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1 Introduction

A mathematical optimization problem with a quasiconvex objective function and finitely many
quasiconvex constraints is called a quasiconvex programming problem. Problems of this type
have been utilized for the modeling of topological optimization problems and some theoretical
topics. (see, e,g., [3, 5, 6, 7] and therein references).
This paper deals with a nonsmooth quasiconvex programming problem. We do not assume
that the data of the problem are differentiable. Thus, we replace the derivative appearing in
the classical results with topological subdifferential. We refer to [10] and [11, Section 5] to see
the importance of this subdifferential and its relation to other subdifferentials.
It is worth to mention that some necessary conditions of Karush–Kuhn–Tucker (KKT) type
for optimality of nonsmooth quasiconvex programming problems have been presented in [7]
under various subdifferentials; for instance, Greenberg–Pierskalla subdifferential, Penot subdif-
ferential, Plastria subdifferential, and Gutiérrez subdifferential. Since there are no articles that
study necessary and sufficient optimality conditions under topological subdifferential, the aim
of this paper is to fill this gap as the first task.

The structure of subsequent sections of this paper is as follows: In Section 2, we establish
required definitions and preliminary results which are required thereafter. In Section 3, we
present the KKT type necessary and sufficient optimality conditions for nonsmooth quasiconvex
problems, and as applications of proved optimality conditions, we study the duality results of
the problem.

2 Notations and Preliminaries

In this section, we present some definitions and auxiliary results that will be needed in what
follows.
For a non-empty subset M of Rn, its polar cone is defined as

M0 := {x ∈ Rn | ⟨x,d⟩ ≤ 0, ∀d ∈M},

where ⟨·, ·⟩ denotes the standard inner-product in Rn. Also, M, conv(M), and cone(M) denote
the closure of M, the convex hull of M, and the convex cone hull of M, respectively. Moreover,
the attainable cone and the interior cone of M at x0 ∈M are respectively defined as [2]:

A(M,x0) :=
{
z ∈ Rn | ∀tk ↓ 0,∃zk → z,x0 + tkzk ∈M ∀t ∈N

}
,

I (M,x0) :=
{
z ∈ Rn | ∃K > 0, ∀tk ↓ 0,∀zk → z,x0 + tkzk ∈M, ∀k ≥ K

}
.

Observe that A(M,x0) is always a non-empty closed cone ([2, Theorem 3.4.3]) and I (M,x0)
is always a open cone ([2, Theorem 3.4.6]).

Theorem 1. [2, Theorem 3.4.10] Let C ⊆ Rn be a convex set. If I (M,x0) , ∅, then

I (M,x0) =A(M,x0).

Let C be a convex subset of Rn and x0 ∈ C. The normal cone of C at x0 is denoted by
N (C,x0), i.e.,

N (C,x0) :=
{
y ∈ Rn | ⟨y,x − x0⟩ ≤ 0 ∀x ∈ C

}
.
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The zero vector of Rn is denoted by 0n. If K ⊆ Rn is a convex cone, [2, Theorem 2.3.3] and
the fact that N (K0,0n) = (K0)0 imply that

N (K0,0n) = K. (1)
We recall from [11] that the topological (or incident, or upper epi-) directional derivative

of a given function φ : Rn→ R∪ {+∞} at x̂ ∈ domφ := {x ∈ Rn | φ(x) ∈ R} is defined by

φ♭(x̂;v) := sup
ε>0

limsup
t↓0

inf
∥u−v∥<ε

φ(x̂ + tu)−φ(x̂)
t

, ∀v ∈ Rn.

Also, the epigraph of φ is denoted by Eφ ,
Eφ := {(x,r) ∈ Rn ×R | φ(x) ≤ r}.

The following theorem presents an important property of topological directional derivative.
Theorem 2. [11, Page 263] & [2, Page 245] The epigraph of function v → φ♭(x̂;v) coincides
to attainable cone of Eφ at (x̂,φ(x̂)). In other word,

Eφ♭(x̂;.) =A(Eφ , x̂φ),

in which, x̂φ := (x̂,φ(x̂)).

We say that φ is regular at x̂ if the function v→ φ♭(x̂;v) is convex (this type of functions,
without special naming, have been studied in [9, Proposition 6.5]). According to Theorem 2
and [2, Theorem 2.5.1], we conclude that φ is regular at x̂ iff A(Eφ , x̂φ) is a convex set. Also, if
φ is convex and x̂ ∈ domφ, it is regular at x̂ by [12, Theorem 23.1] (see also [2, Theorem 2.5.1]).
Let r ∈ R∪ {+∞} be given. The r-sublevel set of φ : Rn→ R∪ {+∞} is denoted by [φ ≤ r],

[φ ≤ r] := {x ∈ Rn | φ(x) ≤ r}.

A function φ : Rn → R ∪ {+∞} is said to be quasiconvex, if for each r ∈ R ∪ {+∞} its
corresponding r-sublevel set [φ ≤ r] is convex. We can see that φ is quasiconvex if and only if
([2, Theorem 2.10.1])

φ
(
µx + (1−µ)y

)
≤max

{
φ(x),φ(y)

}
, ∀x,y ∈ Rn, ∀µ ∈ [0,1]. (2)

Equivalently, φ is quasiconvex if and only if(
φ(y) ≤ φ(x), 0 ≤ µ ≤ 1

)
=⇒ φ

(
µx + (1−µ)y

)
≤ φ(x).

The topological (or incident [11]) subdifferential of a φ : Rn→ R∪{+∞} at x̂ ∈ domφ is defined
by

∂♭φ(x̂) :=
{
ξ ∈ Rn | ⟨ξ,v⟩ ≤ φ♭(x̂;v), ∀v ∈ Rn

}
.

In [10, Propositions 1, 3, 16] some extraordinary properties for φ♭(x̂;v) and ∂♭φ(x̂) which
shows their important rule and uniqueness, were proved. For instance, see the following results:
Theorem 3. [10, Proposition 1] φ♭(x̂; .) is a lower semi-continuous (l.s.c. in brief) quasiconvex
function when φ is a quasiconvex function.

We are able to see ([10, Proposition 47, and Corollary 50]) that for a convex function
ϕ : Rn→ R, ∂♭ϕ(x̂) coincides with the Fenchel subdifferential ∂ϕ(x̂), is defined as follows:

∂ϕ(x̂) :=
{
ξ ∈ Rn | ϕ(x) ≥ ϕ(x̂) +

〈
ξ,x − x̂

〉
, ∀ x ∈ Rn

}
.

It is worth to observe that ∂ϕ(x̂) is a non-empty closed convex set in Rn ([2, Page 373]),
and if x̂ is a minimizer of convex function ϕ on a convex set C, then ([2, Theorem 4.3.2])

0n ∈ ∂ϕ(x̂) +N (C, x̂). (3)
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3 Main Results

Throughout this paper, we shall consider the following optimization problem:

(P): infϑ(x), s.t. x ∈Ω :=
{
x ∈ Rn | ψj (x) ≤ 0 ∀j ∈ J := {1, . . . ,m}

}
,

where ϑ and ψj , j ∈ J are quasiconvex functions from Rn to R∪ {+∞}.

Remark 1. The quasiconvexity of ψj functions (for j ∈ J) and the fact that

Ω =
m⋂
j=1

{
x ∈ Rn | ψj (x) ≤ 0

}
=

m⋂
j=1

[ψj ≤ 0],

imply that the feasible set Ω is convex. Thus, A(Ω, x̂) = I (Ω, x̂) whenever I (Ω, x̂) , ∅ by
Theorem 1.

Lemma 1. Suppose that x̂ ∈Ω is an optimal solution of (P). If I (Ω, x̂) , ∅ and ϑ is regular at
x̂, then

ϑ♭(x̂;v) ≥ 0, ∀v ∈ A(Ω, x̂).

Proof. Let d ∈ I (Ω, x̂). By definition of interior cone, for each sequence dk → d and tk → 0+,
x̂ + tkdk ∈ Ω for all k ∈ N. Thus, the optimality of x̂ implies that ϑ(x̂ + tkdk) − ϑ(x̂) ≥ 0, and
hence

ϑ♭(x̂;d) ≥ 0 ∀d ∈ I (Ω, x̂). (4)

Considering Remark 1, for each v ∈ A(Ω, x̂) = I (Ω, x̂), we can find a sequence {dk}∞k=1 in
I (Ω, x̂) converging to v. Taking into consideration the continuity of ϑ♭(x̂; .) (by the regularity
of ϑ) and the validity of (4), we obtain that

ϑ♭(x̂;v) = lim
k→∞

ϑ♭(x̂;dk) ≥ 0,

and the proof is complete.

For a given x0 ∈Ω, with the convention
⋃
j∈∅Xj = ∅, set

J(x0) :=
{
j ∈ J | ψj (x0) = 0

}
,

Z(x0) :=
⋃
j∈J(x0)

∂♭ψj (x0).

The following constraint qualification will be needed for stating the necessary optimality
condition in Karush-Kuhn-Tucker (KKT) type.

Definition 1. Let x0 ∈ Ω. We say that the generalized Kuhn-Tucker constraint qualification
(GKTCQ in brief) holds at x0 if (

Z(x0)
)0
⊆ A(Ω,x0).

Theorem 4. Suppose that x̂ ∈ Ω is an optimal solution of (P), I (Ω, x̂) , ∅, and that ϑ is
regular at x̂. If the (GKTCQ) is satisfied at x̂, then

0n ∈ ∂♭ϑ(x̂) + conv
(
Z(x̂)

)
.
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Proof. At the first, we observe from [11, Page 263] that ϑ♭(x̂;0n) is either 0 or −∞. On the
other hand, because of 0 ∈ A(Ω, x̂), we have ϑ♭(x̂;0n) ≥ 0 by Lemma 1. Thus,

ϑ♭(x̂;0n) = 0. (5)

Let v ∈
(
conv

(
Z(x̂)

))0
. Because of

(
conv

(
Z(x̂)

))0
=

(
Z(x̂)

)0
and the (GKTCQ), we conclude

ϑ♭(x̂;v) ≥ 0 in view of Lemma 1. By (5) we thus obtain that the following optimization problem
has a local solution at ṽ := 0n:

min ϑ♭(x̂; .)(v)

s.t. v ∈
(
conv

(
Z(x̂)

))0
.

Since the objective function and the constraint set of above problem are convex, by (3) we
give

0n ∈ ∂
(
ϑ♭(x̂; .)

)
(0n) +N

((
conv

(
Z(x̂)

))0
,0n

)
. (6)

Now, we observe that N
((
conv

(
Z(x̂)

))0
,0n

)
= conv

(
Z(x̂)

)
by (1), and we have also

∂
(
ϑ♭(x̂; .)

)
(0n) =

{
ξ ∈ Rn | ϑ♭(x̂;w)−ϑ♭(x̂;0n) ≥

〈
ξ,w − 0n

〉
∀ w ∈ Rn

}
=

{
ξ ∈ Rn | ϑ♭(x̂;w) ≥

〈
ξ,w

〉
∀ w ∈ Rn

}
= ∂♭ϑ(x̂). (7)

Hence, (6) implies that
0n ∈ ∂♭ϑ(x̂) + conv

(
Z(x̂)

)
,

and the proof is complete.

We should mention that the following KKT type necessary condition is similar that one
proved in [1] and [4] using Clarke subdifferential.

Theorem 5. (KKT necessary condition) Let x̂ ∈Ω be an optimal solution of (P). Assume that
ϑ is regular at x̂, I (Ω, x̂) , ∅, and the (GKTCQ) is satisfied at x̂. Moreover, if conv

(
Z(x̂)

)
is a

closed set, then there exist λj ≥ 0, j ∈ J(x̂), such that

0n ∈ ∂♭ϑ(x̂) +
∑
j∈J(x̂)

λj∂
♭ψj (x̂), and

∑
j∈J(x̂)

λj = 1.

Proof. It follows from Theorem 4 and the closedness of conv
(
Z(x̂)

)
that

0n ∈ ∂♭ϑ(x̂) + conv
(
Z(x̂)

)
= ∂♭ϑ(x̂) + conv

(
Z(x̂)

)
.

Thus, there exist ξϑ ∈ ∂♭ϑ(x̂) and w ∈ conv
(
Z(x̂)

)
such that

0n = ξ
ϑ +w. (8)

On the other hand, the regularity assumption of ψj as j ∈ J(x̂) and (7) imply that ∂♭ψj (x̂)
is a closed convex set in Rn for j ∈ J(x̂). Thus, the well-known equality (see, e.g., [12, Theorem
3.3])
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conv
(
Z(x̂)

)
=

{ ∑
j∈J(x̂)

λjζj |
∑
j∈J(x̂)

λj = 1, λj ≥ 0, ζj ∈ ∂♭ψj (x̂), j ∈ J(x̂)
}
,

implies that for each j ∈ J(x̂) there exist ζj ∈ ∂♭ψj (x̂) and λj ≥ 0 such that

w =
∑
j∈J(x̂)

λjζj , and
∑
j∈J(x̂)

λj = 1.

The last relations and (8) allow us to conclude that

0n = ξ
ϑ +

∑
j∈J(x̂)

λjζj ∈ ∂♭ϑ(x̂) +
∑
j∈J(x̂)

λj∂
♭ψj (x̂),

as required.

The following useful lemma characterizes quasiconvex functions using topological subdiffer-
ential.

Lemma 2. If φ : Rn→ R∪ {+∞} is a quasiconvex function, then

φ(x) ≤ φ(x0) =⇒ ⟨ξ,x − x0⟩ ≤ 0 ∀ξ ∈ ∂♭φ(x0).

Proof. Assume that φ(x) ≤ φ(x0). By (2), for each t ∈ (0,1), we have

φ
(
x0 + t(x − x0)

)
= φ

(
tx + (1− t)x0

)
≤max

{
φ(x),φ(x0)

}
= φ(x0).

This implies φ♭(x0;x − x0) ≤ 0. Thus, by the definition of incident subdifferential, we get

0 ≥ φ♭(x0;x − x0) ≥ sup
{
⟨ξ,x − x0⟩ | ξ ∈ ∂♭φ(x0)

}
.

Therefore, ⟨ξ,x − x0⟩ ≤ 0 for all ξ ∈ ∂♭φ(x0), as required.

Definition 2. The function φ : Rn→ R∪ {+∞} is said to be topological pseudoconvex at x0 if

φ(x) < φ(x0) =⇒ ⟨ξ,x − x0⟩ < 0 ∀ξ ∈ ∂♭φ(x0).

A sufficient condition for the topological pseudoconvexity of quasiconvex functions is pre-
sented in following theorem.

Theorem 6. Let φ : Rn → R be an upper-semicontinuous quasiconvex function with 0n <
∂♭φ(x0) for some x0 ∈ Rn. Then φ is topological pseudoconvex at x0.

Proof. Assume that
φ(x) < φ(x0). (9)

Let ξ be an arbitrary element in ∂♭φ(x0). We claim that〈
ξ,x − x0

〉
< 0. (10)

Suppose on the contrary that
〈
ξ,x − x0

〉
≥ 0. Thus, Lemma 2 implies that

〈
ξ,x − x0

〉
= 0. This

means that there exists a sequence {ul }∞l=1 such that

lim
l→∞

ul = x − x0, and
〈
ξ,ul

〉
> 0, ∀l ∈N.
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The latter can be rewritten as 〈
ξ, (ul + x0)− x0

〉
> 0, ∀l ∈N.

From this and Lemma 2, we conclude that φ(ul + x0) ≥ φ(x0). After passing to the limit as
l →∞, we deduce that φ(x) ≥ φ(x0) by the upper-semicontinuity of φ. This contradicts (9),
and so, (10) holds.

Now, we can state a sufficient optimality condition of KKT type.

Theorem 7. (KKT sufficient condition) Let x̂ ∈Ω. Assume that ϑ is topological pseudoconvex
at x̂, and there exist λj ≥ 0 for j ∈ J(x̂), such that

0n ∈ ∂♭ϑ(x̂) +
∑
j∈J(x̂)

λj∂
♭ψj (x̂). (11)

Then x̂ is a global solution of (P).

Proof. Set J(x̂) = {j1, . . . , jp}. According to (11), we can find some ξ ∈ ∂♭ϑ(x̂) and ξjk ∈
∂♭ψjk (x̂), k = 1,2, . . . ,p, such that

ξ +λj1ξj1 + · · ·+λjpξjp = 0n. (12)

Suppose on the contrary that there exists some x∗ ∈ Ω such that ϑ(x∗) < ϑ(x̂). From
ξ ∈ ∂♭ϑ(x̂) and the topological pseudoconvexity of ϑ at x̂, we get

⟨ξ,x∗ − x̂⟩ < 0. (13)

Since ψjk (x
∗) ≤ 0 = ψjk (x̂) for k = 1,2, . . . ,p, Lemma 2 allows us to conclude that〈

λjkξjk ,x
∗ − x̂

〉
≤ 0 ∀k = 1,2, . . . ,p. (14)

Owing to the inequalities (13) and (14), we deduce that〈
ξ +λj1ξj1 + · · ·+λjpξjp ,x

∗ − x̂
〉
< 0,

which contradicts (12). The proof is complete.

Now, we apply the optimality conditions which were presented in the previous theorems to
give the weak and strong duality results for (P). We consider the following Mond-Weir [8] dual
problem to (P):

(MD): maxϑ(y) s.t. y ∈Λ,

where Λ is defined as:

Λ :=
{
y ∈ Rn | ∃λj ≥ 0 for j ∈ J(y), such that 0n ∈ ∂♭ϑ(y) +

∑
j∈J(y)

∂♭λjψj (y)
}
.

Theorem 8. (weak duality) Suppose that x̂ ∈ Ω and ŷ ∈ Λ. If ϑ is topological pseudoconvex
at ŷ, then ϑ(x̂) ≥ ϑ(ŷ).
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Proof. Definition of Λ and the assumption ŷ ∈Λ imply that there exist some ζ ∈ ∂♭ϑ(ŷ), λj ≥ 0
and ζj ∈ ∂♭ψj (ŷ) for j ∈ J(ŷ), such that

ζ +
∑
j∈J(ŷ)

λjζj = 0n. (15)

Assume on the contrary that ϑ(x̂) < ϑ(ŷ). So, the topological pseudoconvexity of ϑ at x̂
implies that

⟨ζ, x̂ − ŷ⟩ < 0. (16)
On the other hand, the quasiconvexity of ψjs at ŷ, Lemma 2, and the inequality ψj (x̂) ≤ 0 = ψj (ŷ)
for j ∈ J(ŷ) imply that

⟨ζj , x̂ − ŷ⟩ ≤ 0, for all j ∈ J(ŷ).

The above inequality, (16), and λj ≥ 0 for j ∈ J(ŷ) conclude that

⟨ζ +
∑
j∈J(ŷ)

λjζj , x̂ − ŷ⟩ = ⟨ζ, x̂ − ŷ⟩+
∑
j∈J(ŷ)

λj⟨ζj , x̂ − ŷ⟩ < 0,

which contradicts (15). The proof is complete.

Theorem 9. (strong duality) Let x̂ and ŷ be respectively the optimal solutions of (P) and
(MD). Assume that ϑ and ψj are regular at x̂ as j ∈ J(x̂), I (Ω, x̂) , ∅, and the (GKTCQ) is
satisfied at x̂. If ϑ is topological pseudoconvex at ŷ and conv

(
Z(x̂)

)
is a closed set, the optimal

values of (P) and (MD) are equal, i.e.,

ϑ(x̂) = ϑ(ŷ).

Proof. Since the hypothesis of Theorem 5 are all true, we can find some scalars λj ≥ 0, j ∈ J(x̂)
such that

0n ∈ ∂♭ϑ(x̂) +
∑
j∈J(x̂)

∂♭λjψj (x̂).

This implies that x̂ ∈ Λ, i.e., x̂ is a feasible point for (MD). Because of ŷ is optimal solution
of (MD), the inequality ϑ(x̂) ≤ ϑ(ŷ) holds. This inequality and weak duality Theorem 9 imply
ϑ(x̂) = ϑ(ŷ), as required.
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