In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Author

Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, P.O. Box. 88186-34141, Iran

Abstract

In this paper, ‎we develop general necessary optimality conditions of the KKT types for non-smooth continuous-time optimization problems with inequality constraints‎. ‎The primary instrument in our study is the concept of a convexificator‎. ‎Based on this concept‎, ‎non-smooth versions of the Mangasarian-Fromovitz constraint qualification are presented‎. ‎Then‎, ‎we derive optimality conditions for this problem under weak assumptions‎. ‎Indeed‎, ‎the constraint functions and the objective function that exist in this problem are not necessarily differentiable or convex.

Keywords

[1] Abrham J., Buie R. N. 1979. “Kuhn-Tucker conditions and duality in continuous programming”, Utilitas Mathematica., 16, 15-37.
[2] Aubin J., Frankowska H. 1990. “Set-valued analysis”, Birkh user, Boston.
[3] Ardali A. A, Movahedian N, Nobakhtian S. 2017. “Convexificators and boundedness of the Kuhn-Tucker multipliers set”, Optimization, 66, 1445-1463.
[4] Ardali A. A, Movahedian N, Nobakhtian S. 2016. “Optimality conditions for nonsmooth  mathematical programs with equilibrium constraints, using convexificators”, Optimization, 65, 67-85.
[5] Bellman R. 1953. “Bottleneck problems and dynamic programming”, Proceedings of the National Academy of Sciences of the United States of America, 39, 947-951.
[6] Brandao A. J. V., Rojas-Medar M. A., Silva G. N. 2001. “Nonsmooth continuoustime optimization problems: necessary conditions”, Computers & Mathematics with Applications, 41, 1477-1486.
[7] Clarke F. H. 1983. “Optimization and nonsmooth analysis”, Wiley Interscience, New York.
[8] Demyanov V F. 1994. “Convexification and concavification of a positively homogenous function by the same family of linear functions”, Universita di Pisa, Report 3, 208, 802.
[9] Demyanov V. F., Jeyakumar V. 1997. “Hunting for a smaller convex subdifferential”, Journal of Global Optimization, 10, 305-326.
[10] Dutta J., Chandra S. 2004. “Convexificators, generalized convexity and vector optimization”, Optimization, 53, 77-94.
[11] Dutta J., Chandra S. 2002. “Convexificators, generalized convexity, and optimality conditions”, Journal of Optimization Theory and Applications, 113, 41-64.
[12] Farr W. H., Hanson M. A. 1974. “Continuous-time programming with nonlinear constraints”, Journal of Mathematical Analysis and Applications, 45, 96-115.
[13] Golestani M., Nobakhtian S. 2012. “Convexificators and strong Kuhn-Tucker conditions”, Computers & Mathematics with Applications, 64, 550-557.
[14] Hanson M. A., Mond B. 1986. “A class of continuous convex programming problems”, Journal of Mathematical Analysis and Applications, 22, 427-437.
[15] Hormander L. 1954. “Sur la fonction d’appui des ensembles convexes dans un espace localement convexe”, Arkiv for Matematik, 3, 181-186.
[16] Jeyakumar V., Luc D. T. 1999. “Nonsmooth calculus, minimality, and monotonicity of  convexificators”, Journal of Optimization Theory and Applications, 101, 599-621.
[17] Michel P., Penot J. P. 1992. “A generalized derivative for calm and stable functions”, Differential Integral Equations., 5, 433-454.
[18] Mordukhovich B. S., Shao Y. H. 1995. “On nonconvex sub-differential calculus in Banach spaces”, Journal of Convex Analysis, 2, 211-227.
[19] Nobakhtian S., Pouryayevali M. R. 2008. “Optimality criteria for non-smooth continuous-time problems of multiobjective optimization”, J. Optimization Journal of Optimization Theory and Applications , 136, 69-76.
[20] Nobakhtian S. 2009. “Non-smooth multi-objective continuous-time problems with generalized convexity”, Journal of Global Optimization, 43,593-606.
[21] Treiman J. S. 1995. “The linear nonconvex generalized gradient and Lagrange multipliers”, SIAM Journal on Optimization, 5, 670-680.
[22] Uderzo A. 2000. “Convex approximators, convexificators, and exhausters: application to constrained extremum problem, quasi differentiability and related topics”, Nonconvex Optimization and its Applications, 43, 297-327.
[23] Wang X., Jeyakumar V. 2000. “A sharp lagrangian multiplier rule for non-smooth mathematical programming problems involving equality constraints”, Journal of Global Optimization, 10, 1136-1148.
[24] Zalmai G. J. 1985. “The fritz john and Kuhn-Tucker optimality conditions in continuous-time nonlinear programming”, Journal of Mathematical Analysis and Applications, 110, 503-518.
[25] Zalmai G. J. 1985. “Continuous-time generalization of Gordan’s transposition theorem”, Journal of Mathematical Analysis and Applications,110, 130-140.