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Abstract. The relief logistics and humanitarian supply chain in academic
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of reducing and relieving the affected people suffer. This paper discusses a
multi-objective model for multi-period location-distribution-routing problems
considering the evacuation of casualties and homeless people and fuzzy
paths in relief logistics. Firstly, an uncertain multi-objective model of the
problem was developed based on uncertain parameters of demand, time, and
transport capacity, and then, using the fuzzy programming method, uncertain
parameters of the problem were controlled. As the problem is NP-hard and
GAMS software has not able to solve the model in larger sizes, meta-heuristic
algorithms of NSGA-II and MOPSO were used to solve the problem.
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1 Introduction

Natural disasters usually cause serious damage to urban infrastructure and cause severe
injury and death in populated areas. In recent years, much attention has been paid to
these issues. In the case of natural disasters, rapid distribution of resources is essential
to minimize damage and losses. A logistics operation that is carried out to help human
beings in crises is called humanitarian logistics. Humanitarian logistics encompasses
all processes for estimating, supplying, transporting, storing, and distributing goods,
equipment, and services for injured people and relief teams. Logistics in normal cir-
cumstances and humanitarian logistics have similarities and differences, such as the
similarities of supply chains in the normal and critical condition that the supply chain
operates in a critical condition, as in ordinary circumstances, in two ways, forward
and backward. In humanitarian logistics, in the forward mode, the goal is: to send and
distribute goods and relief items, to send aid forces and medical and medical personnel,
and in the backward mode, the collection and burial of the dead, the collection and
transfer of injured to local or regional medical centers and the transfer of survivors to
the safe (evacuation) areas. What distinguishes humanitarian logistics from ordinary
logistics is that under critical conditions, the relief supply chain must act at high speed
and aim to preserve human lives. While under ordinary circumstances, the supply chain
operates at the lowest cost according to the schedule (Rawls et al., 2010) [17].

2 Literature Review

Emergency logistic operations are generally divided into two phases which are before
and after the disaster. Since the focus of this paper is on the post-crisis phase and in the
area of short-term and operational planning, an overview of the studies and researches
carried out in this field is presented.

The first optimization models in emergency logistics were introduced in the late
1970s after a few marine disasters in the late 1960s and 1970s. Since the 1980s, research
on other major disasters (such as storms, floods, and earthquakes) which happen on a
large scale has also been included. Oh and Haqqani (1996) in [15] analyzed the trans-
portation of large quantities of commodities such as food, clothing, medical supplies,
drugs, machinery, and human resources into an effective approach to minimizing casu-
alties with several types of transportation vehicles for relief operations; And Oudzamar
and Laynet (2011) in [16] presented a mathematical model for transporting goods in
the response phase, in which the vehicle travel time minima were considered. Bozorgi
Amiri et al. (2011) presented a multi-disciplined randomized variable programming
model under uncertain conditions [4]. They considered the parameters of demand,
supply, and the cost of purchasing and transportation in their proposed model to be
uncertain, and used a scenario-based approach. Muralie et al. (2012) considered the
problem of the situation - the facility to find out the locations of the city that needs
drug-to-be distributed among the population [14]. They considered the identification
of the stored facilities and the coverage function intervals to maximize the coverage.
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Anne et al. (2013), presented an article entitled ”Locating Displacement Transporta-
tion Facility under Facility Failure Conditions”, to plan the evacuation of many people
living at an accidental site [2]. The goal is to minimize the cost of building a facility,
the cost of transfer and, the cost of using the facility. Abu Naser et al. (2014) also
developed a model for optimizing humanitarian relief centers by considering three goals
of minimizing the total time of relief in damaged areas, minimizing the number of em-
ployees engaged in these centers, and maximizing the coverage of relief items over the
damaged area [1]. This study considered only the definite demands of the damaged
areas and only responded with a precise solution (ϵ-constraint) method. Zokaei et al.
(2016) considered a three-level supply chain model, including suppliers, relief centers,
and damaged districts for uncertain rescue operations and humanitarian relief [21].
Their model seeks to maximize the satisfaction of the affected people while minimizing
the costs of the supply chain. Rezaei Malik et al. (2016) designed a two-objective
model for handling natural disasters [18]. Their main goal in this article was to achieve
optimal planning for degradable commodities such as medical items and milk in cen-
tral warehouses before the disaster. The objective functions considered for their model
included simultaneously minimizing the total operating costs before and after the inci-
dent and minimizing the average response time to demand points. In their model, they
considered the parameters such as transportation time, demand, reliability and, cost of
fines in a non-deterministic way. BozorgiAmiri et al. (2016) considered two issues of
the evacuation of the wounded as well as the distribution of relief items simultaneously
and used the constant optimization model to answer the problem’s uncertainty [5].

In the following, we study the other researches since 2017:

Hu et al. (2017) designed a randomized optimization model for joint inventory
decisions before an incident and the transportation of humanitarian relief items after
an accident [10]. In their model, they considered the demand parameter as an uncer-
tain parameter and controlled the parameter by probabilistic optimization. Bonomi et
al. (2017) reviewed the issues related to locating emergency logistics facilities based
on various types of modeling and types of problems before and after the disaster [3].
They examined the problem of locating facilities in four types of definite, dynamic,
probabilistic, and stable conditions, and described their solution and locating methods.
Torabi et al. (2018) designed a humanitarian supply chain model based on the scenario
and under uncertainty [19]. Their goal was to reduce the costs of the entire supply chain
network, including the costs of locating, transportation, relief items maintenance, and
fines in the case of the supply shortage. In their model, they considered parameters
such as fixed costs of construction, transportation costs, and demand to be uncertain
and used a scenario-based method. Yahyaei and BozorgiAmiri (2018) started to design
a relief chain network under uncertainty [20]. Their main goal in this paper was to
control the failure of distribution centers to meet the demand for demand centers as a
reduction in investment costs. They also used a robust optimization method to control
non-deterministic parameters and showed that total investment costs increase with in-
creasing uncertainty. Alchy and Novian (2018) focused on modeling a scenario-based
humanitarian supply chain network [8]. In their model, they looked at the optimal
number and location of facilities, facility capacity, inventory levels, and transport net-
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work conditions under the uncertainty of demand after the incident. To solve their
probable model, they used a shunt-cutting algorithm based on Bandar’s breakdown.

This paper discusses a multi-objective model for multi-period location-distribution-
routing problems considering the evacuation of casualties and homeless people and fuzzy
paths in relief logistics. Some parameters are considered uncertain, including demand,
the capacity of vehicles & time. Finally, NSGA-II and MOPSO as the meta-heuristic
algorithms have been used to solve the problem in larger sizes.

3 Problem Definition and Modeling

In this paper, a six-level relief logistics issue (inventory of goods, relief distribution
centers, damaged areas, temporary shelter sites, temporary medical centers, and hos-
pitals) is considered. Given 1, the problem is considered for post-crisis and pre-crisis
situations. Thus, in the pre-crisis conditions, some potential areas for the warehouse
of goods, relief distribution centers, temporary accommodation centers, and temporary
medical centers are considered, and in post-crisis situations, these centers are quickly
located, and the allocation of goods and vehicle routing are dealt with. In this arti-
cle, the damaged areas have two different types of demand. The first type of request
relates to relief supplies and the second type is related to the transfer of survivors to
other centers. The survivors in this type of network are divided into three categories.
First-class injured people whose condition is critical and immediately transferred to
hospitals with relief vehicles such as ambulances or helicopters. Second-class injured
patients who have unclear conditions are transported to temporary care centers for
treatment. After that, they will be transferred to hospitals if they have a critical condi-
tion. Otherwise, they will be transferred to temporary shelter sites. Third-class victims
are homeless persons who move to temporary accommodation centers. At this stage,
proper routing of vehicles between centers and also the optimal allocation of vehicles
is important. On the other hand, the transportation of the injured person is not the
only consideration, but it is necessary to send relief items toward affected areas and
providing critical items such as water, blankets, and other items for homeless people in
temporary accommodation centers. Therefore, the required items for each part are sent
by the cargo vehicles from the warehouse to the relief distribution centers, and after
the breakdown, relief items are sent to the affected areas while critical items are sent
to the temporary accommodation centers. At this stage, the optimal routing of cargo
vehicles is another issue. In addition, cargo and relief vehicles, depending on the type
of problem and its vital importance, should choose the optimal route of transportation
in the shortest possible time to transfer injured persons or emergency aid items. There-
fore, in the design of such a network, the transmission time, demand, and capacity of
vehicles are considered uncertain.

Given the definition of the stated problem, this is a multi-objective problem that
pursues the following opposite objectives:

1. Minimizing total network costs, such as fixed costs of construction, transporta-
tion, and inventory
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Figure 1: Proposed relief logistics network.

2. Minimize unsatisfied demand for relief items or transferring injured to other cen-
ters

3. Minimizing the total number of vehicles

In order to achieve the three above objectives simultaneously, it is important to deter-
mine the optimal location of the facility (inventory of goods, relief distribution centers,
temporary accommodation centers, and temporary medical centers), optimal allocation
of goods to other centers, and optimal routing of cargo and relief vehicles that all form
the framework of the problem. With regard to the following assumptions, location-
distribution-routing in the relief logistics will be modeled in uncertain conditions:

1. Transportation of survivors and distribution of relief items are considered to-
gether.

2. The fleet of vehicles is heterogeneous, and various types of vehicles are available.

3. Simultaneous transportation of goods and survivors in one vehicle is not possible.

4. Categorizing the survivors (1) the injured in a state of emergency; 2) an injured
person whose condition is unclear and requires an initial examination; 3) the
homeless people.

5. The amount of demand, the number of people in the three categories, the capacity
of the vehicles, and the transmission time are uncertain.

6. The capacity of hospitals, temporary accommodation centers, temporary medical
centers, relief distribution centers, and warehouses are specific parameters.

7. All centers within the network may receive goods or services from several related
facilities.

Given the assumptions and objectives, the problem set, parameters and variables are
presented in the next section.
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3.1 Location-distribution-routing model in relief logistics

The set, parameters, and decision variables of the basic model are as follows:
Sets:

i : set of affected areas by disaster i = {1,2, . . . , I },
l : set of potential shelter sites l = {1,2, . . . ,L},
m : set of potential temporary medical centers m = {1,2, . . . ,M},
p : set of potential relief distribution centers p = {1,2, . . . ,P},
h : set of available hospitals h = {1,2, . . . ,H},
g : set of potential warehouses of goods g = {1,2, . . . ,G},
t : set of periods in the time horizon t = {1,2, . . . ,T },
k1 : set of vehicle types for carrying of relief commodities k1 = {1,2, . . . ,K1},
k2 : set of vehicle types for carrying of people k2 = {1,2, . . . ,K2},
k : set of total vehicle types k = k = K1 ∪K2,
r : set of survivors r = {RA,Rb,Rc},
e1 : set of relief commodities e1 = {1,2, . . . ,E1},
e2 : set of critical commodities e2 = {1,2, . . . ,E2},
e : set of total commodity types e = e1 ∪ e2.

Parameters:

D̃1i,r,t : number of survivors type waiting at area i at time t,
D̃2i,e1,t : amount demanded of commodity type e1 at area i at time t,
D̃3l,e2,t : amount demanded of commodity type e2 at shelter l at time t,�T ιιhi,h,k2 : The estimated time of travel of vehicle type k2 from affected area i

to hospital h,
T̃ ιιmi,m,k2 : The estimated time of travel of vehicle type k2 from affected area i

to temporary medical center m,
T̃ ιmhm,h,k2 : The estimated time of travel of vehicle type k2 from temporary

medical center m to hospital h,
T̃ ιgpg,p,k1 : The estimated time of travel of vehicle type k1 from warehouse g to

relief distribution center p,�T ιpιp,i,k1 : The estimated time of travel of vehicle type k1 from relief distribution
center p to affected area i,�T ιplp,l,k1 : The estimated time of travel of vehicle type k1 from relief distribution
center p to temporary shelter sites l,

C̃apk : load capacity of vehicle type k,
T rihi,h,k2 : The estimated cost of travel of vehicle type k2 from affected area i to

hospital h,
T rimi,m,k2 : The estimated cost of travel of vehicle type k2 from affected area i to

temporary medical center m,
T rmhm,h,k−2 : The estimated cost of travel of vehicle type k2 from temporary

medical center m to hospital h,
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T rili,l,k2 : The estimated cost of travel of vehicle type k − 2 from affected area i
to temporary shelter sites l,

T rmlm,l,k2 : The estimated cost of travel of vehicle type k2 from temporary
medical center m to temporary shelter sites l,

T rgpg,p,k1 : The estimated cost of travel of vehicle type k1 from warehouse g to
relief distribution center p,

T ripip,ik1 : The estimated cost of travel of vehicle type k1 from relief
distribution center p to affected area i,

T rplp,l,k1 : The estimated cost of travel of vehicle type k1 from relief
distribution center p to temporary shelter site l,

CapLl,t : The capacity of temporary shelter site l for
affected people type C at time t,

CapMm,t : The capacity of temporary medical center m for affected
people type B at time t,

CapHh,t : The capacity of hospital h for affected people type A at time t,
CapGg,e,t : The storage capacity of the commodity e at warehouse g at time t,
CapPp,e,t : The storage capacity of the commodity e at the relief

distribution center p at time t,
Hde1,t : Inventory cost of commodity e1 at time t,
FixLl : Fixed cost for opening a new shelter center l,
FixMm : Fixed cost for opening a new temporary medical center m,
FixGg : Fixed cost for opening a new warehouse g,
FixPp : Fixed cost for opening a new relief distribution center p,
FixKk : Fixed cost for vehicle type k,
NTk,t : Maximum number of vehicles type k available at time t,
Fm,Rb : percentage of affected people type B that transported to temporary

shelter sites after cure at time t,
BigM : a big number,
Mtime1 : Maximum time for transporting of injured people between network levels,
Ntime2 : Maximum time for transporting of commodities between network levels,
ω : Normalization weight for second objective function.

Decision variables:

Xi,h,ra,t,k2 : Number of survivors type A transported from affected area i to hospital h by,
Yi,m,rb ,t,k2 : Number of survivorstype B transported from affected area i to temporary medical,
Zi,m,rb ,t,k2 : Number of survivorstype C transported from affected area i to temporary shelter l,
Um,l,rc ,t,k2 : Number of survivors type C transported from temporary medical center m to,
Wm,h,ra,t,k2 : Number of survivorstype A transported from temporary medical center m to ,
Op,i,e1,t,k1 : Number of commodity type e1 transported from relief distribution p to affected,
Qp,l,e2,t,k1 : Number of commodity type e2 transported from relief distribution p to temporary,
Ng,p,e,t,k1 : Number of commodity type e transported from warehouseg to relief distribution,
X ′i,h,t,k2 : = 1, whether vehicle type k2 travels across the route i to h at time,

t = 0, otherwise.
Y ′i,m,t,k2 : = 1, whether vehicle type k2 travels across the route i to m at time,
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t = 0, otherwise.
Z ′i,l,t,k2 : = 1, whether vehicle type k2 travels across the route i to l at time,

t = 0, otherwise.
W ′m,h,t,k2 : = 1, whether vehicle type k2 travels across the route m to h at time,

t = 0, otherwise.
U ′m,l,t,k2 : = 1, whether vehicle type k2 travels across the route m to l at time,

t = 0, otherwise.
O′p,i,t,k1 : = 1, whether vehicle type k1 travels across the route p to i at time,

t = 0, otherwise.
Q′p,l,t,k1 : = 1, whether vehicle type k1 travels across the route p to l at time,

t = 0, otherwise.
N ′g,p,t,k1 : = 1, whether vehicle type k1 travels across the route g to p at time,

t = 0, otherwise.
ZMm : = 1, whether a temporary medical center at m is open,

= 0, otherwise.
ZLl : = 1, whether a temporary shelter at l is open

= 0, otherwise.
ZPp : = 1, whether a relief distribution center at p is open,

= 0, otherwise.
ZGg : = 1, whether a warehouse at g is open,

= 0, otherwise.
Nok,t : Number of used vehicles k at time t,
Ine1,t : Amount of stored inventory of commodity type e1 at time t,
S1i,r,t : Number of unserved people type r in affected i area at time t,
S2i,e1,t : Amount of unsatisfied demand of commodity type e1 in affected area i at time t.

Modeling:

minZ1 =
∑
m

FixMm ·ZMm +
∑
l

FixLl ·ZLl +
∑
p

FixPp ·ZPp +
∑
g

FixGg ·ZGg

+
∑
i,h,k2,t

FixKk2 ·X
′
i,h,t,k2

+
∑

i,m,k2,t

FixKk2 ·Y
′
i,m,t,k2

∑
i,l,k2,t

FixKk2 ·Z
′
i,l,t,k2

+
∑

l,m,k2,t

FixKk2 ·U
′
m,l,t,k2

+
∑

m,h,k2,t

FixKk2 ·W
′
m,h,t,k2

+
∑
g,p,k1,t

FixKk1 ·N
′
g,p,t,k1

+
∑
p,i,k1,t

FixKk1 ·O
′
p,i,t,k1

+
∑
p,l,k1,t

FixKk1 ·Q
′
p,l,t,k1

+
∑

i,h,ra ,k2,t

T rihi,h,k2 ·Xi,h,ra ,t,k2

+
∑

i,m,rb ,k2,t

T rimi,m,k2 ·Yi,m,rb ,t,k2 +
∑

i,l,rc ,k2,t

T rili,c,k2 ·Zi,l,rc ,t,k2 (1)

+
∑

m,l,rc ,k2,t

T rmlm,l,k2 ·Um,l,rc ,t,k2 +
∑

m,h,ra ,k2,t

T rmhm,h,k2 ·Wm,h,ra ,t,k2

+
∑

g,p,e,k1,t

T rgpg,p,k1 ·Ng,p,e,t,k1 +
∑

p,i,e1,k1,t

T ripip,i,k−1 ·Op,i,e1,t,k1

+
∑

p,l,e2,k1,t

T rplp,l,k1 ·Qp,l,e2,t,k1
∑
e1,t

Hde1,t · Ine1,t
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minZ2 = ω
∑
i,r,t

S1i,r,t + (1−ω)
∑
i,e1,t

S2i,e1,t (2)

minZ3 =
∑
k,t

Nok,t (3)

s.t :∑
h,k2

Xi,h,ra ,t,k2 +
∑
m,k2

Yi,m,rb ,t,k2 +
∑
l,k2

Zi,l,rc ,t,k2 +
∑
r

S1i,r,t =
∑
r

D̃ι,r,t , ∀i, t, (4)∑
p,k1

Op,i,e1,t,k1 − Ine1,t + Ine1,t−1 + S2i,e1,t = D̃2i,e1,t , ∀i, e1, t, (5)

∑
p,k1

Qp,l,e2,t,k1 = D̃3l,e2,t ·ZLl , ∀i, e2, t, (6)

∑
i,k2

Fm,Rb ·Yi,m,rb ,t,k2 =
∑
l,k2

Um,l,rc ,t,k2 , ∀m,r, t, (7)∑
i,k2

(1−Fm,Rb ) ·Yi,m,rb ,t,k2 =
∑
h,k2

Wm,h,ra ,t,k2 , ∀m,r, t, (8)∑
g,k1

Ng,p,e,t,k1 =
∑
i,k1

Op,i,e1,t,k1 +
∑
l,k1

Qp,l,e2,t,k1 , ∀p,e, t, (9)

∑
rc ,i,k2

Zi,l,rc ,t,k2 +
∑
rc ,m,k2

Um,l,rc ,t,k2 ≤ CapLl,t ·ZLl , ∀l, t, (10)∑
rb ,i,k2

Yi,m,rb ,t,k2 ≤ CapMm,t ·ZMm, ∀m,t, (11)∑
ra ,i,k2

Xi,h,ra ,t,k2 +
∑
ra ,m,k2

Wm,h,ra ,t,k2 ≤ CapHh,t , ∀h, t, (12)∑
g,k1

Ng,p,e,t,k1 ≤ CapPp,e,t ·ZPp , ∀p,e, t, (13)

∑
p,k1

Ng,p,e,t,k1 ≤ CapGg,e,t ·ZGg , ∀g,e, t, (14)

∑
rc ,i,l

Zi,l,rc ,t,k2 +
∑
rc ,m,l

Um,l,rc ,t,k2 +
∑
rb ,i,m

Yi,m,rb ,t,k2 +
∑
ra ,i,h

Xi,h,ra ,t,k2

+
∑
ra ,m,h

Wm,h,ra ,t,k2 ≤ C̃apk2 ·Nok2,t , ∀k2, t, (15)∑
e,g,p

Ng,p,e,t,k1 +
∑
i,p,e1

Op,i,e1,t,k1 +
∑
p,l,e2

Qp,l,e2,t,k1 ≤ C̃apk1 ·Nok1,t , ∀k1, t, (16)

Nok,t ≤NTk,t , ∀k, t, (17)∑
rc

Zi,l,rc ,t,k2 ≤ BigM ·Z
′
i,l,t,k2

, ∀i, l, t, k2, (18)∑
rc

Um,l,rc ,t,k2 ≤ BigM ·U
′
m,l,t,k2

, ∀m,l, t,k2, (19)∑
rb

Yi,m,rb ,t,k2 ≤ BigM ·Y
′
i,m,t,k2

,∀i,m, t,k2, (20)∑
ra

Xi,h,ra ,t,k2 ≤ BigM ·X
′
i,h,t,k2

, ∀i,h, t,k2, (21)
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∑
ra

Wm,h,ra ,t,k2 ≤ BigM ·W
′
m,h,t,k2

, ∀m,h, t,k2, (22)∑
e

Ng,p,e,t,k1 ≤ BigM ·N
′
g,p,t,k1

, ∀g,p, t,k1, (23)∑
e1

Op,i,r1,t,k1 ≤ BigM ·O
′
p,i,t,k1

, ∀p, i, t,k1, (24)∑
e2

Qp,l,r1,t,k1 ≤ BigM ·Q
′
p,l,t,k1

, ∀p, l, t,k1, (25)

�T ιιhi,h,k2 ·X ′i,h,t,k2 ≤Mtime1, ∀i,h, t,k2, (26)

T̃ ιιmi,m,k2 ·Y
′
i,m,t,k2

≤Mtime1, ∀i,m, t,k2, (27)

T̃ ιmhm,h,k2 ·W
′
m,h,t,k2

≤Mtime1, ∀m,h, t,k2, (28)

T̃ ιgpg,p,k1 ·N
′
g,p,t,k1

≤Mtime2, ∀g,p, t,k1, (29)�T ιpιp,i,k1 ·O′p,i,t,k1 ≤Mtime2, ∀p, i, t,k1, (30)�T ιplp,l,k1 ·Q′p,l,t,k1 ≤Mtime2, ∀p, l, t,k1, (31)
Nok,t ≥ 0, integer (32)
Xi,h,ra ,t,k2 ,Yi,m,rb ,t,k2 ,Zi,m,rb ,t,k2 ,Um,l,rc ,t,k2 ,Wm,h,ra ,t,k2 ,

Op,i,e1,t,k1 ,Qp,l,e2,t,k1 ,Ng,p,e,t,k1 , Ine1,t ,S1i,r,t ,S2i,e1,t ≥ 0, (33)
X ′i,h,t,k2 ,Y

′
i,m,t,k2

,Z ′i,l,t,k2 ,W
′
m,h,t,k2

,U ′m,l,t,k2 ,O
′
p,i,t,k1

,

Q′p,l,t,k1 ,N
′
g,p,t,k1

,ZMm,ZLl ,ZPp ,ZGg ∈ {0,1}. (34)

Equation (1) shows the objective function of the problem and involves minimizing the
total cost of the relief logistics network. Equation (2) is to minimize the missed esti-
mation of the different items demand in damaged areas and the not-transferred injured
people to other centers. Since the variables of the second objective function are not
from the same domain, a weighted formula is used. Equation (3) minimizes the total
number of cargo and relief vehicles at all times. Equation (4) shows the number of
first, second, and third-class injured people transported by relief vehicles to hospitals,
temporary medical centers, and temporary shelters. Equation (5) shows the amount
of sent relief items from distribution centers to injured areas, along with its balance
inventory. Equation (6) shows the rate of transferred critical items from distribution
centers to temporary shelters. Equation (7) shows the number of second-class injured
patients being treated in temporary medical centers and transferred to temporary shel-
ters. Equation (8) shows the number of second-class injured patients who have not
been treated in temporary medical centers but transferred to the hospital. Equation
(9) shows the number of relief items transferred from the inventory to distribution
centers and how they are distributed. Equations (10) to (14), respectively, show the
restrictions related to the capacity of temporary shelters, temporary medical centers,
hospitals, relief distribution centers, and supply centers after an incident. Equations
(15) and (16) categorize the capacity of various cargo and relief vehicles into the re-
quired number of vehicles. Equation (17) ensures that the required number of cargo
and relief vehicles do not exceed the number of available vehicles. Equations (18) to
(25) are about existing limits related to cargo and relief vehicle routing among the
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relief logistics network. Equations (26) to (31) ensure that all vehicles assigned to each
center transfer injured people and relief items to other centers within the allocated
time. Equations (32) to (34) show the type and domain of the decision variables.

3.2 Uncertain parameters control

To make it functional, computational, and easy in computing, a triangular distribution
is used to specify each fuzzy parameter. The distribution can be expressed as the degree
of occurrence possibility for an event with uncertain characteristics. Figure 2 shows the
distribution of the fuzzy parameter (Cp ,Cm,C0). C0, Cm and Cp respectively represent
the optimistic value, probable value, pessimistic value of fuzzy number C̃, which are
determined by the decision-maker.

Figure 2: The triangular distribution of the fuzzy parameter C̃.

It should be noted that the probability distribution of fuzzy parameters is deter-
mined based on historical records, decision-maker subjective data knowledge. To de-
fuzzify parameter C̃, Dotoli et al. (2017) method has been used [7]. Therefore, the
defuzzified model of parameter C̃ will be as Equation (35).

C = w1C
p
α +w2C

m
α +w3C

o
α . (35)

In above equation

C
p
α = Cm + (1−α)(Cp −Cm),

Cmα = Cm, (36)
Coα = Co +α(Cm −Co).

In Equation (36), α is the uncertainty rate (fit of alpha) and the values of w1 = w3 = 1/6
and w2 = 4/6 are in accordance with (Liang, 2011) [12]. Therefore, the ultimate model
is as follows. By considering the following uncertain parameters, the certain controlled
model can be expressed by the fuzzy programming method as:

D̃1i,r,t = (D1pi,r,t ,D1mi,r,t ,D1oi,r,t),

D̃2i,e1,t = (D2pi,e1,t ,D2mi,e1,t ,D2oi,e1,t),

D̃3l,e2,t = (D3pl,e2,t ,D3ol,e2,t).�T ιιhi,h,k2 = (T iihpi,h,k2 ,T iih
m
i,h,k2

,T iihoi,h,k2),
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T̃ ιιmi,m,k2 = (T iimpi,m,k2 ,T iim
m
i,m,k2

,T iimoi,m,k2),

T̃ ιmhm,h,k2 = (T imhpm,h,k2 ,T imh
m
m,h,k2

,T imhom,h,k2),

T̃ ιgpg,p,k1 = (T igppg,p,k1 ,T igp
m
g,p,k1

,T igpog,p,k1),�T ιpιp,i,k1 = (T ipipp,i,k1 ,T ipi
m
p,i,k1

,T ipiop,i,k1),�T ιplp,l,k1 = (T iplpp,l,k1 ,T ipl
m
p,l,k1

,T iplop,l,k1),

C̃apk = (Cappk ,Cap
m
k ,Cap

o
k).

The certain supply chain model is expressed as follows:
minZ1 =

∑
m

FixMm ·ZMm +
∑
l

FixLl ·ZLl +
∑
p

Fix Pp ·ZPp +
∑
g

FixGg ·ZGg

+
∑
i,h,k2,t

FixKk2 ·X
′
i,h,t,k2

+
∑

i,m,k2,t

FixKk2 ·Y
′
i,m,t,k2

∑
i,l,k2,t

FixKk2 ·Z
′
i,l,t,k2

+
∑

l,m,k2,t

FixKk2 ·U
′
m,l,t,k2

+
∑

m,h,k2,t

FixKk2 ·W
′
m,h,t,k2

+
∑

g,p,k1,t

FixKk1 ·N
′
g,p,t,k1

+
∑
p,i,k1,t

FixKk1 ·O
′
p,i,t,k1

+
∑
p,l,k1,t

FixKk1 ·Q
′
p,l,t,k1

+
∑

i,h,ra ,k2,t

T rihi,h,k2 ·Xi,h,ra ,t,k2

+
∑

i,m,rb ,k2,t

T rimi,m,k2 ·Yi,m,rb ,t,k2 +
∑

i,l,rc ,k2,t

T rili,c,k2 ·Zi,l,rc ,t,k2 (37)

+
∑

m,l,rc ,k2,t

T rmlm,l,k2 ·Um,l,rc ,t,k2 +
∑

m,h,ra ,k2,t

T rmhm,h,k2 ·Wm,h,ra ,t,k2

+
∑

g,p,e,k1,t

T rgpg,p,k1 ·Ng,p,e,t,k1 +
∑

p,i,e1,k1,t

T rpip,i,k1Op,i,e1,t,k1

+
∑

p,l,e2,k1,t

T rplp,l,k1 ·Qp,l,e2,t,k1
∑
e1,t

Hde1,t · Ine1,t

minZ2 = ω
∑
i,r,t

S1i,r,t + (1−ω)
∑
i,e1,t

S2i,e1,t (38)

minZ3 =
∑
k,t

Nok,t (39)

s.t∑
h,k2

Xi,h,ra ,t,k2 +
∑
m,k2

Yi,m,rb ,t,k2 +
∑
l,k2

Zi,l,rc ,t,k2 +
∑
r

S1i,r,t =
∑
r

w1D1
α,p
i,r,t +w2D1α,mi,r,t
+w1D1α,ti,r,t

 , ∀i, t, (40)

∑
p,k1

Op,i,e1,t,k1 − Ine1,t + Ine1,t−1 + S2i,e1,t =

w1D2
α,p
i,e1,t

+w2D2α,mi,e1,t
+w3D2α,Oi,e1,t

 , ∀i, e1, t, (41)

∑
p,k1

Qp,l,e2,t,k1 =
(
w1D3

α,p
l,e2,t

+w2D3α,ml,e2,t
+w3D3α,Ol,e2,t

)
, ∀i, e2, t, (42)

∑
rc ,i,l

Zi,l,rc ,t,k2 +
∑
rc ,m,l

Um,l,rc ,t,k2 +
∑
rb ,i,m

Yi,m,rb ,t,k2 +
∑
ra ,i,h

Xi,h,ra ,t,k2

+
∑
ra ,m,h

Wm,h,ra ,t,k2 ≤

w1CapK
α,p
k2

+w2CapK
α,m
k2

+w3CapK
α,O
k2

 ·Nok2,t , ∀k2, t, (43)

∑
e,g,p

Ng,p,e,t,k1 +
∑
i,p,e1

Op,i,e1,t,k1 +
∑
p,l,e2

Qp,l,e2,t,k1 ≤
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(w1CapK
α,p
k1

+w2CapK
α,m
k1

+w3CapK
α,o
k1

) ·Nok1,t , ∀k1, t, (44)(
w1T iih

α,p
i,h,k2

+w2T iih
α,m
i,h,k2

+w3T iihi,h,k2
)
·X
′
i,h,t,k2

≤Mtime1, ∀i,h, t,k2, (45)(
w1T iih

α,p
i,m,k2

+w2T iim
α,m
i,m,k2

+w3T iimi,m,k2
)
·Y
′
i,m,t,k2

≤Mtime1, ∀i,m, t,k2, (46)(
w1T imh

α,p
m,h,k2

+w2T imh
α,m
m,h,k2

+w3T imhm,h,k2
)
·W

′
m,h,t,k2

≤Mtime1, ∀m,h, t,k2, (47)(
w1T igp

α,p
g,p,k1

+w2T igp
α,m
g,p,k1

+w3T igp
α,o
g,pk1

)
·N
′
g,p,tk1

≤Mtime2, ∀g,p, t,k1, (48)(
w1T ipi

α,p
p,i,k1

+w2T ipi
α,m
p,i,k1

+w3T ipi
α,o
p,i,k1

)
·O
′
p,i,t,k1

≤Mtime2, ∀p, i, t,k1, (49)(
w1T ipl

α,p
p,l,k1

+w2T ipl
α,m
p,l,k1

+w3T ipl
α,o
p,l,k1

)
·Q
′
p,l,t,k1

≤Mtime2, ∀p, l, t,k1, (50)
D1

α,p
i,r,t =D1mi,r,t + (1−α)(D1

p
i,r,t −D1mi,r,t )

D1α,mi,r,t =D1mi,r,t , ∀i, r, t
D1α,oi,r,t =D1oi,r,t + (α)(D1mi,r,t −D1oi,r,t )

(51)


D2

α,p
i,e1,t

=D2mi,e1,t + (1−α)(D2
p
i,e1,t

−D2mi,e1,t)

D2α,mi,e1,t =D2mi,e1,t , ∀i, e1, t
D2α,oi,e1,t =D2oi,e1,t + (α)(D2mi,e1,t −D2oi,e1,t)

(52)


D3

α,p
l,e2,t

=D3ml,e2,t
+ (1−α)(D3

p
i,e2,t

−D3ml,e2,t
)

D3α,ml,e2,t
=D3ml,e2,t

, ∀l, e2, tm

D3α,ol,e2,t
=D3ol,e2,t

+ (α)(D3mi,e2,t −D3ol,e2,t
)

(53)


CapK

α,p
k = CapKmk + (1−α)(CapK pk −CapK

m
k )

CapKα,mk = CapKmk , ∀k
CapKα,ok = CapK ok + (α)(CapKmk −CapK

o
k )

(54)


T iih

α,p
i,h,k2

= T iihmi,h,k2
+ (1−α)(T iihpi,h,k2 −T iih

m
i,h,k2

)

T iihα,mi,h,k2
= T iihmi,h,k2

, ∀i,h,k2
T iihα,oi,h,k2

= T iihoi,h,k2
+ (α)(T iihmi,h,k2

−T iihoi,h,k2 )
(55)


T iim

α,p
i,m,k2

= T iimmi,m,k2
+ (1−α)(T iimpi,m,k2 −T iim

m
i,m,k2

)

T iimα,mi,m,k2
= T iimmi,m,k2

, ∀i,m,k2
T iimα,oi,m,k2

= T iimoi,m,k2
+ (α)(T iimmi,m,k2

−T iimoi,m,k2 )
(56)


T imh

α,p
m,h,k2

= T imhmm,h,k2
+ (1−α)(T imhpm,h,k2 −T imh

m
m,h,k2

)

T imhα,mm,h,k2
= T imhmm,h,k2

, ∀m,h,k2
T imhα,om,h,k2

= T imhom,h,k2
+ (α)(T imhmm,h,k2

−T imhom,h,k2 )
(57)


T igp

α,p
g,p,k1

= T igpmg,p,k1
+ (1−α)(T igppg,p,k1 −T igp

m
g,p,k1

)

T igpα,mg,p,k1
= T igpmg,p,k1

, ∀g,p,k1
T igpα,og,p,k1

= T igpog,p,k1
+ (α)(T igpmg,p,k1

−T igpog,p,k1 )
(58)


T ipi

α,p
p,i,k1

= T ipimp,i,k1
+ (1−α)(T ipipp,i,k1 −T ipi

m
p,i,k1

)

T ipiα,mp,i,k1
= T ipimp,i,k1

, ∀g,p,k1
T ipiα,op,i,k1

= T ipiop,i,k1
+ (α)(T ipimp,i,k1

−T ipiop,i,k1 )
(59)


T ipl

α,p
p,l,k1

= T iplmp,l,k1
+ (1−α)(T iplpp,l,k1 −T ipl

m
p,l,k1

)

T iplα,mp,l,k1
= T iplmp,l,k1

, ∀p, l,k1
T iplα,op,l,k1

= T iplop,l,k1
+ (α)(T iplmp,l,k1

−T iplop,l,k1 )
(60)

(7)− (14),(17)− (25),(32)− (34) (61)
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4 Solving Methods

In this paper, due to the NP-hardness of the problem, the NSGA-II and MOPSO
algorithms are used to solve the relief logistics problem. Therefore, in this section, the
basic principles of the mentioned algorithms are discussed. In the end, we introduce
indexes to compare the efficient responses of each algorithm.

4.1 Non-dominated sorting genetic algorithm - II

This algorithm, like the genetic algorithm, begins with a randomly generated primitive
population. In the next step, the generated population is evaluated from the viewpoint
of the defined objective functions (suppose we have two minimization goal functions).
After dividing the population into different categories using the non-dominated sort-
ing process, we calculate the control parameter called the crowding distance. This
parameter is calculated for each of two members in each group and represents a mea-
sure of the proximity of the target member to the other members of that group. A
large amount of this parameter will lead to divergence and a wider range of population
members. On the other hand, in this algorithm, among the answers of each generation
Pt , some of them are selected using the binary tournament selection method. In the
binary selection method, two random responses are selected from the population, and
then a comparison is made between the two answers, so the best one is eventually
selected. The selection criteria in NSGA-II are primarily the response rank and, sec-
ondly, the crowding distance which is related to the answer. The lowest response rank
and the highest crowding distance are preferred. By repeating the binary selection on
the population of each generation, a set of individuals of that generation is selected to
participate in the combination and mutation. The combination function is performed
on the part of the selected individuals, and the mutation function is carried out on the
rest. As a result, the population Qt is made up of children and mutated individuals.
Subsequently, this population is merged with the main population. The members of the
newly formed population Rt are sorted based on their rank in ascending order. Mem-
bers of the same ranked, are sorted based on crowding distance in descending order.
At present, population members are sorted primarily based on their rank and secondly
based on crowding distance. Equal to the number of people in the main population
Pt+1 members are selected from the top of the sorted list, and the rest of the members
are discarded. Selected members from the next generation population, and the cycle
in this section is often called the Pareto Front. None of the answers in the Pareto front
are superior to each other and, depending on the circumstances, all of them can be
considered as an optimal decision.

4.2 Multi-objective particles swarm optimization algorithm

Moore and Chapman (1999) developed the optimization of particle swarm for multi-
objective problems [13]. Coello, et. al., in 2009 proposed an algorithm based on the
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idea of an external archive [6]. Also, to select the leader, the target space is tabled.
This method is described in detail in this article. To solve multi-objective problems
by particle swarm optimization algorithm, it is evident that the general scheme of this
algorithm needs to be modified. The primary goals while solving a multi-objective
problem to achieve the maximization of the number of elements of the Pareto optimal
set found, minimization of the distance of the Pareto front produced by algorithm along
with maximization of the spread of solutions found. The general process of the MOPSO
algorithm is described in the following steps [9]:
Step one: Create a Primary Population
Step Two: Separate nondominated members of the population and save them in archives
or foreign reservoirs
Step Three: Tabling target discovered space
Step Four: Each particle chooses one leader from the archives.
Step Five: Update the velocity and position of the particles.
Each particle contains information that includes the best value so far (personal best)
and the position of Xt . This information is the result of comparing the efforts that
each particle makes to find the best answer. Each particle also finds the best answer
so far received in the whole group, comparing the optimal values of various particles
(global best). Each particle tries to change its position using the following information
to achieve the best answer: 1. Xt current position, 2. V t current velocity, 3. distance
between the current and optimal personal position, and 4. distance between the current
position and Pervasive optimum. Thus, the velocity of each particle and, consequently,
its new position are expressed in terms of Equations (62) and (63).

V t+1
i = wV t

i + c1rand(pbesti −X
t
i ) + c2rand(gbesti −X

t
i ), (62)

Xt+1i = Xti +V
t+1
i . (63)

In the above equation, V t+1
i is the velocity of the particle i in the new repetition t, V t

i
is the velocity of the particle i in the current repetition t, Xti is the current position
of the particle t + 1, Xt+1i is the position of the particle in the new repetition. pbesti
is the best position that particle i has ever had, and gbesti is the best position of
the best particle (the best position that all the particles have ever taken). Rand is a
random number between zero and one that is used to preserve the variety and diversity
of the group. c1 and c2 are cognitive and social parameters, respectively. Choosing the
appropriate value for these parameters will accelerate the convergence of the algorithm
and prevent early convergence in local optimizations. Recent research suggests that
choosing a larger value for a cognitive parameter c1 is more appropriate than the social
parameter c2 (Khan, S. et al., 2018) [11]. The parameter w is the weighted inertia used
to ensure convergence in the particle group. Weight inertia is used to control the effect
of previous velocity records on current velocities.
Step 6: Use the mutation operator
Step 7: The best personal memory of each particle is updated.
Step 8: Add new nondominated members to the archive and delete the dominated
members.
Step 9: Update the tabulation.
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Step 10: If the stop condition is met, the algorithm stops, and the best particle among
the crowd is the answer given to the problem. Otherwise, go to step four.

4.3 Multi-objective meta-heuristics algorithms comparison indices

Indicators are presented below to compare which algorithm is more applicable than
another. Suppose the set of effective responses is as follows:

Most Expansion Index (MSI)

This criterion measures the expansion of the space for efficient responses. The more
efficient the answers are in a wider space, the larger is the index, so the higher values
of this index are intended. Suppose
f maxj : The maximum value of the objective function for the purpose j among efficient
responses.
f minj : The minimum value of the objective function for the purpose j among efficient
responses.
This index is indicated as D and is calculated using Equation (64).

D =

√√√√ k∑
j=1

(f maxj − f minj )2. (64)

The Number of Effective responses or Pareto index (NPF)
This index indicates the number of effective responses that can be extracted using the
model. Obviously, higher values for this index are preferred.
Model runtime (CPU-time)
This index shows the runtime of the model to achieve efficient responses. Obviously,
the lower values for this index are preferred.

Metric Distance Index (SM)
By using this index, we will measure the uniformity of non-dominated solutions. The
lower values for this index are preferred.
is calculated from Equations (65) and (66):

di = min
j=1,...,n
j,i

 3∑
k=1

|f ik − f
j
k |

 , i = 1, . . . ,n, (65)

SM =
∑n−1
i=1 |d − di |
(n− 1)d

. (66)
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5 Computational Results

5.1 Solving small sample problems by ϵ-constraint method

In this section, first, to examine the model as well as its verification, a small sample
size problem is considered in accordance with the size given in Table 1. The certain
and uncertain parameters considered are also generated using a uniform distribution
function, based on Tables 2 and 3, to solve the problem.

Table 1: Small sample problem.

Set Size Set Size
l 6 K1 4
L 4 K2 4
M 5 K 8
P 4 R 3
H 3 E1 2
G 4 E2 2
T 2 E 4

Table 2: The certain parameters are generated using a uniform distribution function.

Parameter Interval Parameter Interval
T rihi,h,k2 U ∼ (5,10) CapLl,t U ∼ (400,450)
T rimi,m,k2 U ∼ (5,10) CapMm,t U ∼ (400,450)
T rmhm,h,k2 U ∼ (5,10) CapHh,t U ∼ (400,450)
T rili,l,k2 U ∼ (5,10) CapGg,e,t U ∼ (100,120)
T rmlm,l,k2 U ∼ (5,10) CapPp,e,t U ∼ (100,120)
T rgpg,p,k1 U ∼ (5,10) FixLl U ∼ (50000,100000)
T rpip,i,k1 U ∼ (5,10) FixMm U ∼ (50000,100000)
T rplp,l,k1 U ∼ (5,10) FixGg U ∼ (50000,100000)
Hde1,t U ∼ (1,3) F − xPp U ∼ (50000,100000)
NTk,t U ∼ (10,15) FixKk U ∼ (100,200)
Fm,Rb U ∼ (4,5)/10 BigM 10000
Mtime1 20 Mtime2 20

First and foremost, before solving the small sample problem with the ϵ-constraint
method, the best and worst amount of each target function is calculated using the single
optimization method. In this method, each objective function is solved, regardless of
other objective functions, by using the GAMS software to determine the upper and
lower boundary of each target. Therefore, it can be concluded that the generated
effective responses should be between the upper and lower boundary of each target
function (the best and worst values of each objective function). Table 4, named the
P ayof f table, presents the best and worst value of each objective.
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Table 3: The certain parameters are generated using a uniform distribution function.

Parameter Pessimistic value Most likely Optimistic value
D̃1i,r,t U ∗ 10 ∼ (20,30) U ∗ 10 ∼ (10,20) U ∗ 10 ∼ (5,10)
D̃2i,e1,t U ∼ (70,80) U ∼ (60,70) U ∼ (50,60)
D̃3l,e2,t U ∼ (80,90) U ∼ (70,80) U ∼ (80,90)�T ιιhi,h,k2 U ∼ (25,30) U ∼ (15,25) U ∼ (10,15)
T̃ ιιmi,m,k2 U ∼ (25,30) U ∼ (15,25) U ∼ (10,15)
T̃ ιmhm,h,k2 U ∼ (25,30) U ∼ (15,25) U ∼ (10,15)
T̃ ιgpg,p,k1 U ∼ (25,30) U ∼ (15,25) U ∼ (10,15)�T ιpιp,i,k1 U ∼ (25,30) U ∼ (15,25) U ∼ (10,15)�T ιplp,l,k1 U ∼ (25,30) U ∼ (15,25) U ∼ (10,15)

C̃apk U ∼ (50,55) U ∼ (45,50) U ∼ (40,45)

Table 4: Payoff table associated with solving a small sample problem with an ϵ-constraint method.

Payoff Z1 Z2 Z3
Z1 554028.56 4081.25 892
Z2 1240001.14 2276.45 892
Z3 1225043.01 4030.50 97

According to the P ayof f table, the best value of the first objective function is
544028.56, the best value of the second objective function is 2276.45 and the best value
of the third objective function 97. Therefore, the result can be that a set of effective
responses cannot provide better answers than the above. Thus, Table 5 shows the
set of efficient answers from solving the small-sample sample problem by ϵ-constraint
approach in the alpha-fit of 0.5.

Table 5: Set of efficient answers from solving the small-sample sample problem by ϵ-constraint method.

Efficient answer Z1 Z2 Z3
1 552568.52 2924.08 122
2 552491.45 2948.41 121
3 552401.41 2983.25 120
4 552371.14 3021.41 118
5 551604.61 3068.16 117
6 551156.80 3114.91 116
7 550809.50 3161.66 115
8 549839.27 3301.91 112
9 549093.07 3492.12 108
10 547738.31 3629.16 105
11 547293.80 3722.66 103
12 546478.20 3862.91 100
13 545933.28 4003.16 97
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According to Table 5, 13 various effective answers are derived from the ϵ-constraint
method for the small-sample problem

5.2 Solving small-size sample problems by meta-heuristic algorithms

In this section, due to the complexity of the problem and its NP-hardness, NSGA-II
and MOPSO Meta-Heuristic Algorithms have been used to solve larger size sample
problems. Therefore, in order to determine the coding accuracy, the small size sample
problem presented in Table 1 has been considered and the problem has been solved
by mentioned algorithms to determine the difference between the objectives functions
of the meta- Heuristic algorithms and the ϵ-constraint method. Before solving the
problem and analyzing the results, the initial parameters of the NSGA-II and MOPSO
algorithms were adjusted by the Taguchi method. Tables 6 and 7 show the proposed
levels of the parameters of these algorithms and the optimal value of each parameter
obtained by theTaguchi method.

Table 6: Value of adjusted parameters (optimized) for NSGA-II.

Algorithm Parameter Level1 Level2 Level3 Optimized

NSGA-II

Maximum number of
repetitions 50 100 200 200

Population 50 100 200 100

Combination rate 0.3 0.5 0.7 0.3

Mutation rate 0.3 0.5 0.7 0.7

Table 7: Value of adjusted parameters (optimized) for the MOPSO.

Algorithm Parameter Level 1 Level 2 Level 3 Optimized

MOPSO

Maximum number of
repetitions 50 100 200 200

Particles 50 100 200 50

Initial velocity
coefficient

1 1.5 2 2

Secondary velocity
coefficient

1 1.5 2 1.5

Gravity coefficient 0.8 0.9 1 0.9

After adjusting the parameters of the meta-heuristics algorithms, the small-size
sample presented in Table 1 is again solved by the proposed algorithms.
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After solving the small sample problem with the NSGA-II and the MOPSO algo-
rithms, 23 effective responses for the NSGA-II algorithm and 17 effective responses
for the MOPSO algorithm were obtained. According to these tables, with the increase
in the number of relief and cargo vehicles, the total cost of the supply chain network
design is increased and, consequently, due to the transfer of more injured to medical
centers, etc., the amount of shortage or lack of service to the injured people is reduced.
After solving the small size problem with different methods, for the purpose of evalu-
ating the effective response indicators, Table 8 is created. In this table, the averages of
the target functions, the number of efficient responses, the most expansion index, the
metric distance index, and the computation time are considered.

Table 8: Comparison of the indicators of the affective responses is the solving of the small size problem.

Solving methods

Indexes MOPSO NSGA-II GAMS(ϵ-constraint)

Mean of Z1 621766.78 624332.30 549983.02

Mean of Z2 2732.39 2786.55 3325.67

Mean of Z3 127.82 123.82 111.84

NPF 17 23 13

MSI 111452.59 188440.97 6277.45

SM 0.79 0.78 0.546

CPU-Time 67.31 58.39 267.16

According to Table 8, it can be concluded that if one specific problem-solving
method has the lowest values in the index of target functions averages, the metric
distance, and the computation time, and has the higher values in the number of ef-
fective responses index and the distance index, the most efficient solution method is
obtained. By examining the results of Table 8, the ϵ-constraint method is better than
other methods in the indexes of the average of the first and third objective functions
and the metric distance index. The NSGA-II algorithm has been better in acquiring
the number of efficient responses, the most extension, and computation time indexes,
and the MOPSO algorithm has also been better considering the mean index of the
second-objective function.

5.3 Solving larger size problems

In this section, due to the inadequacy of the GAMS software and the ϵ-constraint
method to solving relief logistics problems, only the NSGA-II and MOPSO algorithms
are used to solve the problem in larger sizes. In this section, the large sample problems
have been reviewed at three levels: small, medium, and large. Therefore, 15 sample
problems are designed based on Table 9 and generated data according to Tables 2 and
3.
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Table 9: The large sample size problems.

Set Sample Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
L 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
M 10 10 12 12 14 14 16 16 18 18 20 20 22 25 25
P 6 6 6 6 8 8 8 8 10 10 10 10 12 12 12
H 4 4 4 4 4 6 6 6 6 8 8 8 8 12 12
G 6 6 6 6 8 8 8 8 10 10 10 12 12 12 12
T 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
K1 6 6 6 6 8 8 8 8 10 10 10 12 12 12 12
K2 6 6 6 6 8 8 8 8 10 10 10 12 12 12 12
K 12 12 12 12 16 16 16 16 20 20 20 24 24 24 24
R 4 4 4 4 5 5 5 6 6 6 6 7 7 7 8
E1 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6
E2 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6
E 6 6 6 6 6 8 8 8 8 10 10 10 12 12 12

In this section, sample problems from 1 to 15 are reviewed. As stated, the data used
to solve these problems is taken from Tables 2 and 3. In addition to this information,
in all of the problems examined, the alpha fitting level is assumed to be 0.5. Table
10 shows the average of the effective responses and comparison indicators of the meta-
heuristics algorithms for the solving of larger sample size problems.

T-test was used at 95% confidence level to examine the significant difference be-
tween the obtained averages in different indices in solving larger sample size problems.
Therefore, considering the confidence level if the P test statistic is less than 0.05, there
is a significant difference between the mean of that computational index. On the other
hand, if the value of P test is more than 0.05, there is no significant difference be-
tween the computing index averages. Table 11 summarizes the results of the T-test
test among the averages of the indices used in Table 11 for larger sample size problems.

Regarding the value of the P test obtained from Table 11, it can be concluded that
there is no significant difference between any of the averages of the studied indices
in larger sample size problems. Therefore, the multi-objective multi-factor TOPSIS
decision-making method has been used to conclude on the most efficient algorithm in
solving sample size larger. Table 12 summarizes the results of the indexes obtained from
solving sample problems by the larger size and the amount of utility weight. Obviously,
the greater the weight of the utility, the higher the efficiency of the algorithm in solving
the larger sample problem, considering all the indices.

According to Table 12, the NSGA-II algorithm is more efficient than the MOPSO
algorithm with a larger utility weight (0.8054) in solving larger size sample problems
considering all comparison criteria.



Modeling and Solving a Multi-objective ... / COAM, 5 (1), Winter-Spring 202062

Table 10: Comparison of multi-objective multi-heuristic algorithms indicators in solving larger-size
problems.

Method Problem Mean of Mean of Mean of SM MSI NPF CPU
Z1 Z2 Z3 Time

N
SG

A
-I

I

1 814624.5 4034.91 212.0 0.37 270273.91 19 66.64

2 893903.9 4037.42 250.2 0.77 585593.25 19 109.5

3 1054091.5 4499.47 305.6 0.7 479316.63 20 173.8

4 1340197.5 6188.69 554.4 0.57 850298.87 14 244.0

5 1499104.9 7570.90 613.0 0.41 1290789.7 14 332.4

6 1819457.7 10908.06 1115.2 0.67 2508017.5 26 432.4

7 11904795.9 13175.46 1199.2 0.52 2797218.3 24 543.0

8 2147039.9 14072.13 1318.8 0.48 2526486.4 19 661.9

9 2275232.2 14799.79 1376.8 0.85 2489246.8 19 814.0

10 2821578.6 20513.16 2191.6 0.39 350950.3 23 956.4

11 2977894.9 21975.99 2315.00 0.76 3087180.76 26 1039

12 3196969.1 24808.73 2470.40 0.45 4883033.12 27 1324

13 3869518.3 33011.01 3557.80 0.97 3839428 32 1530

14 4233689.6 34484.42 3725.60 1.03 4565022.62 29 1807

15 4451831.3 36058.92 3939.00 0.68 5381370.91 27 2640

M
O

PS
O

1 821831.2 3944.16 207.8 0.46 109850.13 18 75.39

2 922036.1 4152.08 246.4 0.62 329845.53 14 90.49

3 1055897.5 4493.01 296.8 0.23 370471.43 18 111.8

4 1334944.5 6423.04 543.0 0.59 463108.57 16 133.3

5 1513069.6 7370.91 625.4 0.35 817523.73 18 261.6

6 1837999.3 11194.19 1096.6 0.55 2008648.7 31 345.4

7 1922322.9 12984.41 1181.0 0.59 2559860.1 28 494.9

8 2109015.3 13969.09 1294.4 0.84 3694417.3 19 723.4

9 2259144.9 14816.02 1375.8 0.69 2215210.1 15 982.0

10 2835361.1 20534.23 2167.4 0.36 2437807.6 25 1326

11 2979000.7 21726.00 2308.00 0.94 2437807.91 32 1325

12 3204856.4 24920.01 2463.80 0.86 3887334.58 19 1834

13 3865944.8 3293.58 3556.20 0.36 3757576.16 24 2340

14 4244230.4 34458.61 3660.40 0.47 4595983.26 21 2978

15 4459728.0 36441.11 3925.60 1.03 5928298.63 20 3953
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Table 11: Statistical T-test results at 95% confidence level for the indexes in larger-size problems.

Index Mean difference Lower bound Upper bound P T
Z1 4364 −891413 900140 0.992 0.01
Z2 15 −8455 8485 0.997 0.01
Z3 13 −952 978 0.978 0.03

NPF 1.33 −2.77 5.44 0.511 0.67
MSI 230699 −1046492 1507890 0.714 0.37
SM 0.045 −0.1222 0.2128 0.583 0.56

CPU-Time 287 −455 1029 0.432 0.80

Table 12: The most effective meta-heuristic algorithm for solving sample problems of larger size.

Algorithm Z1 Z2 Z3 SM MSI NPF CPU-Time Utility
weight

NSGA-II 2353329 16675.94 1676.30 0.641 2604948 22.53 844.816 0.8054

MOPSO 2357629 16690.83 1663.24 0.596 2374250 21.20 1131.61 0.1946

Index weight 0.2 0.2 0.2 0.1 0.1 0.1 0.1

6 Conclusions and Suggestions for Future Studies

This paper presents a multi-objective model for the multi-period location-routing prob-
lem, taking into account the evacuation of casualties and homeless people and fuzzy
paths in relief logistics. First, an uncertain multi-objective model of the problem was
designed under uncertain parameters of demand, time, and transport capacity, and
then, using the fuzzy programming method, uncertain parameters of the problem were
controlled. Considering the multi-purpose design of the model, a small sample size
was first designed, and the model was solved using the ϵ-constraint method in GAMS
software, resulting in 13 different efficient responses. Then, due to the NP-hardness
of the problem and the inability of GAMS software to solve the model in larger sizes
NSGA-II and MOPSO meta-heuristic algorithms were used to solve the problem. At
first, the small sample size problem solved by the GAMS software was solved by these
algorithms, which showed the high efficiency of the algorithms in obtaining efficient re-
sponses. Then, 15 sample problems were designed in larger sizes, and sample problems
were analyzed in 5 successive replications by the NSGA-II and MOPSO algorithms. Be-
fore solving sample problems in larger sizes, the initial parameters of both algorithms
were adjusted by the Taguchi method so that the algorithms have the highest efficiency
in obtaining results. The results showed that there was no significant difference between
all indices of the case. The indexes computed in this problem include the mean of tar-
get functions, the number of efficient responses, the most exponential index, the metric
distance index, and computational time. Due to the lack of decision about choosing
the most efficient algorithm, the TOPSIS multi-criteria decision-making method was
used, which resulted in the selection of the NSGA-II algorithm with a utility weight of
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0.8054 compared to the MOPSO algorithm with a utility weight of 0.1946 in solving
all sample problems. In this regard, the followings are suggestions for other researchers:

1. Considering the transportation cost parameter to be uncertain.

2. Using robust fuzzy optimization method to control uncertain parameters due to
lack of access to historical data

3. Use of other meta-heuristic algorithms such as MOSA, MOALO to solve problems

4. We were considering the reliable objective function along with the mentioned
target functions in this study.
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