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vectors combined with EHR were extracted using principal component analysis (PCA).
A new method based on a fuzzy min−max neural network with hyper box variable
expansion coefficient (FMNN-HVEC) was used to determine the molecular subtypes,
and the feature vectors were clustered using deep clustering. Also, a new decision
fusion algorithm called weighted Yager was proposed based on the F1-Score for each
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the Breast Imaging-Reporting and Data System (BI-RADS) and molecular subtypes
values with the accuracy of 95.12% and 89.56%, respectively.
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1 Introduction

Breast cancer is the most common malignancy and the leading cause of cancer death in women
[1]. Therefore, early detection, as well as the development of new treatment strategies, is essen-
tial to improve the prognosis of breast cancer patients [1, 2]. Breast cancer is a heterogeneous
disease that differs in reasons, prognosis, molecular subtypes, and response to treatment [3, 4].
Cancers are commonly described as diseases of the genes. Therefore, an essential method for
diagnosis and disease classification is gene expression, often known as molecular subtypes. Four
molecular subtypes have been introduced here, including luminal A, luminal B, HER2, and
BLBC [5, 6]. Each of the molecular subtypes indicates a distinct recurrence and survival of the
disease, which are essential factors in choosing a different treatment. In addition to gene-based
diagnosis, another vital point in the follow-up and treatment is the standardization of medical
reports for the rapid diagnosis of this disease and its level. In this regard, the BI-RADS [7, 8]
was introduced by the American College of Radiology (ACR) to standardize mammography
reports. Seven classes of this categorization are from zero to VI and have meanings incomplete,
negative, benign findings, probably benign, suspicious abnormality, highly suggestive of malig-
nancy and known biopsy with proven malignancy, respectively. Therefore, using information
such as electronic health records, derived from HIS and PACS systems to determine BI-RADS
and molecular subtypes can play an important role in prioritizing and advancing treatment
planning and reducing physician diagnosis differences. Most of the methods used in this regard
are based on text mining [7, 9] and feature classification [10], but each of them has pros and
cons [7, 11]. The main contributions of the proposed framework for breast cancer diagnosis
(DSS-BC) were summarized with the following process.

a. Mammography reports related to BI-RADS of 5076 patients were collected.

b. A new method was proposed for medical text mining using word2wec [12]. The extracted
vectors and HIS features formed a single-features vector and, principal component anal-
ysis (PCA)[13] was used to determine the valuable features.

c. The BI-RADS values were predicted using Convolutional Neural Network (CNN) and
Naive Bayesian (NB) classifiers.

d. The vectors were clustered in four sections of molecular subtypes using deep clustering.
Compared to the clusters whit these classes, the cluster centers’ values were compared
using the Euclidean distance, and each molecular subtype was assigned to one collection.

e. To improve the FMNN classification algorithm’s performance, a new method was pro-
posed, in which the variable expansion coefficient was used to classify molecular subtypes.
In this approach, the number of hyper boxes is optimized, which reduces the complexity
(increasing the number of hyper boxes) and the model’s simplicity (reducing the number
of hyper boxes cause to reduce accuracy).

f. A new Yager method was improved based on each evidence (classifier) weighting for the
decision fusion scheme to determine the BI-RADS values.
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2 Literature Review

Many studies prove that, time reduction of the breast cancer diagnosis can have effective re-
sults in effective treatment. Therefore, automation and improving accuracy of optimal drug
scheduling medicine and medical processing at each stage of the treatment process can be effec-
tive results [14]-[20]. Mammographic findings are not in the form of structured data, and most
cases are reported only in the form of free text mammography reports [5, 21]. Hence, various re-
search projects for medical text processing have been presented. Esmaeili et al. [22] proposed a
clinical decision support system (CDSS) using data mining techniques to help physicians inter-
pret mammography reports. The highest accuracy was related to k-nearest neighbors (K-NN)
and was equal to 84.06%. Boumaraf et al. [23] proposed a BI-RADS classification system by
selecting a modified feature using a Genetic Algorithm (GA). The results had a classification
accuracy of 84.5%. Borkowski et al. [24] proposed a method for the automatic classification
of background parenchyma enhancement (BPE) based on deep CNN and magnetic resonance
imaging (MRI) of the breast. The most relared work [11], [25]-[31]focuses solely on detecting
BI-RADS to diagnose breast cancer and uses medical images and texts. However, in this paper,
a new method for medical text classification was proposed that improved the output vectors.
Also, in the classification process, a new method was used to enhance the classification opera-
tion for BI-RADS detection. Molecular subtypes were also identified using previous vectors and
classified with improved FMNN. This approach enhances the level of accuracy in diagnosing
the type of disease and improves the treatment procedure.

3 DSS-BC Framework

This section first describes the proposed method for processing medical reports based on select-
ing weighted keywords in context and then describes other parts of the framework.

3.1 Weighted Keywords for Text Mining

In the pre-processing step, prepositions and punctuation were removed. To improve the word
embedding accuracy, Bigrams with fewer than 40 occurrences were removed, and Bigrams with
more than 1000 cases were considered a single word. Then, the dictionary’s keywords were
selected from the text, and if they were in a negative sentence, the opposite word was selected.
On the other hand, if the opposite word did not exist, its inverse vector was calculated. For
this reason, the extracted vector from the word2vec step was normalized [0−1], and then its 1’s
complement was calculated for all its elements. After combining keywords and terms derived
from CLEVER, a total of 350 keywords were obtained. To train Word2vec, Skip-gram was
used with variable vector length and window width equal to 12, which were obtained based on
trial and error. In each report, we used selected keywords and two words before and two words
after the keyword to describe the text. Then the weighted arithmetic mean of all the obtained
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vectors represents the vector of that report. Each word in the dictionary has a weight value of
2, and other words have 1. Also, to show the corresponding vector of a report, each sentence’s
vector was calculated, and each sentence was weighted according to the number of keywords.
For example, in the sentence: “Both breasts show scattered areas of fibroglandular density” (a
sample sentence from a mammography report), for “breast” and “Fibroglandular” keywords,
the two words after and before each keyword are shown in Table 1. The vectors corresponding
to the other sentences in the report are calculated in the same way. Finally, the weighted mean
of the sentences is calculated based on (1) and (2).

Table 1: Calculation of the weighted average of words in Word2vec

Both W2V ecBoth
breast W2V ecbreast W2Vec1=[ W2V ecBoth+2*W2V ecbreast+W2V ecshow+W2V ecscattered ]/5
show W2V ecshow
scattered W2V ecscattered
areas W2V ecarea
of Omitted W2Vec2=[W2V ecarea+2*W2V ecFibroglandular+W2V ecdensity ]/4
FibroglandularW2V ecFibroglan
density W2V ecdensity

W2V ecSentence = [W2Vec1 + W2Vec2]/2

W = [w1,w2, . . . ,wns] , (1)

V d
MT =

1∑ns
i=1wi

ns∑
i=1

wi ×W2V ecdSentence i . (2)

In this equation, the vector V d
MT of dimension d, representing the report, ns is the number of

sentences in the report, wi is the number of keywords in the ith sentence, and W2V ecdSentence i
is the vector of the ith sentence with d dimensions.

3.2 Effective Feature Selection

Principal component analysis (PCA) [13] was used to determine the exact value of d in the
Word2vec algorithm and to determine the essential features of HIS. The PCA is the best
method for reducing data dimensions. This technique is not limited to dimension reduction. It
is also used in other areas such as pattern recognition and facial recognition. All eigenvalues
[32] of the covariance matrix are greater than or equal to 0. Here, if we want to reduce the
data dimensions, we can remove the nonsignificant components. Of course, this operation is
associated with the loss of data [13].

3.3 Deep Clustering to Assign the Molecular Subtypes

Deep clustering has very good results in this field due to its ability to learn high-dimensional data
relationships. In this work, only the people who had breast cancer were included for clustering.
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Molecular subtypes were divided into 4 clusters based on existing immunohistochemical markers
(IHC). The immunophenotypes besides the number of patients in each cluster are shown in Table
2. Luminal A grows slowly and has the best prognosis. Luminal B grows faster than Luminal A
and has a lower prognosis. BLBC is more common in women with the BRCA1 gene mutation.
This type of cancer is also more common in young and black women. HER2 grows faster than
duct cancers and can have a worse prognosis. Each cluster center that was closer to the available
data’s immunohistochemical results (46 patients) based on the Euclidean distance was assigned
to one of the four molecular subtypes. The method presented in [33], a deep learning method
with multi-objective clustering, was used here. Deep clustering yields excellent results in this
field due to its ability to learn high-dimensional data relationships. The cost function consists
of two sections: (1) Locality preserving objective and (2) Clustering-oriented objective. The
patient characteristics are shown by X = {xi ∈ Rd }ni=1 .

Table 2: Molecular subtypes with immunophenotype [34]

Molecular
subtypes

Immunophenotype
Number

of
patients

Luminal
A

ER+ and/ or PR+, HER2 -, CK5/ 6±, and Ki67<14% 17

Luminal
B

ER+ and/ or PR+, CK5/ 6±, HER2+, or Ki67≥14%; or PR < 20% 12

HER2 ER-, PR-, HER2+, CK5/6± 9
BLBC ER-, PR-, HER2- (triple-negative), CK5/6+, and/or EGFR+ 8

Here, n is the number of patients and d is the number of obtained features. The clustering
problem is formulated in (3). Here, m ≪ d and yi is a meaningful representation of xi . The
output is {Ii }ni=1 and Ii ∈ {1,2, . . . ,C} , is an index that identifies which data belongs to a cluster.
In this paper, deep manifold clustering (DMC) is used. The DMC is a deep network with an
input layer and L hidden layers. An autoencoder consisting of two parts, encoder, and decoder,
was created. There are 2L+1 layers in the deep encoder. The local objective is defined based
on observations in (4), and (5) calculates the local density. Here, α ∈ [0,1] is the balancer of
xi and its local neighbors. Ψ(xi ,xj ) =

1
2

∥∥∥xi − xj∥∥∥2 represents the error function. ki is the set of
indicators k-NN of xi . Here, two criteria were calculated to estimate the density of each cluster.
(1) The local density ρi and (2) its distance (ξi ) from the cluster with the highest density.
Ω = {i}ni=1, and ∆ij denote the distances between y

(L)
i and y

(L)
j of frequent updates {y(L)i }

n
i=1[33]

and, ∆̂ is the cut off distance. λ is extracted from DMC (output of hidden layer). (6) is used
to calculate the ξi .

F : x ∈ Rd → yi ∈ Rm, (3)

min
θ⌣θ

′
(1−α)Ψ(x̄i ,xi ) +

α
k

∑
j∈ki

Ψ(x̄i ,xi ), (4)

ρi =
∑

j∈Ω\{i}
exp−

∆ij

∆̂
, (5)
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ξλi
=

min{∆λiλj
}, i ≥ 2, j < i,

max{ξλi
}, i = 1, j ≥ 2.

(6)

To determine the cluster-based objective, an equation is defined so that each sample is found
based on the distance from the center of the cluster. Here, the kernel function is Gaussian. Also,
a linear combination of objectives (7) is used to calculate the final cost function [33]. In this
regard, J1 and J2 are defined based on the reconstruction layer and hidden layer, respectively.
β is also a parameter to balance the contribution of J1 and J2.

min
θ⌣θ

′
J = J1 + J2 =

n∑
i=1

(1−α)Ψ(x̄i ,xi ) +
α
k

∑
j∈ki

Ψ(x̄i ,xi )

+ βmin
θ

C∑
c=1

SicΨ(y(L)i , y
(L)
πc

). (7)

3.4 BI-RADS Classification

3.4.1 Convolutional Neural Network (CNN)

Machine learning algorithms work at reasonable computational times for specific problems and
play an important role in extracting knowledge from data [35]. Convolutional neural networks
(CNNs) [36] are a series of deep neural networks commonly used for image, speech, or text
analysis in machine learning. In this work, we use CNN as a classifier to detect BI-RADS. The
CNN can detect complex relationships between dependent and independent data variables,
as well as handle noisy data. The convolution operation is applied to the input. After the
convolution layer, in pooling layers, sampling is applied to reduce dimensions and prevent
over-fitting [37]. In the back-propagation error, the θ parameter was updated using error
minimization. The activator function in the first and second convolution layers is ReLU type.
Also, the output layer function is softmax, and the loss function is the square of the mean
squares error. It should be noted that the Adam optimization algorithm [38] is used here. This
optimizer is an adaptive learning rate optimization algorithm.

3.4.2 Naive Bayesian (NB)

In this work, we also use Naive Bayesian [39] as a classifier to detect BI-RADS. Since this
approach is a probabilistic method of classification, the final output is also probabilistic. The
NB classifier is scalable with high-dimensional data and is suitable for multi-class classification.
The NB classification model is shown in (8).

P(C = c|X = x) ∝ P(C = c)
d∏
i=1

P(Xi = xi |C = c)→ModelBayesian (8)

Here, X is the features vector, and C is the label of the class. The Naive Bayesian tries
to estimate different values of P(C = c) and P(Xi = xi |C = c) using their repetition rate in
educational data [39].
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3.5 Decision Fusion to BI-RADS Determination

Here, we propose a framework for predicting class using the combining weight assigned classifier
method based on the random mapping. Obtained models from ModelCNN and ModelBayesian ,
are used to decision fusion in determining BI-RADS. Yager has introduced and formulated
the most efficient method. In this theory, the conflict between the evidence (classifiers) is
considered. To solve this problem, Yager, in the first step in contrast with the mass function,
defined a new function called the Ground Probability Mass Assignment (q). In this method,
according to (9), the value of the ground probability mass assignment can be greater than 0,
i.e., the second condition of the mass function has been violated [40].

q(ϕ) ≥ 0. (9)

Yager considers only one weight per evidence, which further reduces the accuracy of data sets
that do not have a constant ratio of data in each class. Therefore, in this work, a method for
assigning weight to the evidence (classifiers) is presented which fits every class offered. So if
−→
O i (J) is the estimation of the ith classifier for state j (class j) and also −→A i (J) is the weight of
the ith classifier of the state j, therefore the values of the mass function are defined as (10).
Also, the −→A i (J) value is obtained from (11), and based on the trained model.

mi (J) =
−→
A i (J) ◦

−→
O i (J), (10)

−→
A i (J) =

2.P P V
j
i .Sensitivity

j
i

P PV
j
i + Sensitivity

j
i

= F1ji_Score. (11)

Based on (12), we classify the objection between the evidence in a set −→Ω i (J) when
−→
Ω i (J) =

{ω1
i , . . . ,ω

j
i }. The evidence decision fusion formulas is calculated (13), (14), (15) in the proposed

method.
−→
Ω i (J) = 1−

−→
A i (J), (12)

q(J j ) =
∑

⌢J
j
i =J

j

[
m

j
1(J

j
1)×m

j
2(J

j
2)× . . .×m

j
i (J

j
i )
]
, (13)

q(ϕ)j =
∑

⌢m
j
i=ϕ

m
j
i , (14)

mi (J
j ) =

q(J j )
1− q(ϕ)j

. (15)

3.6 K-nearest Hyper Box Expansion to Detect Molecular Subtypes

FMNN is a fuzzy neural network with a supervised learning method, one of the best algorithms
for classifying patterns using its dynamic structure and one pass-through technique [41]. Here,
we used the FMNN to predict molecular subtypes. This network uses a set of hyper boxes to
specify a class. Each hyper box has a label representing the data class inside the hyper box
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[?]. FMNN uses the membership function during the learning process according to (16) to
determine the membership value (between 0 and 1) of hyper boxes similar to the input sample
[44]. Here, Hj (X

d
h ) represents the j th fuzzy hyper box with a minimum of vdji , a maximum

of wd
ji , and d dimensions. Also η is a sensitivity coefficient parameter between 0 and 1, to

adjust the membership speed, which is set by the user. Based on the winning hyper box,
the FMNN evaluates the dimensions of the hyper box using the inequality (17) to test the
hyper box’s scalability. Investigating the winning hyper box’s expansion criterion shows that
many smaller hyper boxes are constructed adjacent to the winning hyper box, which increases
the network’s complexity. Therefore, K-nearest neighbor hyper box expansion with variable
expansion coefficient (FMNN-HVEC), similar to the base FMNN, uses the winning hyper box
to predict the target class (y) for the current input sample. Unlike FMNN, which focuses on
just one winner, our method uses a set of hyper boxes closer and has the same class label
to determine the final winner. According to Algorithm No.1, the hyper box with the highest
membership degree is selected. All its dimensions are compared against the expansion coefficient
using the inequality (17).

Hj (X
d
h ) =

1
2d

∑
i=1

d
[
max(0,1−max(0,ηmin(1,xdhi −w

d
ji )))

+max(0,1−max(0,ηmin(1, vdji − x
d
hi )))

]
, (16)

dθ ≥
∑
i=1

d(max(wd
ji ,x

d
hi )−min(vdji ,x

d
hi )). (17)

Each violation of inequality by the winning hyper box leads to choosing the next nearest hyper
box to be checked at the same stage. In this case, the first K-nearest neighbor hyper boxes that
are capable of resolving the inequality are selected for the expansion process, and the value of
θ is increased by as much as γ using (18).

θ = θ +γ, γ << θ. (18)

If all the K-nearest hyper boxes cannot accept the inequality, a new hyper box is created for
the input sample. The logical reason is that before creating a new hyper box, a thorough search
of the hyper boxes is done for a winner. In other words, the K-nearest neighbor hyper boxes
expansion can prevent the creation of many small hyper boxes.
Algorithm No. 1: Fuzzy min−max neural network with K-nearest hyper box vari-
able expansion coefficient algorithm
Inputs: The number of instances (n), Features (xdhi ), Expansion coefficient (θ), The number of
nearest hyper box expansion (K), γ .
Output: Trained model for molecular subtypes prediction (ModelMS ).
Begin
Processing
For i in range (n)
If hyper box does not exist for corresponding class
vdji and wd

ji equal ith instance in (ModelMS )
Else
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If (17) is true
Calculate Hj (X

d
h ) using (16)

Update vdji and wd
ji according to maxHj (X

d
h ) in (ModelMS )

Update (ModelMS ) according to constraint in [43]
Else
For k in range(K)
If (17) for Hk

j (X
d
h ) is true

Update vdji and wd
ji according to maxHj (X

d
h ) in (ModelMS )

θ = θ +γ

Update (ModelMS ) according to constraint in [43]
Elsenew hyper box and Update (ModelMS )
Return (ModelMS )
End

3.7 Proposed Framework of the DSS-BC Hybrid Model

In this paper, the framework of a decision support system for breast cancer diagnosis, including
the data preprocessing stage, NLP, clustering, classification, and decision fusion, is presented
to optimize BI-RADS_classification using improved Yager. The whole process of the DSS-BC
hybrid model is shown in Figure 1. Initially, the data set, which includes each individual’s
medical records, was processed using algorithm one and converted into a vector. In addition to
the features extracted from mammography reports, the features obtained from patients’ EHR
were also used, and essential features were selected using PCA. Some of the samples in our
dataset didn’t have labels related to molecular subtypes. Therefore, data were clustered using
the unsupervised deep clustering method in four clusters, and the values of molecular subtypes
were assigned to each cluster according to the Euclidean distance. Deep clustering is suitable
for non-uniform data; thus, it can increase molecular clustering accuracy. A trained model
was extracted using CNN and Naïve Bayesian to predict BI-RADS values and their fusion
results based on the improved Yager. Then, using FMNN-HVEC, the molecular subtypes were
classified.

4 Analyzing and Evaluating the Results

4.1 Data Set

Electronic patient health record (EHR) has been collected from HIS and PACS systems in Na-
mazi Hospital of Fars province from 2015 to 2017. The PACS includes electronic records for
storing and retrieving medical images and related documents and reports. HIS is an integrated
information system designed to cover all aspects of a hospital’s operations, such as financial,
administrative, medical, EHR, and legal services. According to Table 3, the characteristics
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Figure 1: The DSS-BC framework.

extracted from HIS in our data set include age, Inheritance, Regular menstruation, Menopause,
Pregnancy history, etc. Also, some of the features and elements extracted from mammography
and lexicon text reports are Density (fat, low, equal, or high), Asymmetry (asymmetry, global,
focal, or developing), Associated features (skin retraction, nipple retraction, trabecular thick-
ening, parenchyma with no visible mass, etc.), Distribution (diffuse, regional, grouped, etc.),
Typically benign (bilateral, right, or bilateral), Suspicious (for instance, coarse heterogeneous,
fine pleomorphic, amorphous, fine linear, etc.), size (for instance, 15, 19, and so on), Breast-quad
(N or Y), Margin (circumscribed, obscured, micro lobulated, indistinct or, speculated), Shape
(oval, round or, irregular), Composition (A: entirely fatty, B: scattered areas of fibro-glandular
density, etc.) and so forth. The number of samples in the data set was 5076. In this data set,
25.02% (1270 people), 8.75% (444 people), 30.00% (1523 people), 7.49% (380 people), 12.51%
(635 people), 7.49% (380 people) and 8.75% (444 people) were in BI-RADS-0 to BI-RADS-6
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levels, respectively. The greatest number was related to BI-RADS-2 and the least number was
related to BI-RADS-3. All tests were performed on a desktop computer with an Intel Skylake
Core i7-6700 K processor, 4 ∗ 8 GB DDR RAM, GTX 1080 VGA, and 256GB SSD + 1TB
SATA. Python 3.8.7 in the Spyder environment was used for implementation.

Table 3: Extracted features from HIS

Feature Range Feature Range
Age Discrete numbers Breast side Left, Right, or Bilateral
Inheritance 0-1 Abnormal nipple discharge 0-1
Regular menstruation 0-1 Breast pain 0-1
Menopause 0-1 Disease history 0-1
Pregnancy history 0-1 Associated features 0-1
Breast size Discrete numbers Alcohol consumption 0-1
Mass shape Oval, round or irregular Birth control pills 0-1
Marital status 0-1 Breastfeeding History Discrete numbers
Sport activities 0-1 Smoking 0-1

4.2 Normalization of Standard Deviation on All Data

Here, normalization by the min−max method [45] was used. If x is a property, then X
′ the

expected value of the property is calculated as (19). xmin represents the minimum value of the
features and, xmax represents the maximum value of the features. xnewmax and xnewmin values are the
maximum and minimum of the preset boundaries. When min−max normalization is applied
to the raw data, each attribute is placed in a new range of values. This normalization method
has the advantage that all relationships in the data are fully preserved.

X
′
= (xnewmax − xnewmin)

x − xmin

xmax − xmin
xnewmin. (19)

4.3 Evaluation Metrics

First, the data was divided into ten subsets, and then for each subset of data, the system was
trained according to the proposed framework. The average of the evaluation metrics is reported
(10 − f oldcross − validation ). The main diameter shows the number of correct diagnoses and
the other arrays represent incorrect diagnoses. Four metrics are essential in confusion matrix
and describe the following [46]: True Positive (TP): Positive class predicted as a Positive
label. False Positive (FP): Negative class predicted as a Positive label. False Negative
(FN): Positive class predicted as a Negative label. True Negative (TN): Negative class
predicted as a Negative label. Since we have seven classes for BI-RADS and four classes for
molecular subtypes, each class’ evaluation metrics were obtained separately. Using this matrix,
parameters such as Specificity, Sensitivity, PPV, NPV, F1, and Accuracy are calculated [34, 47].
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4.4 Experimental Results and Discussion

Figure 2, depicts the accuracy of CNN for detecting BI-RADS using text mining and HIS. Since
the number of obtained features from text mining is unknown and some extracted features from
HIS have no significant effect on classification, we used PCA to determine the number of appro-
priate and significant features. The number of features with dimensions [100,150,200,250,300]
and HIS were selected and then classified using CNN. With the increasing dimension, the ac-
curacy of classification increases, and this value decreases in dimensions higher than 200. In
many studies [48], with increasing dimensions, word2vec quality, and consequently, accuracy
decreased, which was also investigated with decreasing and increasing of dimensions. Finally,
since the maximum accuracy was obtained in the dimension of 200 and equal to 90.16%, this
value was used as the base dimension for other processes. This value is 79.62% for the NB clas-
sifier in the dimension of 200. Table 4, shows the results of the confusion matrix for DSS-BC
and the BI-RADS classification and molecular subtypes. This table shows BI-RADS results for
seven classes in Table 4a, and the results of molecular subtypes for four classes in Table 4b.
Table 5 shows the specificity, sensitivity, PPV, NPV, F1, and accuracy for BI-RADS classifi-
cation, respectively. The corresponding patients’ levels with BI-RAD-2 and BI-RADS-6 have
the highest specificity with 95.27% and 94.59%, respectively, and the lowest diagnosis is re-
lated to BI-RADS-0 (90.16%). The specificity rate for diagnosing healthy people (BI-RAD-1)
is 94.58%. This indicates that DSS-BC also detects healthy individuals with high specificity.
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Figure 2: The variation of accuracy with the number of features.

Table 4: The confusion matrix values

(a)
Class BI-RADS

BI-RADS-0 1145 2 3 3 11 3 4
BI-RADS-1 16 420 8 8 8 5 3
BI-RADS-2 23 5 1451 6 6 3 5
BI-RADS-3 20 8 14 355 8 4 6
BI-RADS-4 19 2 19 3 579 5 3
BI-RADS-5 22 5 13 1 11 357 3
BI-RADS-6 25 2 15 4 12 3 420

(b)
Class molecular subtypes

Luminal A 309 10 17 6
Luminal B 7 321 4 5

HER2 5 4 636 14
BLBC 12 7 10 472
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Table 5: The evaluation metrics (BI-RADS)

Class Specificity Sensitivity PPV NPV F1 Accuracy
BI-RADS-0 90.16% 98.28% 97.78% 96.63% 98.03%

BI-RADS-1 94.58% 97.90% 89.74% 98.10% 93.64%

BI-RADS-2 95.27% 97.56% 96.80% 95.85% 97.18%

BI-RADS-3 93.42% 97.65% 86.95% 97.10% 91.99% 95.12%

BI-RADS-4 91.18% 97.79% 91.90% 97.67% 94.75%

BI-RADS-5 93.95% 97.76% 86.65% 97.75% 91.87%

BI-RADS-6 94.59% 97.60% 91.62% 98.45% 97.52%

Average 93.30% 97.79% 91.63% 97.37% 94.57%

The sensitivity value for healthy people in Table 5 is 97.90%, which indicates the high per-
formance of healthy individuals’ diagnosis. In general, for each BI-RADS class, the sensitivity
value is more than 97%, and its maximum is related to the BI-RADS-0 class (98.28%). The
PPV value in Table 5 for healthy people is 89.74%, which indicates the decent performance of
the proposed DSS-BC method in diagnosing healthy people and other BI-RADS classes. The
lowest value corresponds to BI-RADS-5 (86.65%), and the highest value corresponds to class
BI-RADS-0 (97.78%). The NPV value in Table 5 for healthy people is 98.10%, which indi-
cates the excellent performance of the proposed method. It is suitable for other classes, with a
minimum of 95.85% for BI-RADS-2 and a maximum of 98.45% for BI-RADS-6. The harmonic
mean (F1) for the BI-RADS results is given in Table 5. The maximum F1 for BI-RADS diag-
nosis is 98.03% (BI-RADS-0), and the minimum is 91.87% (BI-RADS-5), which indicates the
appropriate diagnosis of the proposed method. Also, in the correct differentiation of patient
and healthy cases, the accuracy or testability in the BI-RADS classification is equal to 95.12%.
Table 6, shows the specificity, sensitivity, PPV, NPV, and F1 for various molecular subtypes,
respectively.

Table 6: The evaluation metrics (Molecular subtypes)

Algorithm Class Specificity Sensitivity PPV NPV F1 Acc F1(46_Pa) Acc(46_Pa)
Luminal A 89.91% 91.46% 88.51% 90.17% 89.96%

89
.5
6%

68.68%

65
.8
2%Luminal B 82.55% 94.14% 84.73% 90.83% 89.19% 64.35%

DSS-BC
HER2 75.16% 93.64% 74.91% 91.35% 83.24% 59.02%

BLBC 75.27% 94.26% 75.26% 91.90% 83.70% 68.50%

Luminal A 82.16% 85.61% 86.53% 77.81% 86.07%

84
.2
6%

50.36%

55
.9
4%Luminal B 79.64% 83.46% 77.12% 81.31% 80.17% 51.98%

White box[49]
HER2 79.64% 83.46% 77.12% 81.31% 80.17% 47.69%

BLBC 70.81% 85.36% 77.48% 83.12% 77.48% 56.36%

According to Table 6, the highest specificity for molecular subtypes in DSS-BC is related
to Luminal A (89.91%), and the lowest is related to HER2 (75.16%). Here, White Box [49]
has been used to compare molecular subtypes in DSS-BC. The specificity in DSS-BC is higher
than the White Box method, so that the maximum specificity in DSS-BC is 89.91%, while
the maximum specificity in White Box is 82.16%. The highest sensitivity value in molecular
subtypes is related to BLBC (94.26%), and the lowest is related to Luminal A (91.46%).
The values show that the performance of DSS-BC was more appropriate than the White box
(maximum value: 85.61%) in terms of sensitivity values. The PPV value for detecting molecular
subtypes for all classes is between 74.92% (HER2) and 88.51% (Luminal A), which indicates
the proper diagnosis of each class. DSS-BC also performed better than the White box method
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in terms of the PPV parameter. The minimum NPV value for detecting molecular subtypes in
Table 6 is 90.17% (Luminal A), and the maximum is 91.90% (BLBC). The NPV for Luminal
A in the White box is 77.81% and for the BLBC is 83.12%, indicating that the DSS-BC
performed better than the White box. The maximum F1 for detecting molecular subtypes is
89.96% (Luminal A), and the minimum is 83.24% (HER2), which is better than the White box
method. The accuracy value in DSS-BC is 89.56%, while the White box method’s accuracy
is 84.26%. So DSS-BC performed better than the White box. In the last two columns of
Table 6, the evaluation metrics (F1 and Accuracy) of the proposed method (FMNN-HVEC)
are presented for patients whose molecular subtypes were known in the database (46 patients).
Due to the high importance of the molecular subtype factors to determine the type and level
of the disease, as well as its four classes, the results will be significant. Figure 3, compares the
BI-RADS results with the SVM [26], PART [26], Blue Based BN [50], and BBAS [50] methods;
since the values of each class are reported as averages in this paper, so here to the comparison
of DSS-BC, the mean values of seven classes are calculated per evaluation metric.
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Figure 3: The comparison of DSS-BC with other methods.

In Figure 3, in addition to the graph, numerical results are also reported. In this figure,
the parameters of specificity, sensitivity, PPV, NPV, F1, and accuracy are reported in different
methods, which shows that DSS-BC performed better than other methods. As a result, by
combining the evaluation metrics, it is clear that the proposed method has performed well in
identifying BI-RADS classes, molecular subtypes and ultimately helped to patient follow-up.
Therefore, since a new way for text processing has been proposed, useful HIS features have been
used alongside text processing results. Decision fusion has also been used to increase accuracy.
Therefore, the performance of the proposed method has been improved compared to similar
tasks in terms of BI-RADS detection and the determination of molecular subtypes.

5 Conclusion

The Breast Imaging-Reporting and Data System (BI-RADS) was introduced by American Col-
lege of Radiology (ACR) to standardize mammography reports. This standard can be used to
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accurately prioritize treatment progress. However, this approach still suffers some disadvan-
tages such as a discrepancy in physicians’ opinions on the outcome of BI-RADS value which may
affect the determination of more accurate treatments. On this account, the EHR information
was suggested to be used for the identification of molecular subtypes besides BI-RADS. In this
paper, a hybrid model including unstructured data (medical reports) and structured data (HIS)
was developed. After text processing, the medical reports were converted into vectors so that
each vector eventually represented a mammography report using Word2vec. To select the es-
sential features, PCA was used and in the following, molecular subtype values were determined
based on the Euclidean distance and the results were generalized to cluster members. In this
work, deep clustering led to the detection of more accurately labeled molecular subtypes. CNN
and NB were used to classify BI-RADS and they were combined through an improved Yager. A
new FMNN scheme was used to classify molecular subtypes called FMNN-HVEC. This method
reduced network complexity and increased classification accuracy. K-fold cross-validation was
used with K = 10, and specificity, sensitivity, PPV, NPV, F1 value, and accuracy were evalu-
ated. The maximum results of metrics for estimating BI-RADS were 95.27%, 98.28%, 97.78%,
98.45%, and 98.03%, respectively. These results were 89.91%, 94.26%, 88.51%, 91.90%, and
89.96% for estimating the molecular subtypes in the maximum state. The accuracy of BI-RADS
and molecular subtypes diagnostic were 95.12% and, 89.56% respectively. In conclusion, the
proposed method for converting medical text records to vectors and using HIS to diagnose BI-
RADS and identify molecular subtypes based on medical literature and HIS features will help
physicians improve their decisions. Therefore, physicians can evaluate the patient’s therapeutic
routine more accurately.

Limitations and Future Works

Using streaming data is recommended for medical diagnoses in online environments such as
the Internet of Things (IoT) and incremental learning techniques. This work has considered
a stationary dataset. In future work, it is suggested to use learning techniques to diagnose in
dynamic environments such as IoT, where data increase over time.
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