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Abstract. In view of the tremendous importance of patients’ stability in
medical sciences, this paper addresses the application of a sliding mode control
in medical devices. In doing so, we consider a nonlinear dynamic system that
shows the mathematical model of the human immunodeficiency virus. This
nonlinear model has three variable states: healthy cells, infected cells, and
free viruses. The proposed controller displays the effect of medication on
preventing the production of the virus and blocking the new infection. This
controller ensures the stability of this dynamic system provided for HIV in the
event of a bounded disturbance. The stability and convergence of this process
are proved by the Lyapunov theorem. Finally, a numerical example is given
to demonstrate the efficiency of the proposed method.
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1 Introduction

These viruses are mainly transmitted through infected blood, unprotected sex, and
from the mother to the child during pregnancy, childbirth, or even breastfeeding [10].
In 1983, two separate research groups led by Robert Gallo and Luc Montagnier inde-
pendently declared that a new retrovirus had infected AIDS patients [5]. Gallo claimed
that the virus his group had isolated from an AIDS patient for research was quite
similar in shape to other human T-Lymphotropic viruses (HTLV) that the group had
initially isolated. The Gallo group called it (HTLV-III). At the same time, the Mon-
tagnier group isolated a virus from a patient with cervical lymph node swelling and
physical weakness, two classic AIDS symptoms. Contradictions in the reports of the
Gallo and Montagniergroups showed that the nuclei of the proteins of this virus were
immunologically quite different from HTLV-I. The Montagnier group named the virus
they had isolated, put the virus associated with Lymphadenopathy [1].

Since it transpired in 1986 that both viruses were the same, (HTLV-III) and (LAV)
were renamed as HIV [7]. Currently, the prevalence of this disease is remarkably wide,
and no treatment or vaccine has been developed for it [14]. Medical care mainly consists
of taking actions to prevent the return of the virus and slow its progression. As AIDS
is a highly fatal epidemic, the importance of stemming the growth of HIV, which
ultimately develops into AIDS, cannot be over-emphasized [8].

Against this backdrop, by combining non-linear adaptive control and sliding-mode
control, we present a new robust adaptive Lyapunov-based controller for HIV infection.
The purpose of designing this adaptive control is not only to reduce the number of
infected cells and viruses so that it converges to zero but also to help the number of
healthy cells converge to the desired value.

2 The Mathematical Model of HIV

Optimal treatment or control of HIV infection using control theory has always been
a popular research topic. Various mathematical models have been proposed in recent
decades. The basic model that is considered as the mathematical model of HIV has
three state variables, each of which indicates the number of cells per cubic millimeter
of blood as follows [9]:

Ṫ = S − dT − βTV ,

İ = βTV −µI, (1)
V̇ = KI −CV ,
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where T represents healthy cells, I represents the number of infected cells, and the
variable V represents free viruses in an infected person.

Free viruses infect healthy cells at a relative rate of βTV . The infected cells also
cause free viruses to grow at a relative rate of KI in the patient’s body and disappear
at a relative speed as CV . On the other hand, healthy cells are produced at a constant
rate of S and destroyed at a relative rate of dT .

Then, we convert the above dynamic device to the following control device, where
u1(t) and u2(t) are the control inputs to achieve the desired values. In reality,
u(t) = (u1(t),u2(t)) and 0 ≤ ui(t) ≤ 1. The expression ui(t) = 1 indicates that we have
completely cured the patient, and ui(t) = 0 indicates the treatment [4].

Ṫ = S − dT − βTV (1−u1),

İ = (1−u1)βTV −µI, (2)
V̇ = (1−u2)KI −CV .

The definitions of the above model parameters are listed in Table 1.
Note that the time unit of this model is in a day and all the parameters are given

in a day as well. Assuming (V̇ = 0, İ = 0, Ṫ = 0), the equilibrium point of the above
dynamic is obtained as (T V I) = (Sd 0 0).

Table 1: Parameter definition for the HIV model (1).

parameter definition
d death rate of the target cells
µ death rate of the infected cells
C clearance rate of the free viruses
k production rate of the viruses per infected cell
β infection rate of the new target cells
S production rate of the new target cells

3 Robust Adaptive Controller Design

In this section, the robust adaptive sliding mode control strategy is developed for the
non-linear HIV model. First, T and I are simply added together. In this case, the
regular form of the mathematical model of AIDS control is written as follows:

Ṫ = S − dT − βTV (1−u1),

Ṫ + İ = S − dT −µI, (3)
V̇ = (1−u2)KI −CV .
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Now by assuming x1 = −T + S
d , x2 = T +I− Sd and x3 = V , the above dynamics change

to

ẋ1 = −dx1 + β
(S
d
− x1

)
x3(1−u1),

ẋ2 = dx1 −µ(x1 + x2), (4)
ẋ3 = (1−u2)K(x1 + x2)−Cx3.

For the dynamic system (4), the sliding surface is defined as:

S(x) = −x1 +α((d −µ)x2 +Kx3) = 0,

or
x1 = α((d −µ)x2 +Kx3),

where α is an adequate positive number.
The non-linear dynamic system is placed on the sliding surface using adaptive con-

trol and, then, reaches the origin.
The rates of drug usage u1(t) and u2(t) are controlled to track the descending and

ascending desired values (x1d and x3d) respectively for the number of uninfected cells
x1d and free viruses x3d . As stated earlier, our goal here is to increase the volume of
the healthy cells and reduce the volume of viruses; that explains why we chose x1d
and x3d . Moreover, using the proposed controller, the tracking performance is achieved
in the presence of the parametric and non-parametric uncertainties of the non-linear
HIV model. Thereafter, two arbitrary disturbance functions D1 and D2 are taken into
account as unstructured uncertainties of the HIV model [2].

ẋ1 = −dx1 + β
(S
d
− x1

)
x3(1−u1)−D1βx3

(S
d
− x1

)
,

ẋ2 = dx1 −µ(x1 + x2), (5)
ẋ3 = (1−u2)K(x1 + x2)−Cx3 −D2K(x1 + x2).

Regarding the dynamics of the HIV model for the healthy cells T and viruses V ,
the first and third relationships above can be rearranged as follows:

u1(t) = −
ẋ1

β(x3
S
d − x3x1)

− dx1
β(x3

S
d − x3x1)

+ 1−D1,

u2(t) = −
ẋ3

K(x1 + x2)
− Cx3
K(x1 + x2)

+ 1−D2.
(6)

Assuming φ1 = ẋ1, φ2 = ẋ3 and D1 =
γ1sgn(x̃1)

x3
S
d − x3x1

, D2 =
γ2sgn(x̃3)
(x1 + x2)

as well,
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Z1 =

− φ1

(Sd x3 − x1x3)
,− x1

(Sd x3 − x1x3)

 , Z2 =
[
−

φ2

(x2 + x1)
,− x3

(x2 + x1)

]
,

and

θ1 =
[
1
β
,
d
β

]T
, θ2 =

[ 1
K
,
C
K

]T
.

So (6) can be reformulated as [11],
−

φ1

β(x3
S
d − x3x1)

− dx1
β(x3

S
d − x3x1)

+ 1−D1 = Z1(φ1,x1,x3)θ1 +1−D1

−
φ2

K(x2 + x1)
,− Cx3
K(x2 + x1)

+ 1−D2 = Z2(φ2,x1,x2,x3)θ2 +1−D2,
(7)

such that Z1 and Z2 are regressor matrices in terms of certain functions of the variables
φ1, φ2, x1, x2 and x3, so θ1 and θ2 are vectors of the unknown parameters of the HIV
dynamics. The non-linear control for the amount of medication u(t) = (u1(t),u2(t)) is,
accordingly, defined as

−
φ1

β(x3
S
d − x3x1)

− dx1
β(x3

S
d − x3x1)

+ 1−D1 = Z1θ̂1 +1−
γ1sgn(x̃1)

x3
S
d − x3x1

,

−
φ2

K(x2 + x1)
− Cx3
K(x2 + x1)

+ 1−D2 = Z2θ̂2 +1−
γ2sgn(x̃3)
(x1 + x2)

.
(8)

In these terms, γ1 and γ2 are positive gains, we have x̃1 = (x1−x1d ), x̃3 = (x3−x3d ).
It should also be noted that the sign ˆ is used to specify the estimated values of the
uncertain system parameters that are updated using adaptation laws; thus, θ̂i is the
estimate of θi .

4 Lyapunov Analysis

The convergence of the method is proved according to the adaptive controls that are
introduced and using the appropriate Lyapunov function.

The expressions φ1 and φ2 can be considered as:

φ1 = ẋ1d − η1(x1 − x1d ),

φ2 = ẋ3d − η2(x3 − x3d ),

where η1 and η2 are positive parameters and are defined as

x̃1 = x1 − x1d , x̃3 = x3 − x3d .

Using the proposed non-linear robust adaptive controller, the closed-loop dynamics
of the system is obtained by substituting the control laws in (8) as follows:
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
u1(t) = Z1θ̂1 +1−

γ1sgn(x̃1)

x3
S
d − x3x1

,

u2(t) = Z2θ̂2 +1−
γ2sgn(x̃3)
(x1 + x2)

.
(9)

Therefore, by adding and subtracting a few expressions in (6), we obtain

− ẋ1
β(x3

S
d − x3x1)

− dx1
β(x3

S
d − x3x1)

+ 1−D1 =

−
ẋ1d − η(x1 − x1d )
β̂(x3

S
d − x3x1)

− dx̂1
β̂(x3

S
d − x3x1)

+ 1−
γ1sgn(x̃1)

x3
S
d − x3x1

−
ẋ1d − η1(x1 − x1d )
β(x3

S
d − x3x1)

−

dx1
β(x3

S
d − x3x1)

+ 1+
ẋ1d − η1(x1 − x1d )
β(x3

S
d − x3x1)

+
dx1

β(x3
S
d − x3x1)

− 1, (10)

− ẋ3
K(x2 + x1)

− Cx3
K(x2 + x1)

+ 1−D2 =

−
ẋ3d − η2(x3 − x3d )

K̂(x1 + x2)
− Ĉx3
K̂(x1 + x2)

+ 1−
γ2sgn(x̃3)
(x1 + x2)

−
ẋ3d − η2(x3 − x3d )

K(x1 + x2)
−

Cx3
K(x1 + x2)

+ 1+
ẋ3d − η2(x3 − x3d )

K(x1 + x2)
− Cx3
K(x1 + x2)

− 1. (11)

Using the relationships mentioned so far and placing them in terms (10) and (11) :
−1

β(x3
S
d − x3x1)

( ˙̃x1 + η1x̃1)−D1 = Z1θ̃1 −
γ1sgn(x̃1)

x3
S
d − x3x1

,

−1
K(x1 + x2)

( ˙̃x3 + η2x̃3)−D2 = Z2θ̃2 −
γ2sgn(x̃3)
(x1 + x2)

.
(12)

Finally, by simplifying (11), the closed-loop dynamic is expressed as: ˙̃x1 = −η1x̃1 −D1β(x3
S
d − x3x1)−Z1θ̃1(x3x1 − β Sd x3) + βγ1sgn(x̃1),

˙̃x3 = −η2x̃3 −D2K(x1 + x2)−Z2θ̃2K(x1 + x2) +Kγ2sgn(x̃3).
(13)

Theorem 1. If the adaptation laws are defined as:
˙̂θ1 =

1
βZ1Γ

T
1 (βx1x3 +

S
d x3)x̃1,

˙̂θ2 = −Z2Γ
T
2 (x1 + x2)x̃3,

(14)

so that t→∞ then x1→ x1d and x3→ x3d on the condition that

γ1 ≥
∣∣∣∣∣x̃1D1β(x3

S
d
− x3x1)

∣∣∣∣∣, γ2 ≥
∣∣∣∣∣x̃3D2K(x1 + x2)

∣∣∣∣∣.
Proof. Consider Lyapunov’s function as follows [11]:

V =
1
2
(x̃23 + x̃

2
1 + βθ̃

T
1 Γ
−1
1 θ̃1 +Kθ̃

T
2 Γ
−1
2 θ̃2) ≥ 0, (15)
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where Γi s are constant positive definite matrices. Accordingly, the above equation is
positive definite (V ≥ 0) in terms of θ̃1, θ̃2, x̃21, x̃23, the time derivative of V is, then,
obtained as

V̇ = x̃3 ˙̃x3 + x̃1 ˙̃x1 + β
˙̂θT1 Γ

−1
1 θ̃1 +K

˙̂θT2 Γ
−1
2 θ̃2. (16)

Note that ˙̃θi =
˙̂θi because θi is a constant vector and θ̇i .

By employing the non-linear closed-loop dynamics (13) in (16) and using the pa-
rameter adaptation laws, V̇ is simplified to:

V̇ = −η2x̃23 − x̃3(γ2sgn(x̃3) +D2K(x1 + x2)− η1x̃21

− x̃1(−γ1sgn(x̃1) +D1β(x3
S
d
− x3x1)). (17)

By selecting the positive gains (γ1 and γ2), the robust controller (9) should be ad-
justed large enough to overcome the upper bounds of the non-parametric uncertainties
(D1 and D2) by satisfying the following inequalities:

γ1 ≥
∣∣∣∣∣x̃1D1β(x3

S
d
− x3x1)

∣∣∣∣∣, γ2 ≥
∣∣∣∣∣x̃3D2K(x1 + x2)

∣∣∣∣∣.
Now employing them in the time derivative of the Lyapunov function (17) results

in:

V̇ ≤ −η2x̃23 − η1x̃
2
1 ≤ 0. (18)

Also, the time derivative of the Lyapunov function is negative semi-definite (V̇ ≤ 0)

in (18). Therefore, V is bounded and consequently x̃1, x̃3, θ̃1, θ̃2 remain bounded,
hence the vectors of the parameter estimation errors also remain bounded.

Based on the Lyapunov stability theorem and by applying Barbalat’s lemma [15],
we conclude that V̇ → 0 as t→∞.

Consequently, according to the Lyapunov theorem, x1→ x1d and x3→ x3d .
In fact, as the time tends to infinity, the number of infected cells (I ) and free viruses

(V ) converge to zero (I → 0, V → 0), the number of healthy cells (T ) converges to its
maximum steady-state value (T → S

d ).
It means that according to the first equation from (2):

(S − dT − βTV (1−u1))→ S − dT ,

which means that:
Ṫ → S − dT Ṫ→0−−−−→ T → S

d
.
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5 Simulation

In this section, we evaluate the proposed robust adaptive sliding mode control strategy
through some simulations. To this end, consider the following data, which are related
to a patient and selected from [16]:

C = 2, d = 0.007, K = 40.60, S = 7, µ = 0.0888, β = 4.2163 ∗ 10−7,

θ̂1(0) = [2× 106,15× 103]T , θ̂2(0) = [0.02,0.05]T , Id = e
−t ,

Td =
S
d
+ e−t , Vd = 0.1e−t .

By replacing control values (u1(t),u2(t))  of (9), in equations (4) and solving the
system of differential equations (4) and (14), the values x1, x2, x3, θ̂1 and θ̂2   are
obtained, and according to the relations x1 = −T + S

d , x2 = T + I − S
d and x3 = V , the

values   (V ,I,T ) are achieved. The results of the process described in this article are
shown in Figures 1 and 2.

Figure 1: The action of drug dosage using the adaptive control method.

Figure 2: Status of the healthy and infectious cells, the free viruses, as well as the drug dosage using
the adaptive control method.
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6 Conclusion

A non-linear robust adaptive Lyapunov-based control strategy was designed in this
paper for HIV treatment. The proposed robust adaptive controller aims to decrease
values, causing an increase in the number of healthy cells. The stability of the controlled
process, tracking convergence, and bounded parameter adaption was proved using the
Lyapunov analysis, and the controller performance in the face of various uncertainties
was investigated using some simulations. If the obtained results are anything to go by,
we can argue that the proposed non-linear control strategy is robust against a wide
range of modeling uncertainties and bounded disturbances and can rapidly adjust the
antiviral drug levels to the reduced HIV viruses and infected cells. This controller can
be redesigned and used to treat HIV patients and other patients if different dynamic
models are developed in future works.
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