاه ریاضی استادیار

.۱۹۳۹۵ −۳۶۹۷ پستی صندوق ایران، تهران، ریاضی، گروه نور، پیام دانشگاه
siamfirouzian@pnu.ac.ir

۱۳۹۹ بهمن ۹ پذیرش: تاریخ ۱۳۹۹ شهريور ۲۳ دریافت: تاریخ

چکیده

اسکاری ضرب گراف است. R−مدول یک و صفر غیر همانی با جابجایی حلقه ی یک ترتیب به M و R مطالعه، این در
مجاورند M در b و a متمایز راس دو و است M رئوس مجموعه با گرافی می دهیم، نشان GR(M) با که را ،M روی
گراف های این خواص از برخی مقاله این .b = ra یا a = rb که طوری به باشد داشته وجود R به متعلق r اگر تنها و اگر

می کند. مطالعه را تام ضعیف طور به
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