Adjusting the Coefficients of the PI^α D^β Controllers Using Iterative Feedback Tuning (IFT) Algorithm

Document Type : Research Article

Authors

1 Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

2 Department of Mathematics, Payame, Noor University (PNU), P.O. BOX 19395-4697. Tehran, Iran

3 Department of Mathematics‎, ‎Payame Noor University (PNU), ‎P.O‎. ‎BOX 19395-4697‎, ‎Tehran‎, ‎Iran

Abstract

Iterative feedback tuning (IFT) is an algorithm for adjusting the coefficients of the integer-order type proportional-integral-derivative (PID) controllers without needing a system model‎. ‎The IFT algorithm is performed iteratively with the aim of optimizing the control coefficients at each stage via an objective function‎. ‎In this research‎, ‎for the first time‎, ‎the IFT algorithm is used to adjust all the coefficients of the fractional order PID controllers‎, ‎i.e.‎, ‎PI^α D^β controllers to have optimal performance‎. ‎For this purpose‎, ‎fractional order calculations and the integer-order version of the IFT algorithm are firstly presented‎, ‎and the novel IFT algorithm is then used to adjust coefficients of the PI^α D^β controller‎. ‎Finally‎, ‎the performance of the proposed method is illustrated and verified through some examples.

Keywords


[1] Acharya D. S., Mishra S. K. 2020. “A multi-agent based symbiotic organisms search algorithm for tuning  fractional order PID controller”, Measurement, 155, 107559.
[2] Ahmadi Dastjerdi A., Saikumar N., Hossein Nia S. H. 2018. “Tuning guidelines for fractional order PID controllers”, Mechatronics, 56, 26-36.
[3] Ahmadi Dastjerdi A., Vinagre B. M., Chen Y. Q., Hossein Nia S. H. 2019. “Linear fractional order controllers”, Annual Reviews in Control, 47, 51-70.
[4] Al Mamun A., Ho W. Y., Wang W. E., Lee T. H. 2007. “Iterative feedback tuning (IFT) of hard disk drive head positioning servomechanism”, IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, 33, 769-774.
[5] Bingul Z., Karahan O. 2011. “Tuning of fractional PID controllers using PSO algorithm for robot trajectory control”, Mechatronics (ICM), IEEE International Conference on Mechatronics, 955-960.
[6] Birs I., Muresan C., Nascu I., Ionescu C. 2019. “A survey of recent advances in fractional order control for time delay systems”, IEEE Access, 7, 30951-30965.
[7] Bunin G. A., Francois G., Bonvin D. 2013. “Iterative controller tuning by real-time optimization”, IFAC  Proceedings Volumes, 46(32), 21-26.
[8] Caponetto R., Dongola G., Fortuna L., Petrás I. 2010. “Fractional order systems modeling and control applications”, World Scientific, Series on Nonlinear Science, Series A, 72.
[9] Caputo M. 1967. “Linear model of dissipation whose Q is almost frequency independentII”, Geophysical Journal International, 13, 529-539.
[10] Chang L. Y., Chen H. C. (2009). “Tuning of fractional PID controllers using adaptive genetic algorithm for active magnetic bearing system”, World Scientific and Engineering Academy and Society (WSEAS), 8(1), 158-167.
[11] Erol H. 2021. “Stability analysis of pitch angle control of large wind turbines with fractional order PID controller”, Sustainable Energy, Grids and Networks, 26, 100430.
[12] Formentin S., Heusden K. V., Karimi A. 2014. “A comparison of model-based and datadriven controller tuning”. International Journal of Adaptive Control and Signal Processing, 28(10), 882-897.
[13] Freeborn T. J., Maundy B., Elwakil A. 2010. “Second-order approximation of the fractional Laplacian operator for equal-ripple response”, I2010 53rd IEEE International Midwest Symposium on Circuits and Systems, 1173-1176.
[14] Gabriel G. L., Grandi J. O. 2019. “Tuning of fractional order PID controllers based on the frequency response approximation method”, IFAC-Papers OnLine, 52(1), 982-987.
[15] Guermah S. 2011. “CRONE control, applications to a pilot laboratory process”, Ph.D. Thesis, University of Mouloud Mammeri De Tizi-Quzou.
[16] Goharimanesh M., Lashkaripour A., Abouei Mehrizi A. 2015. “Fractional order PID controller for diabetes patients”, Journal of Computational Applied Mechanics, 46(1), 69-76.
[17] Hjalmarsson H. 1998. “Control of nonlinear systems using iterative feedback tuning”, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 4, 2083-2087.
[18] Huusom J. K., Hjalmarsson H., Poulsen N. K., Jørgensen S. B. 2008. “Improving convergence of iterative feedback tuning using optimal external perturbations”, 2008 47th IEEE Conference on Decision and Control, 2618-2623.
[19] Huusom J. K., Hjalmarsson H., Poulsen N. K., Jørgensen S. B. 2011. “A design algorithm using external perturbation to improve iterative feedback tuning convergence”, Automatica, 47(12), 2665-2670.
[20] Jin Y., Chen Y. Q., Wang C., Luo Y. 2009. “Fractional order proportional derivative (FOPD) and FO [PD] controller design for networked position servo systems”, International Design Engineering Technical Conference and Computers and Information in Engineering Conference, DETC2009-87662, 1341-1349.
[21] Kissling S., Blanc Ph., Myszkorowski P., Vaclavik, I. 2009. “Application of iterative feedback tuning (IFT) to speed and position control of a servo drive”, Control Engineering Practice, 17(7), 834-840.
[22] Kumar L. Kumar P., Prawendra K., Satyajeet D. N. 2018. “Tuning of fractional order PIλ Dµ controllers using evolutionary optimization for PID tuned synchronous generator excitation system”, IFAC-Papers OnLine, 51, 859-864.
[23] Lequin O., Gevers M., Mossberg M., Bosmans E., Triest L. 2003. “Iterative feedback tuning of PID parameters: comparison with classical tuning rules”, Control Engineering Practice, 11(9), 1023-1033.
[24] Liu L., Zhang S. 2018. “Robust fractional-order PID controller tuning based on Bode’s optimal loop shaping”, Complexity, 2018, 6570560.
[25] Luo Y., Chen Y. Q. 2013. “Fractional order motion controls”, Chichester, John Wiley & Sons.
[26] Mahathanakiet K., Johnson M., Sanchez A., Wade M. 2002. “Iterative feedback tuning and an application to a wastewater treatment plant”, 4th Asian Control Conference, Singapore.
[27] Monje C. A., Chen Y. Q., Vinagre B. M., Xue D., Feliu-Batlle V. 2010. “Fractional order systems and controls: fundamentals and applications”, Advances in Industrial Control, Springer-Verlag, London.
[28] Monje C. A., Vinagre B. M., Feliu, V., Chen Y. 2008. “Tuning and auto-tuning of fractional order controllers for industry applications”, Control Engineering Practice, 16(7), 798-812.
[29] Nemati A., Alizadeh A., Soltanian F. 2019. “Solution of fractional optimal control problems
with noise function using the Bernstein functions”, Control and Optimization in Applied Mathematics, 4(1), 37-51.
[30] Nur Deniz F., Yüce A., Tan N., Atherton D. P. 2017. “Tuning of fractional order PID controllers based on integral performance criteria using Fourier series method”, IFACPapers Online, 50(1), 8561-8566.
[31] Podlubny I. 1999. “Fractional differential equations”, Academic Press, San Diego & London.
[32] Precup R., Preitl S., Fodor J., Ursache I. B., Clep P. A., Kilyeni S. 2008. “Experimental validation of iterative  feedback tuning solutions for inverted pendulum crane mode control”, 2008 Conference on Human System Interactions, 536-541.
[33] Rezaei M., Gharaveisi A., Vali M. 2017. “Fractional order proportional-integral-derivative controller parameter selection based on iterative feedback tuning; case study: Ball Levitation System”, Transactions of the Institute of Measurement and Control, 40(6), 1776-1787.
[34] Robbins H., Monro S. 1951. “A stochastic approximation method”, Annals of Mathematical Statistics, 22(3), 400-407.
[35] Ross B. 1977. “The development to fractional calculus 1695-1900”, Historia Mathematica, 14(1), 75-89.
[36] Padula F., Visioli A. 2011. “Tuning rules for optimal PID and fractional-order PID controllers”, Journal of Process Control, 21(1), 69-81.
[37] Petrás I. 2019. “Modified versions of the fractional-order PID controller”, Applications in Control (De Gruyter), 6, 57-72.
[38] Sen M. 2014. “Introduction to fractional-order operators and their engineering applications”, University of  Notre Dame, Netherland.
[39] Tepljakov A. 2015. “FOMCON Toolbox”, Available at: http://fomcon.net/fomcontoolbox/
overview/.
[40] Tepljakov A., Petlenkov E., Belikov J., Finajev J. 2013. “Fractional-order controller design and digital implementation using FOMCON toolbox for MATLAB”, 2013 IEEE Conference on Computer Aided Control System Design (CACSD), 340-345.
[41] Xinghe M., Rui W., Xuhui B. 2013. “Iterative feedback tuning for robotic manipulator trajectory tracking”, International Journal of Advancements in Computing Technology, 5, 688-695.
[42] Xue D., Zhao C., Chen Y. Q. 2006. “Fractional order PID control of a DC motor with elastic shaft: a case study”, 2006 American Control Conference.
[43] Yang B., Wang J., Wang J., Shu H., Li D., Zeng C., Chen Y., Zhang X., Yu T. 2021. “Robust fractional-order PID control of supercapacitor energy storage systems for distribution network applications: A perturbation compensation based approach”, Journal of Cleaner Production, 279, 123362.
[44] Zamani M., Karimi-Ghartemani M., Sadati N., Parniani M. 2009. “Design of a fractional order PID controller for an AVR using particle swarm optimization”, Control Engineering Practice, 17(12), 1380-1387.
[45] Zhang Y., Li J. 2011. “Fractional-order PID controller tuning based on genetic algorithm”, 2011 International Conference on Business Management and Electronic Information, 764- 767.
[46] Zhao C., Xue D., Chen Y. Q. 2005. “A fractional order PID tuning algorithm for a class of fractional order plants”, Proceedings of the IEEE International Conference on Mechatronics & Automation, 1, 216-221.