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1 Introduction

Wireless Sensor Network (WSN) is a network that has several geographically dis-
tributed sensor nodes that sense events in an environment. The sensor node’s energy,
computational power, and storage capacity are limited [13]. In the recent decade, WSN
has developed in many applications and environments such as monitoring, healthcare,
home automation, etc. [14]. Recently WSN also is used in distributed estimation,
detection, and tracking.

In [14], a distributed estimation of an unknown target parameter by a set of sensed
data is performed in a distributed sensor node environment. For simplicity, we call it
the parameter. In this environment, each node directly or indirectly sends its data from
the environment to a central FC. FC constructs the underlying physical phenomenon
according to sensors data. There are much kinds of research about estimation in com-
puter networks [1, 18] and in WSN [2, 34]. FC process received data and estimate the
parameters. In many estimation types of research WSN [3, 19], they suppose that data
sending is without any distortion. In [4], different distributed estimation algorithms
reviewed [34, 26]. The decentralized estimation has been introduced in distributed con-
trol [6], target tracking [31] and data fusion [7]. In [35], an optimal power scheduling
problem is proposed, is used in an inhomogeneous sensor network for a noise-corrupted
deterministic signal. This algorithm quantizes the power level to minimize the total
data sending energy consumption with Mean Square Error (MSE) performance. The
[20] minimizes the estimated MSE with an optimal tradeoff between the number of alive
nodes and the quantization bit rate. The paper [12] estimate a parameter variable in a
bidimensional scenario in WSN. In this work, a mathematical framework is analyzed.
In [8], the energy consumption performance is reviewed in WSN distributed estimation.
This paper estimates the parameter with the Best Linear Unbiased Estimation (BLUE)
method. The [8, 21, 8] use an optimization method to solve the problem. The [21] ex-
plicitly considers network lifetime techniques and estimation precision in distributed
estimation problems. This method has an estimation model using confidence interval
is explained, which uses the user’s required precision as an input. This model estimates
the parameter with a defined precision (based on user-defined precision using) using the
confidence interval method. It also increases network lifetime. The scheduling consists
of always actual, random on-off, adaptive on-off, and periodic on-off states [9]. The
proposed algorithm is an adaptive on-off scheduling algorithm in which FC creates a
scheduling method, and other nodes use that method [28]. We consider hierarchical
(intra- and inter-cluster routing) sensor networks, and the scheduling and routing al-
gorithms for each cluster independently. Therefore, using a centralized algorithm in
each cluster (knowing the fact the cluster area is limited) is applicable and efficient.
In each cluster, Intra-cluster routing sends sensor data to the cluster head (CH). The
CH then communicates with other CH to route data to the sink node. Hear single-hop
is applicable for routing between clusters. The proposed algorithm schedules nodes’
activity with a nonlinear programming (NLP) method to send data from a node to
FC by multi-hop routes. Some of the researchers perform scheduling nodes’ tasks in
the MAC layer [22, 32]. The [16] reviews different techniques using simulation in a
many-to-one communication paradigm. It minimizes the number of time slots required
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to complete a converge cast using a single frequency scheduling method. Some works
are application-based. For example, in [27], a scheduling and routing algorithm guar-
antee the end-to-end delay. The [17] designs a lifetime-aware routing and coverage
aware algorithm. The [10] is using a routing and scheduling algorithm in mesh sensor
networks. This paper maximizes the lifetime of a WSN and guarantees the end-to-end
delay. The other studies worked on routing and scheduling separately. They optimized
just one [33].

In this paragraph, we emphasize the novelties of this paper. This paper emphasizes
joint routine and scheduling algorithms. It is important to provide both routine and
schedule at the same time because efficiency depends on it. Moreover, having multi-level
routing helps us to provide more efficient energy consumption in nodes. We have used
queuing theory to estimate delays in scheduling algorithms. In this paper, we proposed
a hybrid hierarchical system with routing and scheduling for WSN. Regarding our last
papers emphasized by the reviewer, it is worth mentioning that in this work, we have an
optimization model efficiently adapted to the characteristics of the WSNs. By taking
all similar papers in this field, including our last papers, into account, in the following,
we have listed the main contributions:

• Adopted to tier hierarchical routing to the delay while the scheduling is optimized
simultaneously.

• Unique confidence interval based error refinement based on HPD interval form.

• Considering both energy and delay in a mathematical model to have intra-cluster
joint routing and scheduling.

• Having queue theory in delay provisioning.

• Having proposed a new solution for the proposed NLP regarding the running
time.

We performed routing and scheduling algorithms jointly to achieve the highest effi-
ciency. Also, the proposed algorithm is highly compatible with estimation process
data, which is not well studied in literature before. Section 2 introduces the proposed
algorithm to estimate a random variable parameter. In Section 3, proposed joint routing
and scheduling algorithms are discussed in detail. The Sensors monitor the network and
send their data to the CH, which estimates the parameter using the model described in
Section 2. Our intra cluster routing and scheduling algorithm increases lifetime during
routing from nodes to CH. The CH then estimates the required parameter and sends
the results to the sink node. In Section 4, the performance of the proposed algorithm
is evaluated against others. Section 5 has a conclusion.

2 Problem Statement

We define the hierarchical wireless sensor network topology consisting of different clus-
ters. A cluster is shown in Figure 1. There are N sensor nodes and a CH in each
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Figure 1: Sensor nodes as a cluster.

cluster to estimate the required parameter ∝. At first, each cluster node monitors the
cluster environment and then sends events to the fusion center CH. At last, FC makes
its estimation according to all the received data from cluster nodes.

When cluster nodes send data to FC, there are two main challenges:

1. how many packets should cluster nodes send to FC (section 3.1) to estimate the
parameter ∝

2. in order to send cluster nodes data to FC, each node should select the best route
and relay nodes (section 3.2).

During environment monitoring, the event data may damage by some additive noise:

xki =∝ +εki k = 1,2, · · · ,N , i = 1,2, · · · ,nk . (1)

In this relation xki is the ith data of node k. Each node sends its data to FC Node k
provide the nk data size. N is the sensor network nodes. ∝ is the parameter monitored
by the nodes. FC tries to estimate ∝ with the least possible error. The environment
has noise, so a noise εki is added to the parameter ∝, which is a random variable. Most
of the applications are compatible with the random variable the parameter [25, 29].
The noise variables in the sensors,εki , is independent, and the mean zero Gaussian
random variable is var(εki ) = σ2k (k = 1,2, · · · ,N ). So we have xik ∼ N (∂,σ2k ), in which
Xi have Gaussian distribution with mean ∂ and variance σ2k . In the estimation process
(because of bandwidth and energy limitations of sensors), each node at first quantizes
the event analog data locally yk into a discrete message mk = Qk(yk) of length Lk bits
[1] in which Qk(yk) is quantization function.

In the scheduling algorithm, the cluster head determines all the parameters such as
the number of sending data, the specified route, sending time, and the state of each
node (ON or OFF). Our goal is to propose a scheduling algorithm to manage cluster
nodes on or off activities and increase network lifetime and decrease estimation error
under the desired bound.
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2.1 Estimation process

Cluster nodes send data to FC to estimate the parameter ∝. The more the data, the
more accuracy, and lower error. We use the Bayesian method to estimate ∝ . We use the
Normal distribution function with mean µ and variance τ2 for the density function of ∝
random variable. Nowadays, most of the variables behavior is like Normal distribution
function (such as temperature, humidity, etc.). They can be considered in future works.
The density function of ∝ is as follow:

π (∝)= 1
√
2πτ2

e−
1

2τ2
(∝−µ)2 (2)

If x is an independent random variable with normal distribution function, it’s joint
density function is as follows:

f (x | ∝)=
∏n

i=1
f (xi | ∝)=

∏n

i=1
(2πσi

2)
− 1

2 .e
− 1

2
∑n
i=1

(
xi−∝
σi

)2
. (3)

To the equations (2) and (3), the joint density of ∝ and x is achieved using the equation
(4):

π (∝,x)=
∏n
i=1

(
2πσ2i

)− 1
2

√
2πτ2

e
− 1

2

{∑n
i=1

(
xi−∝
σi

)2
+ 1
τ2

(∝−µ)2
}
. (4)

By expanding the equation (4) we have:

π (∝,x)=
∏n
i=1

(
2πσ2i

)− 1
2

√
2πτ2

e
− 1

2

{∑n
i=1

(
1
σ2i
(x2i +∝2−2∝xi)

)
+ 1
τ2

(∝2+µ2−2µ∝)
}
. (5)

To achieve the posterior distribution function, the equation (5) can be changed as the
following form:

π (∝,x)=
∏n
i=1

(
2πσ2i

)− 1
2

√
2πτ2

e
− 1

2

{
∝2

(∑n
i=1

1
σ2i

+ 1
τ2

)
−2∝

(∑n
i=1

xi
σ2i

+ µ

τ2

)}
×C
. (6)

In the above equation, the terms which are not related to ∝ are represented by a
constant coefficient C. This equation is a normal density function. Conditional density
of ∝ is ∝|x∼N (µ́, σ́2) , where σ́2 and µ́ are as follows:

1
σ́2

=
n∑
i=1

1

σ2i

+
1
τ2

= > σ́2=1/

 n∑
i=1

1

σ2i

+
1
τ2

, (7a)

µ́

σ́2
=

n∑
i=1

xi
σ2i

+
µ

τ2
= > µ́=

 n∑
i=1

xi
σ2i

+
µ

τ2

/
 n∑
i=1

1

σ2i

+
1
τ2

. (7b)

The distribution function of ∝ |x is normal and Bayesian estimator of the parameter ∝
is µ́. So, the equation (7b) shows the final estimator [23].
We find the optimal sample number by calculating (1−α)% with the quantity method
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[24]. By considering Q (∝)=∝−µ́
σ́

as pivotal quantity, the credible interval is given by the
equation (8). Since our posterior density is unimodal, this credible interval is also an
HPD interval form [24]:

P

(∣∣∣∣∣∝−µ́σ́
∣∣∣∣∣<z α

2

)
>1−α. (8)

Here z α
2

is the
(
α
2

)
th

quantiles of standard normal distribution. By (1−α)% credible
interval and maximum acceptable error η, using the equation (9), data size is calculated:

z α
2
σ́ (n)<η . (9)

Considering the equation (7a), the value of σ́(n) is calculated as:

σ́(n) =

√√
1/

 n∑
i=1

1

σ2i

+
1
τ2

. (10)

Substituting the equation (10) in (9), we have:

z α
2

2

1/
 n∑
i=1

1

σ2i

+
1
τ2


<η2. (11)

By extending the equation (11), we get:
n∑
i=1

1

σ2i

>
z α

2

2

η2
− 1
τ2
. (12)

Based on the equation (12), data size (n) is given by the equation (13):

n=

min (n) | n∑
i=1

1

σ2i

>
z α

2

2

η2
− 1
τ2

 . (13)

To simplify the formula of n we consider the worse situation as σ̇2=max
(
σ2i

)
| i∈{1, . . . , N }.

Therefore by replacing
∑n
i=1

1
σ2
i

with n
σ̇2 in the equation (13), the optimal n can be cal-

culated as follows:

n=

σ̇2
z α

2

2

η2
− 1
τ2


 (14)

As observable in the equation (14), data size is easily calculable when the user de-
termines parameters α and η. The number of samples which are needed in order to
achieve desired precision based on parameters α and η is known.

3 The Proposed Routing and Scheduling Program

There are many routing protocols to send cluster data to CH in WSNs. As the radio
range in WSN is limited direct and indirect routing may be used, depending on network
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conditions. We should know that direct transmission consumes more energy with less
delay in comparison with indirect transmission, averagely.

Data size is determined based on the terms mentioned in section 2.1, to the appli-
cation’s required precision. The proposed algorithm regards two following challenges
related to data transmission inside the cluster:

1. The route that cluster nodes can send data to FC.

2. Scheduling nodes activities and determining the way each node cooperates in the
data gathering process.

In this section, methods for implementing the above issues are proposed.

3.1 Data transmission method inside the cluster

Wireless sensor network node consumes its energy for various reasons, to receive data,
data collection, and data processing. Depending on the type of radio receiver, nodes
have different energy consumption levels. However, in most WSNs, the same value
has been considered for all network nodes. The volume of information that must
be processed affects the node energy consumption. Similar to traditional networks,
energy consumption due to data processing compared to other factors are negligible.
Communication is the main factor of energy consumption in wireless sensor network
nodes. Communication’s energy consumption depends on several factors which are
presented in the equation (15).

Pr /Pt=GtGr(C/4πd)
2. (15)

We have studied different types of energy consumption model, and the model described
in the equation (15) is the most suitable one. Pr is the signal strength received at the
receiver side; Pt is the power of the signal at the transmitter side, Gt is transmitter an-
tenna gain, Gr is receiver antenna gain strength, C is light speed, and d is the distance
between sender and receiver. Note that the received signal should be greater than a
specified threshold, thus based on the equation (16a), transmission energy consumption
at the sender is calculated The Gr and GT are determined according to node’s charac-
teristics, so they are constant (also C is constant). The value of d varies depending on
the distance between the sender and receiver. We use the equation (16b) in order to
determine transmission power. In (16b), we have: α∼

(
GtGr(C/4π)

2
)
.

Et= F(GtGr(c/4πd)
2), (16a)

Et∼α/d2= F(
1
d2

). (16b)

Delay is also considered in the cost function. The Delay in the network is consists
of propagation delay and queuing delay. The propagation delay in WSNs is minimal
and can be ignored. So end-to-end delay only depends only on queuing Delay. We
use M/M/1/K for the nodes queue model. Modeling the delay by queuing theory is
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acceptable when the traffic is almost constant. We consider monitoring applications
that produce data with a constant rate. By considering the IEEE 802.15.4 as MAC
layer protocol, it seems that the M/M/1/K would be efficient enough for the problem
[30].

In M/M/1/K , the input process is Poisson; the service rate is exponential, one
server, and system capacity is K . Queuing delay is calculated as (17):

W = L/ λ́. (17)

The parameter L is the average queue length and λ́ is packets arrival rate. These are
calculated with (18) [15] and (19) equations. In the equation (18), λ is the average
input rate and ρ is the data density: ρ = λ/µ,

L = (ρ/(1−ρ))−
(
(K +1)ρK+1/(1−ρK+1)

)
=Ḟ (λ,µ,K ) , (18)

λ́ = λ(1−PK ), (19)

PK is, the probability of K packets in the queue and, is calculated as:

Pk =

((1− ρ)ρk/(1− ρK+1)) (ρ , 1)
((1/K +1)ρk) (ρ = 1)

(20)

In direct routing, the cluster nodes transmit data to FC in one hop (some of the experts
do not consider direct forwarding as a routing method, but in this text, we call direct
forwarding as direct routing), and an indirect routing, cluster nodes send their data to
FC in multihop routing. So the end-to-end delay will be the sum of intermediate nodes
queuing delay. Figure 2, shows data routing inside the cluster.

Figure 2: Data routing with three nodes.

In Figure 2, node A is the receiver, B is the relay, and C is the transmitter. Node
C sends data to A directly on link CA with length DCA. If node C sends its data to A
using intermediate node B with Links CB and BA, it is indirect routing, Two scenarios
are considered, direct (S1) and indirect (S2) transmission. The energy consumption for
direct and indirect transmission is as the equations (21a) and (21b), respectively.
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Es1= F
(
d2CA

)
=αd2CA, (21a)

Es2= F
(
d2CB

)
+F

(
d2BA

)
=α

(
d2CB+d

2
BA

)
. (21b)

In the above equation, function F exists in the equation (16a). The queuing model
M/M/1/K is used in all nodes A, B and C, so the end-to-end delay for direct and
indirect routing is calculated as follow:

Ws1=LA/λ́A, (22a)
Ws2=LA/λ́A+LB/λ́B, (22b)

where LA and LB are average queue length of nodes A and B respectively. The λ́A and
λ́B are actual input rate of nodes A and B respectively. L is as in the equation (18).
We have:

Ws1=Ḟ (ρA,K)=Ḟ (λA,µA,K) , (23a)
Ws2=Ḟ (ρA,K)+Ḟ (ρB,K)=Ḟ (λA,µA,K)+Ḟ (λB,µB,K) . (23b)

We suppose, all the network nodes are homogeneous, and are the same. In the
equations (23a) and (23b), the µA and the µB are the service rate of nodes A and B.
The µA and the µB are as characteristics of nodes when sensors are deployed in the.

Costs1=βE .F
(
d2CA

)
+βD .Ḟ(λA,µA,K), (24a)

Costs2=βE .
(
F
(
d2CB

)
+F

(
d2BA

))
+βD .

(
Ḟ (λA,µA,K)+Ḟ(λB,µB,K)

)
. (24b)

The βE is the weighted cost of energy compared to delay. When βE gets larger, it
has more influence on the total cost. βE is assigned by the user (25). Total cost is
calculated by subtracting directly from indirect routing cost function:

Cost =Costs1−Costs2. (25)

3.2 Forwarding scheduling

FC needs the cluster’s topology to run the forwarding scheduling method. The topology
is given to FC in CC matrix, In this matrix the CCij is the communication cost between
nodes i and j. The initial value of CC matrix elements is as:

CC :[ ]N×N→CC ij=

F(d2ij ), i, j has direct path

∞, i, j has indirect path
(26)

where N is the number of cluster nodes, dij is distance between nodes i and j. At the
beginning of the process, the elements of CC matrix should be initialized. When nodes
i and j are not located in their sending range, then CCij is considered infinite (the
value will be replaced by the other values according to the selected least-cost routes).
Otherwise they are in the radio range of each other. The CC matrix is obtained from



An Efficient Data Collection Algorithm .../ COAM, 5 (1), Winter-Spring 202090

the network graph. The values of the CC matrix will be improved to the link cost.
At the end of the algorithm, the CC matrix will have the best cost between each two
sensor nodes.

The vector participationN×1 maintains a degree of each node participating in the
routing process. It means how many routs a node i is in when data packets are sending
to FC. Matrix LinkN×N have intermediate nodes located on the optimal path between
every two nodes are placed in each other radio range. Matrix Links elements are a
two-dimensional VectorN×2. If i and j are not in each other’s radio range, Linksij is
empty. The optimality of the paths is obtained from the cost function in section 3.1.
The matrix CC Optimal value is obtained from Figure 3 pseudo code.

Figure 3: State diagram of determining matrix CC components.

If two nodes are in each other’s radio range (each i and j), the algorithm searches
the third node to send node’s I data to node j, as the equation (20). Node k should be in
the radio range of both nodes. TNCC function in Figure 3, compares the indirect i−k−j
and direct i − j paths to find the best communication cost. If node k’s communication
cost is less than the current estimated cost, it will be selected as an intermediate node
and is added to the Linksij vector, and the participation increases one. Then node k, as
describes in the pseudo-code of Figure 3, links i −k and k− j. After that, the algorithm
is repeated. If the i −k or K J path can use another intermediate node, the node will be
added to the array links.

If network conditions are modeled real, we can propose a good scheduling algorithm.
Using the equation (16a), the energy consumption of each node is modeled. ECN×N×h
matrix is considered to hold the node’s energy consumption. EC matrix is created using
the Path matrix 1’s pseudo-code is used to specify the value of EC matrix elements.
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Figure 4: State diagram of finding h shortest path

Algorithm 1 The pseudo-code for EC matrix elements
1: for all i ∈ 1, ...,N do
2: for all j ∈ 1, ...,N do
3: for all k ∈ 1, ...,N do
4: if (P athsi,j,k+1<>0) then
5: ECi,j,k = Econ(P athsi,j,k ,P athsi,j,k+1)
6: end if
7: end for
8: end for
9: end for

Econ(i, j) function determines the required energy for transmitting a data unit from
node i to j based on their relative distance, using the equation (16b). ECi,j,k element
defines the amount of energy which is consumed by node j, where the kth optimal path
between node i and FC is selected. As mentioned before, we propose a scheduling
algorithm and selecting an optimal path between each node and FC. Therefore matrix
SPR×N×N is defined. In this matrix, N , the number of nodes in a cluster, and R is the
number of algorithm estimation rounds. Each element in SPi,j,k shows the number of
data samples sent by node j in ith round in kth optimal path. In the estimation process,
the algorithm runs in independent rounds. Each round time duration is predefined. The
network lifetime will be R×T for each round time, T , FC collects data from nodes in
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each round, and estimates the parameter with desired precision. Equation (27) show
the optimization problem proposed:

Min F=γ1N1(
R∑
j=1

N∑
i=1

N∑
k=1

SP(j, i,m).EC (j, i, k) )+γ2N2 (V ar (.))−γ3N3(R) (27)

γ1+γ2+γ3= 1 (27a)

S.T : ∀k∈N,
R∑
j=1

N∑
i=1

N∑
m=1

(SP(j, i,m).EC (j, i,m))+
R∑
j=1

(Eac .AP (j,k))<Epri (27b)

S.T : ∀j∈R, AP (j,k)=


N∑
i=1

N∑
m=1

(SP(j, i,m).P ath(i, k,m))

 (27c)

S.T : ∀i∈R,
N∑
j=1

N∑
k=1

SP(i, j,k)=

σ̇2
z α

2

2

η2
− 1
τ2


 (27d)

S.T : V ar (.)=
N∑
q=1


 R∑
j=1

N∑
i=1

N∑
m=1

(SP(j, i,m).EC (i,q,m))+
R∑
j=1

(Eac .AP (j,q))


−(

N∑
r=1

R∑
j=1

N∑
i=1

N∑
m=1

(SP(j, i,m).EC (i, r,m))+
R∑
j=1

(Eac .AP (j, r))/N )


2

.

In the equation (27b) we see that nodes initial energy Epri is bigger than node’s
energy consumption. A node consumes energy every time it is active and sends packet.
So in a round if node is active it consumes a constant energy. If it is inactive, it
consumes a negligible energy. The term

∑R
j=1

∑N
i=1

∑N
m=1 (SP(j, i,m).EC (i, k,m)) in the

equation (27b), shows the energy consumption of a sending node. Eac shows node’s
energy consumption in a round. Therefore term

∑R
j=1 (Eac .AP (j,k)) shows total energy

consumption of node during its lifetime. If a node does not send any data, it must
be inactive. In the equation (27c) the relation between matrixes P, SP and path are
shown.

The proposed scheduling and routing algorithm uses an NLP to find the best paths
and node activity. The object and subjects of the proposed NLP are not very compli-
cated. We test it using Matlab1 , and the answers and the response time is acceptable.
The proposed NLP is acceptable to execute in a sensor node. Furthermore, the pro-
posed scheduling and routing (including the proposed NLP) are performed once, so
its complexity is negligible. Each CH solves the NLP once (the output will be the
scheduling program and the routing paths), and informs the sensor member nodes, so
the overhead is acceptable. So, our algorithm is efficient because the parameter distri-
bution function is known. This function is compatible with estimating the parameter
with desired precision. All parts of the proposed algorithm are fully adjusted to the
application requirements.
1www.matlab.com
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3.2.1 Matrix SP

In the equation (27), the best values of matrix SP elements are obtained. In this form,
solving optimization problems is so hard, because the parameter R is on summation
bound. We should replace parameter R with Ṙ in the equation (27) to solve the problem.
The new objective function will be as:

Min F =γ1N1(
Ṙ∑
j=1

N∑
i=1

N∑
k=1

SP(j, i,m).EC (j, i, k) )+γ2N2 (V ar (.))−γ3N3(R). (28)

This optimization problem has just one difference with the equation (27). The param-
eter R in the equation (27) is unknown, but in (28), Ṙ is known. In the following the
proposed method, we defined parameter Ṙ and solved the equation (27). In line 1 of 2,
the parameter R(0 < R < RM ) (here it is known as Ṙ ) is introduced.

Algorithm 2 Proposed optimal R algorithm
1: for Ṙ ∈ (0−RM ) do
2: LB = 0,UB = RM
3: end for
4: for all i ∈ 1, ..., log2RM do
5: Ṙ = (LB+UB)÷ 2
6: solve the equation(22b) using Ṙ
7: end for
8: if Equation(22b) is solved successfully then
9: LB = Ṙ

10: else
11: UB = Ṙ
12: end if
13: return Ṙ

In Section 3.2.2, we find RM value. Parameter R is the network lifetime. if R = 0 , it
means that the network cannot perform even one round. In line 4, the problem is solved
successfully. There are two points here, 1) if Ṙ > optimal (R), then the optimization
problem (Equation (27)) has no answer. This is because of the contradiction between
the equations (27b) and (27d). If the optimization problem is solved for the current
value of Ṙ, we can accept the solution.

3.2.2 Calculating RM

To calculate RM , we have considered the over the optimal situation which, is not prac-
tical in reality. Therefore a network with the following conditions has been considered:

1. it consists of only one node (called selected node)

2. initial energy of selected node is ET
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3. the selected node consumes EL energy unit due to send each message to FC. Con-
sidering that only one node exists in the network, the equation (27d) is rewritten
(29). Parameters EL and ET are calculated using the equations (30) and (31),
respectively.

S.T : ∀i∈R,
N∑
j=1

N∑
k=1

SP(i, j,k)=

σ2
z α

2

2

η2
− 1
τ2


 , (29)

EL=min(Ei∈(1:N )), (30)

ET=N×Epri . (31)

In the definition of σ̇(σ̇2=max
(
σ2i

)
| i∈{1, . . . , N }), we have: σ2 < σ̇2 . In the equation

(30), EL is the minimum energy consumption of all nodes in a cluster. In the equation
(31), parameter ET is the initial energy of all the cluster nodes. With equations (29),(30)
and(31), RM is obtined as:

RM=

EL/

σ2

z α
2

2

η2
− 1
τ2


 .ET


 . (32)

4 Performance Evaluation

We used MATLAB and OPNET software in investigating the performance of the pro-
posed algorithm1 . Calculations are implemented using MATLAB software, and net-
work simulations are performed using OPNET software. Both software are based on C
compiler, and we connected them. We call the MATLAB engine in OPNET environ-
ment. The main contribution of the proposed algorithm is to estimate the parameter
based on user-defined precision. Also, joint routing and scheduling algorithms are pro-
vided to send the estimation output to FC. The proposed algorithm is fully adjusted
to the proposed estimation model requirements. As it is presented in the rest of this
section, by considering two heuristic algorithms, the proposed algorithm achieves its
goals. We used heuristic algorithms because there is no previous work that performs
the estimation and data gathering similar to our proposed algorithm (this model of
evaluation is expected in this field [11, 5]).

We evaluate our algorithm efficiency with the following similar algorithms:

1. The proposed algorithm with single-hop routing, called M1.

2. The proposed algorithm with one route between each node and FC, called M2.

In this section, we will call our proposed algorithm, M3. Figure 5, shows the relation
between precision parameters and data size.
1www.Opnet.com
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Figure 5: The relationship between data size and precision parameters.

The data size is calculated by the equation (14). The parameter sσ̇, η, z α
2
, and τ

has an effect on data size. The values of σ̇ and τ are determined based on network
conditions. However, parameters z α

2
and η determine estimation precision, which is

directly specified by the user. The X-axis in Figure 5, shows the acceptable error
limitations. The scale of the x-axis is 1/1000. Y-axis shows the degree of certainty.
Y-axis maps z α

2
. The z-axis presents data size (n). It is evident in Figure 5 that, for

more precision, smaller acceptable error limitations and a high sample size are required.

Figure 6: Total performed rounds versus different sample size

In Figure 6, we see the total performed rounds with different required sample sizes.
In each round, if nodes don’t have enough energy to run the estimation, they cannot
finish that round. When network nodes send required data samples to FC, the estima-
tion is complete. So, in Figure 6, it’s clear that the lifetime of M3 is more than the
other two algorithms because it can complete more rounds. The efficiency of M3 is
more distinct in lower data size. The horizontal axis in Figure 6 shows the data size
that is determined based on σ̇, η, z α

2
and τ values.

Figure 7 shows the average packet transmission energy consumption for all algo-
rithms. The X-axis is the number of network nodes, and the y-axis is the average
energy consumption. Algorithms M1, M2, and M3 are compared with each other.
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Since M1 uses direct routing, average energy remains constant. As shown in Figure
7, the average energy consumption of M2 is less than M3; this happens, because M3
has a fair and more efficient routing algorithm. As it is clear, if the network consumes
energy at a fair, the result will be efficient. Therefore algorithms in which some nodes
corporate in data sending more than other nodes. They lose energy faster. In some
situations, M3 may use non-optimal routes to provide fairness in the node’s energy
consumption. However, M2 always selects the least cost route. Therefore, as is shown
in Figure 8, the number of estimation rounds for M3 is more than two other algorithms.

Figure 7: The average packet energy consumption versus the number of nodes.

Figure 8: The number of performed estimation rounds versus the number of nodes.

As mentioned earlier, the main reason behind M3 efficiency in comparison with M2
is providing fairness. Like the M2 algorithm, M3 considers multiple least cost routes
instead of one route. The Variance is obtained as follows:

V ar =
N∑
i=1

(RE i−AE)2 (33)
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where REi is the remained energy of ith node and, AE is all network node’s average
remained energy.

In Figure 9, energy variance of nodes for M1, M2 and, M3 algorithms are shown.
Variance shows fairness for each algorithm. As can be seen in Figure 9, the M3 algo-
rithm has a lower Variance. It is near zero. In this regard, M1 has the least efficiency
because it uses direct forwarding.

Figure 9: The variance of the remained network energy versus the number of nodes.

Figure 10 shows the packet’s average end-to-end delay. Due to short distance limita-
tions in sensor networks, we ignore propagation delay. Therefore, a delay only depends
on the queuing delay. Note that delay is computed by the application layer.

Figure 10: End-to-end delay in three algorithms.

Figure 10 shows that the M1 algorithm has a lower delay than the other algorithms,
because in this algorithm, nodes send their data to the FC node directly. Also delay of
the M3 algorithm is less than M2, because the number of intermediate nodes in this
algorithm is lower than M2 because of energy consumption fairness.
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Figure 11: Total rounds versus the number of nodes.

Figure 11 shows the total round versus the number of nodes for M3. Ep(βE) param-
eter, as introduced in equation (14), determines energy priority. When Ep gets closer
to 1, the M3 algorithm gets more energy-efficient, and the network lifetime increases.

Figure 12: Intra-cluster routing tree, A-left) βE= 1, B-right) βE= 0.1

In Figure 12, intra cluster routing tree is presented to different values of Ep(βE).
14-A presents the routing tree when βE = 1 and 14-B presents the routing tree when
βE = 0.1 .

5 Conclusion

The proposed algorithm estimates the parameter with desired precision and increases
network lifetime. This algorithm consists of a routing and scheduling algorithm to send
data to FC and estimate a parameter in WSN. The network lifetime is calculated by the
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number of successful estimation rounds. The network will be non-functional if nodes
don’t have sufficient energy to provide enough samples for FC. To achieve the goals, the
scheduler uses a nonlinear optimization problem (NPL). Based on the required accuracy
of estimation, the proposed NLP not only determines the routes (multihop routing)
but also determines the state of each sensor node (active or inactive). Regarding the
environment characteristics, the parameter is considered a random variable, which is
estimated using a Bayesian confidence interval based on the user’s desired precision.
The cost function of the multihop routing considers both delay and energy parameters.
The proposed algorithm was compared with the other two algorithms that showed more
efficiency. Without loss of generality, calculations are performed central, and links are
considered loss-less. Finally, in future works, we will consider a fully distributed method
to solve the optimization problem based on the link’s error rate.
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