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1 Introduction and Preliminaries

The wave equation is categorized as a hyperbolic second-order partial differential equa-
tion (PDE). This kind of equations appear in different scientific fields. Several numer-
ical techniques have so far been developed for the solution of these equations. Among
these techniques, finite difference methods [16, 15], finite element methods [19], spec-
tral methods [7, 18], etc. can be mentioned. Amongst the numerical approaches, the
wavelet-based numerical methods have been developed and have widely used to solve
the various types of wave equations in different dimensions, for example, see [11, 10].
Curvelets have also been employed for the solution of PDE problems, see e.g. [15, 17].
Shearlets are newer representation systems that are equipped with a rich mathematical
structure similar to wavelets [13, 14]. In fact, the theory and algorithms of shearlets
can be carried over the continuous wavelet transform. The continuous shearlet trans-
form is based on special affine systems generated by one single function ψ ∈ L2(R2).
Moreover, compared with wavelets, the continuous shearlet transform has a coherent
matrix structure for n-dimensions so that it is useful for solving the higher-dimensional
PDEs [1].

In this paper, by making use of shearlet properties and borrowing Kaiser’s idea in
[9], (see also[1]) the wave equation is transformed into the shearlet domain. For this
purpose, a new shearlet ψ, for the n-dimensional case in L2(Rn) is defined and it is
shown that the shearlet family {ψj,k,m(·)}j,k,m which is generated by ψ is a Parseval
frame for L2(Rn). For a better understanding of the approach and as an example, the
formulation is presented in the case of two dimensions and its merits in comparison
with the curvelet numerical methods are pointed. As it will be noticed, in the sug-
gested approach the unknown function is expanded by using shearlet frames. Then by
employing Fourier transform and the Plancherel theorem [6, Theorem 4.25], as well as
properties of shearlets, each unknown coefficient of the expansion is obtained by solving
far simpler separate time-independent PDEs. The main advantage of this approach in
comparison with similar numerical methods is that there is no need to solve a set of
simultaneous equations. Finally, the convergence of the presented method is discussed,
in which the ideas of [3, 4] are used. Furthermore, the issues of the best approximation
are also discussed.

The paper is organized as follows. In the rest of this section, some necessary def-
initions and theorems are explained. Section 2 is devoted to the development of n-
dimensional formulation. In Section 3, an example of a two-dimensional wave problem
is presented. Convergence and best approximation analysis are fully studied in Section
4. Conclusions and merits of the approach are concisely discussed in Section 5.

Firstly, required notation and definitions related to shearlets are mentioned. Let
{ψj,k,m(·)}j,k,m be a family of shearlets in n-dimensions as

ψj,k,m(·) = |detA2j |−
1
2ψ(A−12j S

−1
k (· −m)), (1)

where j ∈Z,K = (k, · · · , k) ∈Zn−1,m ∈Zn and

A2j =
[

2j 0Tn−1
0n−1 2

j
2 In−1

]
, Sk =

[
1 KT

0n−1 In−1

]
, (2)
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and ψ ∈ L2(Rn) is admissible in the sense that

Cψ =
∫
Rn

|ψ̂(ξ)|2

|ξ1|2
dξ1 · · ·dξn <∞. (3)

Definition 1. Let ψ1 ∈ L2(R) be an admissible wavelet with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆
[−2,−12 ] ∪ [12 ,2]. Consider ψ2 ∈ L2(Rn−1) as a function such that ψ̂2 ∈ C∞(Rn−1) and
supp ψ̂2 ⊆ [−1,1]n−1. Then the function ψ ∈ L2(Rn) defined by

ψ̂(ξ) = ψ̂(ξ1, ξ̃) = ψ̂1(ξ1) · ψ̂2(
ξ̃
ξ1

), (4)

where ξ̃ = (ξ2, · · · ,ξn), is an admissible shearlet. Let ψ1 ∈ L2(R) satisfiy the discrete
Calderon’s condition ∑

j∈Z
|ψ̂1(2

−jξ)|2 = 1,

with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−2,−12 ]∪ [
1
2 ,2]. Let ψ2 ∈ L2(Rn) be a bump function

such that for all ξ ∈ [−1,1]n−1,

1∑
k=−1
|ψ̂2(ξ + k)|2 = 1,

where ψ̂2 ∈ C∞(Rn−1) and supp ψ̂2 ⊆ [−1,1]n−1.

For n = 2 the shearlet ψ, defined by (4) is called a classical shearlet [13]. Making
use of the above definition, we are now going to costruct a more general n-dimensional
case of the classical shearlet. For this purpose, define ψ by (4), where

ψ̂1(ξ) =
√
b2(2ξ) + b2(ξ),

b(ξ) : =


sin(π2 v(|ξ | − 1)), 1 ≤ |ξ | ≤ 2,

cos(π2 v(
1
2 |ξ | − 1)), 2 < |ξ | ≤ 4,

0, otherwise,

and

v(x) =


o, ,x < 0,

2x2, ,0 ≤ x < 1
2 ,

1− 2(1− x)2, , 12 ≤ x < 1,

1, x > 1.

(5)

Assume I = {i1, i2, · · · , ini } ⊆ {2,3, · · · ,n} and J = {j1, j2, · · · , jnj } ⊆ {2,3, · · · ,n} such that
I ∩ J = ∅, ψ̂2(ξ̃) is now defined as

ψ̂2
2
(ξ̃) = ψ̂2

2
(ξ2,ξ3, · · · ,ξn)

= v(1− ξi1) · · ·v(1− ξini )v(1 + ξj1) · · ·v(1 + ξjnj ),
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where v is the same as (5) and it is assumed ξin′ ≥ 0 for n′ = 1,2, · · · ,ni , ξjn′′ ≤ 0 for
n′′ = 1,2, · · · ,nj , such that ni + nj = n − 1. By these assumptions, we will show that ψ̂2

satisfies the conditions in Definition 1. To do this, considering k̃ = (k2, k3, · · · , kn) where
kα ∈Z and |kα | ≤ 1 for each α ∈ {2,3, · · · ,n} and noting that j is the scale parameter, it
follows ∑

k2

∑
k3

· · ·
∑
kn

|ψ̂2(ξ̃ + k̃)|2

=
∑
ki1

∑
ki2

· · ·
∑
knj

v(1− ξi1 + ki1) · · ·v(1− ξini + kini )

v(1 + ξj1 + kj1) · · ·v(1 + ξjnj + kjnj )

=
∑
ki1

v(1− ξi1 + ki1) · · ·
∑
kini

v(1− ξini + kini )∑
kj1

v(1 + ξj1 + kj1) · · ·
∑
kjnj

v(1 + ξjnj + kjnj ).

One should note that according to [8, Section 2], each of the above summations are
equal to 1, therefore

1∑
k2=−1

1∑
k3=−1

· · ·
1∑

kn=−1
ψ̂2(ξ̃ + k̃)|2 = 1. (6)

Moreover, by (6) and [8, Section 2] it can be easily seen that∑
j,k

|ψ̂j,k(ξ)|2 = 1, (7)

where ξ = (ξ1, · · · ,ξn), k = (k1, · · · , kn).
In the next step, we have the following proposition whose proof is similar to [13,

Section 5.1, Proposition 2] and so is omitted.

Proposition 1. The shearlet system {ψj,k,m}j,k,m defined by (1) with ψ as in Definition
1, is a Parseval frame for L2(Rn).

Now, borrowing the idea of Kaiser in [9, Chapter 9] for separation of spatial and
temporal variables, we define ψ̃j,k,m as follows

ψ̃j,k,m : Rn ×R→ C

ˆ̃ψj,k,m(ξ, t) = ψ̂
±
j,k,m(ξ)e

±i |ξ |ct , (8)

where ψ is a classical shearlet. Then { ˆ̃ψj,k,m(·)}j,k,m is also a Parseval frame for L2(Rn).
This can be proved in a very similar fashion as Proposition 1. Since {ψ̃j,k,m}j,k,m is a
Parseval frame for L2(Rn), we can write f ∈ L2(Rn) as ([5, chapter 5])

f (x, t) =
∑
j,k,m

⟨f , ψ̃j,k,m⟩ψ̃j,k,m(x, t). (9)

We denote the shearlet coefficients ⟨f , ψ̃j,k,m⟩ by Cj,k,m. In the next section, we
present a method for solving n-dimensional wave equations with shearlet frames (8).
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2 Solution Procedure by Shearlet Frames

In this section, a method for solving n-dimensional homogeneous wave equations using
shearlet frames is suggested. First, we consider n-dimensional wave equations as

utt(x, t) = c
′2∆u(x, t), x = (x1,x2, · · · ,xn), 0 ≤ xi ≤ ai , i = 1, · · · ,n, (10)

where ∆u =
n∑
i=1

(
∂2u

∂x2i
), ai ∈ R and c′ is the constant wave speed in R.

Consider
u(x, t) =

∑
j,k,mCj,k,mψ̃j,k,m(x, t),

∆u(x, t) =
∑
j,k,mC

∆
j,k,mψ̃j,k,m(x, t),

(11)

in which

Cj,k,m = ⟨u(x, t), ψ̃j,k,m(x, t)⟩, C∆
j,k,m = ⟨∆u(x, t), ψ̃j,k,m(x, t)⟩. (12)

Substituting (11) to (10) and then applying the Fourier transform and noticing the
Fourier transform of the drivative, we have

(i |ξn+1|)2
∑
j,k,m

Cj,k,m
ˆ̃ψj,k,m(ξ, t) = c

′2
∑
j,k,m

C∆
j,k,m

ˆ̃ψj,k,m(ξ, t). (13)

So ∑
j,k,m

[
−|ξn+1|2Cj,k,m − c′2C∆

j,k,m

] ˆ̃ψj,k,m = 0. (14)

By definition of Cj,k,m and C∆
j,k,m, we obtain∑

j,k,m

[
⟨−|ξn+1|2u − c′2∆u, ˆ̃ψj,k,m⟩

] ˆ̃ψj,k,m = 0. (15)

Since { ˆ̃ψj,k,m} is a Parseval frame for L2(Rn),∑
j,k,m

⟨−|ξn+1|2u − c′2∆u, ˆ̃ψj,k,m⟩ ˆ̃ψj,k,m = −|ξn+1|2u − c′2∆u. (16)

So
−|ξn+1|2u − c′2∆u = 0.

Then
⟨−|ξn+1|2u − c′2∆u, ˆ̃ψj,k,m⟩ = 0, ∀j,k,m.

Thus
− |ξn+1|2Cj,k,m − c′2C∆

j,k,m = 0. (17)

Using the Plancherel Theorem, we get
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Cj,k,m = ⟨u, ψ̃j,k,m⟩

= ⟨Û , ˆ̃ψ⟩

=
1

(2π)n

∫
Rn
Û(ξ, t). ˆ̃ψj,k,m(ξ, t)dξ

=
1

(2π)n

∫
Rn
Û±(ξ)e±i |ξ |ct .ψ̂±j,k,m(ξ)e

±i |ξ |ctdξ

=
1

(2π)n

∫
Rn
Û±(ξ).ψ̂±j,k,m(ξ)dξ,

C∆
j,k,m =

1
(2π)n

∫
Rn

∆̂U. ˆ̃ψj,k,m(ξ, t)dξ

= − 1
(2π)n

∫
Rn
(ξ21 + · · ·+ ξ

2
n )Û

±(ξ).ψ̂±j,k,m(ξ)dξ

= − 1
(2π)n

∫
Rn
(ξ21 + · · ·+ ξ

2
n )Û

±(ξ).ψ̂±j,k(ξ)e
i⟨m,ξ⟩dξ.

(18)

Changing the variables ξ in (18) to ST−kA2−jξ, we obtain

Cj,k,m =
1

(2π)n

∫
Rn
A2jS

T
k

(
Û±(ξ).ψ̂±j,k(ξ)

)
ei⟨m,ξ⟩dξ,

C∆
j,k,m = − 1

(2π)n

∫
Rn
|A2jS

T
k ξ |

2A2jS
T
k

(
Û±(ξ).ψ̂±j,k(ξ)

)
ei⟨m,ξ⟩dξ.

For simplicity, we consider Γ := A2jS
T
k

(
Û±(ξ).ψ̂±j,k(ξ)

)
. Hence Cj,k,m and C∆

j,k,m can
be rewritten as

Cj,k,m =
1

(2π)n

∫
Rn

Γei⟨m,ξ⟩dξ, (19)

and
C∆
j,k,m = − 1

(2π)n

∫
Rn
|A2jS

T
k ξ |

2Γei⟨m,ξ⟩dξ, (20)

where

|A2jS
T
k ξ |

2 = [22j + k22j ]ξ21 +2j [ξ22 + · · ·+ ξ
2
n ]

+ 2j+1k[ξ1ξ2 + ξ1ξ3 + · · ·+ ξ1ξn].
(21)

Denoting the right-hand side of (21) by Θ(ξ), C∆
j,k,m can be rewritten as

C∆
j,k,m = − 1

(2π)n

∫
Rn
[Θ(ξ)]Γei⟨m,ξ⟩dξ.
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It can be seen that C∆
j,k,m is a combination of the following terms

C∆
k1
= 2j [(2j + k2)

∂2Cj,k,m

∂m2
1

+
∂2Cj,k,m

∂m2
2

+ · · ·+
∂2Cj,k,m

∂m2
n

],

C∆
k1kn

= 2j+1k[
∂2Cj,k,m
∂m1∂m2

+
∂2Cj,k,m
∂m1∂m3

+ · · ·+
∂2Cj,k,m
∂m1∂mn

].

(22)

Replacing (22) in (17) leads to

− |ξn+1|2Cj,k,m − c′
2
[
C∆
k1
+C∆

k1
kn

]
= 0. (23)

For each j,k,m, (23) is a time-independent PDE, which can be solved by some
common methods such as finite difference and pseudo-spectral methods to find the
coefficients Cj,k,m. In the sequel, we present an example.

Example 1. [2] Consider the two-dimensional wave equation

utt = c
′2(△u), 0 ≤ x < a, 0 ≤ y < b, (24)

where △u = uxx +uyy , with initial and boundary conditions
u|t=0 = f1(x,y), ∂u

∂t |t=0 = f2(x,y),
u(0, y, t) = u(a,y, t) = 0, 0 ≤ y ≤ b, t ≥ 0,

u(x,0, t) = u(x,b, t) = 0, 0 ≤ x ≤ a, t ≥ 0.

(25)

Applying the shearlet frame approach as was presented in the previous section to
(24), the shearlet coefficients Cj,k,m can be obtained by (23) as follows

− |ξ3|2Cj,k,m − c′
2
[
C∆
k1
+C∆

k1k2

]
= 0, (26)

where
C∆
k1
= 2j [(2j + k2)(

∂2Cj,k,m
∂m2

1
) +

∂2Cj,k,m
∂m2

2
],

C∆
k1,k2

= 2j (2k)(
∂2Cj,k,m
∂m1∂m2

).
(27)

Replacing (27) to (26) leads to

−|ξ3|2Cj,k,m = c′22j [(2j + k2)(
∂2Cj,k,m

∂m2
1

) + (
∂2Cj,k,m

∂m2
2

)

+ (2k)(
∂2Cj,k,m
∂m1∂m2

)].

(28)

Put A := c′22j (2j + k2), B := c′2k2j , D := c′22j , F = |ξ3|2. Then we have

B2 −AD = k222j − 2j (2j + k2)22j = −23j < 0,
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which states that (28) is an elliptic PDE with constant coefficients with respect to
m1,m2 and can be rewritten as follows

A(
∂2Cj,k,m

∂m2
1

) +D(
∂2Cj,k,m

∂m2
2

) + 2B(
∂2Cj,k,m
∂m1∂m2

) +FCj,k,m = 0. (29)

By solving the above time-independent equation for each j,k,m, we get the shearlet
coefficients Cj,k,m. For instance, by [8], we could consider j = 0,1, · · · , j0 − 1, where j0 =
[log2N ], k = −2j , · · · ,2j , m = (m1,m2), where m1,m2 = 0,1 · · · ,N − 1, N ∈N.

It is worth noting that in comparison with the curvelet-based method in [15, 17], in
which the two-dimensional wave equation is transformed into a time-dependent PDE,
our time-independent method is of great advantage.

3 Convergence Analysis

In this section, convergence and best approximation analysis of the shearlet frame
approach is discussed. In Section 2, it is observed that { ˆ̃ψj,k,m}j,k,m is a Parseval frame
for L2(Rn). By [5, Theorem 5.1.1] and noting the equivalence of items (i) and (vii) in
that theorem, since ∑

i

⟨f , ˆ̃ψj,k,m⟩ ˆ̃ψj,k,m = 0, (30)

implies
⟨f , ˆ̃ψj,k,m⟩ = 0, ∀j,k,m, (by (17)) (31)

so ˆ̃ψj,k,m is a Riesz basis. In addition, in Lemma 1, we have made use of the linear
indepdency, due to having Riesz basis and noting [5, Proposition 5.1.2]. By employing
the Gram-Schmidt process we are able to construct an orthonormal basis from a Riesz
basis.

Let { ˆ̃ψj ′ ,k′ ,m′ }j ′ ,k′ ,m′ be an orthonormal basis for L2(Rn). We define PM as follows

PM = span{ ˆ̃ψj ′ ,k′ ,m′ }j ′ ,k′ ,m′ ,

where j ′ = 0,1, · · · , j0 − 1, j0 = [log2N ], k = −2j ′ , · · · ,2j , m′1,m
′
2 = 0,1, · · · ,N and

M = j0 × 2j
′+1 ×N2. Setting l = (j,k,m) for simplicity, PM can be rewritten as

PM = span{ ˆ̃ψl}l . (32)

In the rest of this section, borrowing an idea of [3], the convergence of the proposed
method is proved. The following results hold for the n-dimensional case in L2(Rn). For
the sake of convenience, we state and prove them in dimension two. To start, it is noted
that
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Û(ξ, t) =
∑
l

Cl
ˆ̃ψl(ξ1,ξ2, t)

=
∑
l

Clψ̂
±
l (ξ1,ξ2)e

∓i |ξ |ct

= e±i |ξ |ct
∑
l

Clψ̂
±
l (ξ1,ξ2),

denoting
∑
l

Clψ̂
±
l (ξ1,ξ2) by Û0(ξ1,ξ2), we define ÛM as

ÛM = e∓i |ξ |ct
M∑
l=1

Cl
ˆ̃ψl(ξ1,ξ2)

= e∓i |ξ |ctÛ0M (ξ1,ξ2),

so

∥Û(ξ1,ξ2, t)− ÛM (ξ1,ξ2, t)∥2 = ∥e∓i |ξ |ct∥2∥Û0(ξ1,ξ2)− Û0M (ξ1,ξ2)∥2
= ∥Û0(ξ1,ξ2)− Û0M (ξ1,ξ2)∥2.

As we observed, this norm is clearly time-independent. Hence the proof of conver-
gence reduces to show ∥Û − ÛM∥2→ 0, as M→∞. Note that for the sake of simplicity,
from now on by ξ, (ξ1,ξ2) is meant. The following lemma which is [12, lemma 2-4-1] is
useful to prove the completeness of PM .

Lemma 1. There is a number η > 0 such that for every choice of scalars α0,α1, · · · ,αM ,
one has

∥α0ψ̂0 +α1ψ̂1 + · · ·+αM ψ̂M∥ ≥ η(|α0|+ · · ·+ |αM |).

Proposition 2. The space PM in (32) is complete.

Proof. Consider the Cauchy sequence {Ŵn(ξ)}∞n=0 ∈ PM . Then each Ŵn(ξ) has a unique
representation of the form

Ŵn(ξ) =
M∑
i=0

λ
(n)
i ψ̂i(ξ).

For every ε > 0 there exists N ′ such that ∥Ŵm(ξ)− Ŵn(ξ)∥ < ε when n,m > N ′ . Now
by Lemma 1, there exists η > 0 such that

ε > ∥Ŵm(ξ)− Ŵn(ξ)∥ = ∥
M∑
i=0

(λ(m)
i −λ

(n)
i )ψ̂i(ξ)∥ ≥ η

M∑
i=0

|λ(m)
i −λ

(n)
i |.

Division by η gives

|λ(m)
i −λ

(n)
i | ≤

M∑
i=0

|λ(m)
i −λ

(n)
i | <

ε
η
,
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i.e., every sequence {λ(n)i }
∞
n=0, i = 0,1, · · · ,M is Cauchy in R. Hence it in convergent.

Let λi denote the limit. Using this M +1 limits λ0,λ1, · · · ,λM , we define

Ŵ (ξ) =
M∑
i=0

λiψ̂i(ξ).

Obviously Ŵ (ξ) ∈ PM , so

∥Ŵn(ξ)− Ŵ (ξ)∥ = ∥
M∑
i=0

(λ(n)i −λi )ψ̂i(ξ)∥ ≤
M∑
i=0

|λ(n)i −λi |∥ψ̂i(ξ)∥.

Since λ(n)i → λi , we have ∥Ŵn(ξ)− Ŵ (ξ)∥ → 0, i.e. Ŵn(ξ)→ Ŵ (ξ). This shows that
{Ŵn(ξ)}∞n=0 is convergent in PM and the proof is complete.

Proposition 3. For every given continuous function Û(ξ) ∈ L2(R2) there exists a
unique ÛM (ξ) ∈ PM such that

δ = inf
ˆ̃U∈PM
∥Û(ξ)− ˆ̃U(ξ)∥ = ∥Û(ξ)− ÛM (ξ)∥.

Proof. Existence: By definition of infimum, there is a sequence {Ŵn(ξ)}∞n=0 in PM such
that δn→ δ, in which δn = ∥Û(ξ)− Ŵn(ξ)∥, i.e.

∀ε > 0,∃N0 > 0 s.t. for n > N0, |δn − δ| < ε.

We show that {Ŵn(ξ)}∞n=0 is Cauchy. Writing V̂n(ξ) = Û(ξ) − Ŵn(ξ), we have
∥V̂n(ξ)∥ = δn and

∥V̂m(ξ) + V̂n(ξ)∥ = 2∥1
2
(Ŵm(ξ) + Ŵn(ξ))− Û(ξ)∥ ≥ 2δ.

Since PM is linear, 1
2 (Ŵm(ξ) + Ŵn(ξ)) ∈ PM . Also we have

V̂m(ξ)− V̂n(ξ) = Ŵm(ξ)− Ŵn(ξ).

Now, by the parallelogram equality,

∥Ŵn(ξ)− Ŵm(ξ)∥2 = ∥V̂m(ξ)− V̂n(ξ)∥2

= −∥V̂m(ξ)− V̂n(ξ)∥2 +2(∥V̂m(ξ)∥2 + ∥V̂n(ξ)∥2)
≤ −(2δ)2 +2(δ2m + δ2n)

< ε2.

This implies that {Ŵn(ξ)}∞n=0 is Cauchy. Since PM is complete, {Ŵn(ξ)}∞n=0 converges.
Let Ŵn(ξ)→ Ŵ (ξ) ∈ PM . Hence we have ∥Û(ξ)− Ŵ (ξ)∥ ≥ δ. Also,

∥Û(ξ)− Ŵ (ξ)∥ ≤ ∥Û(ξ)− Ŵn(ξ)∥+ ∥Ŵn(ξ)− Ŵ (ξ)∥

= δn + ∥Ŵn(ξ)− Ŵ (ξ)∥ → δ.
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This shows that ∥Û(ξ)− Ŵ (ξ)∥ = δ.
Uniqueness: Let Ŵ (ξ), Ŵ0(ξ) ∈ PM satisfy

∥Û(ξ)− Ŵ (ξ)∥ = δ,

∥Û(ξ)− Ŵ0(ξ)∥ = δ.
By the parallelogram equality,

∥Ŵ (ξ)− Ŵ0(ξ)∥2 = ∥(Ŵ (ξ)− Û(ξ))− (Ŵ0(ξ)− Û(ξ))∥2

= 2∥Ŵ (ξ)− Û(ξ)∥2 +2∥Ŵ0(ξ)− Û(ξ)∥2

− ∥(Ŵ (ξ)− Û(ξ)) + (Ŵ0(ξ)− Û(ξ))∥2

= 4δ2 − 4∥1
2
(Ŵ (ξ) + Ŵ0(ξ))− Û(ξ)∥2 ≤ 0.

So Ŵ (ξ) = Ŵ0(ξ).
Orthogonality: Let 0 , Ŵ1(ξ) ∈ PM such that

⟨Ẑ(ξ), Ŵ1(ξ)⟩ = γ , 0,

where Ẑ(ξ) = Û(ξ)− Ŵ (ξ). For any scalar η,

∥Ẑ(ξ)− ηŴ1(ξ)∥2 = ⟨Ẑ(ξ)− ηŴ1(ξ), Ẑ(ξ)− ηŴ1(ξ)⟩
= ∥Ẑ(ξ)∥2 − ηγ − η(γ − η∥Ŵ1(ξ)∥2),

choosing η = γ
∥Ŵ1(ξ)∥

yields

∥Ẑ(ξ)− ηŴ1(ξ)∥2 = ∥Ẑ(ξ)∥2 −
γ

∥Ŵ1(ξ)∥

= γ2 −
γ

∥Ŵ1(ξ)∥
≥ γ2,

(i.e., ∥Ẑ(ξ)− ηŴ1(ξ)∥2 ≥ γ). But this is impossible by the definition of γ. So

⟨Ẑ(ξ), ˆ̃U(ξ)⟩ = 0, ∀ ˆ̃U ∈ PM .

Now, it is shown that Ŵ (ξ) = ÛM (ξ). From the proof provided above that indicates
Ŵ (ξ) is the best approximation for Û(ξ), it follows, ∀i = 0,1, · · · ,M,

⟨Û(ξ)− Ŵ (ξ), ψ̂i(ξ)⟩ = 0,

⟨Ŵ (ξ)− ÛM (ξ), ψ̂i(ξ)⟩ = ⟨Û(ξ)− (Û(ξ)− Ŵ (ξ))− ÛM (ξ), ψ̂i(ξ)⟩

= ⟨Û(ξ), ψ̂i(ξ)⟩ − ⟨(Û(ξ)− Ŵ (ξ)), ψ̂i(ξ)⟩
− ⟨ÛM (ξ), ψ̂i(ξ)⟩

= ci − 0− ci
= 0.

Therefore Ŵ (ξ)− ÛM (ξ) = 0. This shows that ÛM (ξ) = Ŵ (ξ) and the proof is com-
plete.
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The forthcoming theorems state the decay of the shearlet coefficients and conver-
gence of the best approximation.

Theorem 1. The shearlet coefficients ci in the approximate solution ÛM (ξ) =
M∑
i=1

ciψ̂i(ξ)

decay, when M increases.

Proof. With the properties of the orthogonality of ψ̂i(ξ), we obtain

∥Û(ξ)− ÛM (ξ)∥22 =
∫
R2
|Û(ξ)− ÛM (ξ)|2dξ

=
∫
R2
|Û(ξ)|2dξ −

∫
R2
Û(ξ)ÛM (ξ)dξ

−
∫
R2
Û(ξ)ÛM (ξ)dξ +

∫
R2
|ÛM (ξ)|2dξ.

Since ∫
R2
Û(ξ)ÛM (ξ)dξ =

M∑
i=0

ci

∫
R2
Û(ξ)ψ̂i(ξ)dξ =

M∑
i=0

|ci |2,

and
∫
R2
Û(ξ)ÛM (ξ)dξ =

M∑
i=0

|ci |2,

∥Û(ξ)− ÛM (ξ)∥22 =
∫
R2
|Û(ξ)|2dξ − 2

M∑
i=0

|ci |2 +
M∑
i=0

|ci |2

=
∫
R2
|Û(ξ)|2dξ −

M∑
i=0

|ci |2.

Hence
M∑
i=0

|ci |2 ≤
∫
R2
|Û(ξ)|2dξ, ∀M ∈N.

Consequently
∞∑
i=0

|ci |2 is convergent and lim
i→∞

ci = 0.

Theorem 2. The approximate solution ÛM (ξ) =
M∑
i=1

ciψ̂i(ξ) converges to Û(ξ) =∑
i

ciψ̂i(ξ).

Proof. Let ÛM (ξ) and ÛN (ξ) be approximate solutions with N >M. Then {ÛN (ξ)}∞N=0
is a Cauchy sequence in PM . Indeed,
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∥ÛN (ξ)− ÛM (ξ)∥22 = ∥
N∑

i=M+1

ciψ̂i(ξ)∥22

= ⟨
N∑

i=M+1

ciψ̂i(ξ),
N∑

j=M+1

ciψ̂j (ξ)⟩

=
N∑

i=M+1

N∑
j=M+1

cici⟨ψ̂i(ξ), ψ̂j (ξ)⟩ =
N∑

i=M+1

|ci |2.

Since
∞∑
i=0

|ci |2 is convergent, {ÛN (ξ)}∞N=0 is Cauchy. From completeness of PM , one

has ÛN (ξ)→ Ŝ(ξ) ∈ PM . It could be easily shown that

⟨Ŝ(ξ)− Û(ξ), ψ̂i(ξ)⟩ = 0.

So Ŝ(ξ) − Û(ξ) = 0, i.e., lim
N→∞

ÛN (ξ) = Û(ξ), where the limit is in L2(R2). By the
Fourier uniqueness theorem [6, Theorem 4.33], since the Fourier transform is one-to-one,
we have lim

N→∞
UN (ξ) =U(ξ).

4 Conclusion

A shearlet frame approach for the solution of n-dimensional transient wave equations
was proposed. To better clarify the method, an example in two dimensions was pre-
sented. This approach in general can be applied to other PDEs such as Poisson and heat
equations. As it was shown, the unknown function was expanded via shearlet frames
and its coefficients were obtained by employing Fourier transform and the Plancherel
Theorem. The main merit of this approach is that for finding the unknown coefficients,
there is no need to solve a system of simultaneous equations and the coefficients can be
obtained from a separate time-independent PDE. This property is important since the
user of the method can increase the accuracy of the solution to any desired degree by
evaluating appropriate coefficients. In the last section, the issues of convergence and
best approximation were also discussed.
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