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1 Introduction

Applications of information-theoretic methods in mathematical statistics are reflected in the
monographs by Kullback [10] , Csiszár and Körner [3], Csiszár and Shields [4] and Dembo and
Zeitouni [5].

Ahlswede and Haroutunian in [1] formulated an ensemble of problems on multiple hypothe-
ses testing for many objects and on the identification of hypotheses under reliability requirement.
The problem of many (L > 2) hypotheses testing on distributions of a finite state Markov chain
is studied in [13] via large deviations techniques and also, identification of distributions for one
object via Markov chains is studied in [9].

Notice that the application of large deviations techniques for error exponents to multiple
hypotheses testing is studied in [12]. Application of hypotheses testing in steganography systems
is discussed in [14].

In this paper, we solve the problem of identifying the distributions of many hypotheses
for two independent objects by using of simple homogeneous stationary finite states of Markov
chains. We hope that the results of this paper will be used in general case of steganography
systems of [14]. In Section 2, we recall the main definitions and results of [6] and [13] for many
hypotheses testing. In Section 3, we present the problem of identification of distributions for
two independent objects via Markov chains. In Section 4, we show the numerical reliability
matrix of distributions and its related figures.

2 On Many Hypotheses Testing for Markov Chains

We recall the main definitions and results [6] and [13] for further use.
Let x = (x0,x1,x2, . . . ,xN ), xn ∈ X = {1,2, . . . , I }, x ∈ XN+1 , N = 0,1,2, . . ., be a vector of

observations of a simple homogeneous irreducible stationary Markov chain with finite number
I of states. The L hypotheses Hl concern the matrix of the transition probabilities

Pl = {Pl (j |i), i = 1, I , j = 1, I }, l = 1,L.

The stationarity of the chain provides existence for each l = 1,L of the unique stationary
distribution Ql = {Ql (i), i = 1, I }, such that∑

i

Ql (i)Pl (j |i) =Ql (j),
∑
i

Ql (i) = 1, i = 1, I , j = 1, I .

The joint distributions of pairs (i, j) ∈ I2 are

Ql ◦Pl = {Ql (i)Pl (j |i), i = 1, I , j = 1, I }, l = 1,L.

We denote by D(Q ◦P∥Ql ◦Pl ) the Kullback-Leibler divergence

D(Q ◦P∥Ql ◦Pl ) =
∑
i,j

Q(i)P(j |i)[logQ(i)P(j |i)− logQl (i)Pl (j |i)]
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=D(Q∥Ql ) +D(Q ◦P∥Q ◦Pl ),

of a joint distribution

Q ◦P = {Q(i)P(j |i), i = 1, I , j = 1, I },

from joint to distribution Ql ◦Pl , where the divergence for marginal distributions is

D(Q∥Ql ) =
∑
i

Q(i)[logQ(i)− logQl (i)], l = 1,L.

The second order type of Markov the vector x (see [7]) is the square matrix of I2 relative
frequencies {N (i, j)N−1, i = 1, I , j = 1, I } of the simultaneous appearance in x of the states i

and j on the pairs of neighbor places. It is clear that
∑

ij N (i, j) = N . Denote by T N
Q◦P the set

of vectors x from XN+1 which have the second order type such that for some joint PD Q ◦P

N (i, j) =NQ(i)P(j |i), i = 1, I , j = 1, I .

The set of joint PD Q ◦ P on I2 is denoted by Q◦ P . Non-randomized test ϕN (x) accepts
one of the hypotheses Hl , l = 1,L on the basis of the trajectory x = (x0,x1, . . . ,xN ) of the N + 1
observations. We denote by α

(N )
l |m (ϕN ) the probability to accept the hypothesis Hl under the

condition that Hm, m , l, is true. For l = m we denote by α
(N )
m|m(ϕN ) the probability to reject

the hypothesis Hm. It is clear that

α
(N )
m|m(ϕN ) =

∑
l,m

α
(N )
l |m (ϕN ), m = 1,L. (1)

To each trajectory x the test ϕN puts in correspondence one from L hypotheses. The space
XN+1 will be divided into L parts,

GNl = {x, ϕN (x) = l}, l = 1,L,

and

α
(N )
l |m (ϕN ) =Qm ◦Pm(GNl ), m, l = 1,L.

We consider the matrix of “reliabilities”,

E = {El |m(ϕ) = lim
N→∞

− 1
N

logαN
l |m(ϕN ), m, l = 1,L}. (2)

It follows from relations (1) and (2) that

Em|m =min
l,m

El |m. (3)

Let P be a matrix of transition probabilities of some stationary Markov chain, and Q be
the corresponding stationary PD. For given family of positive numbers E1|1,E2|2, . . . ,EL−1|L−1,
we consider the decision rule ϕ∗ by the sets of distributions:

Rl ≜ {Q ◦P :D(Q ◦P∥Q ◦Pl ) ≤ El |l , D(Q∥Ql ) <∞}, l = 1,L− 1,
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RL ≜ {Q ◦P :D(Q ◦P∥Q ◦Pl ) > El |l , l = 1,L− 1}, (4)

and the functions:

E∗l |l (El |l ) ≜ El |l , l = 1,L− 1,

E∗l |m(El |l ) = inf
Q◦P∈Rl

D(Q ◦P∥Q ◦Pm), m = 1,L, l ,m, l = 1,L− 1,

E∗L|m(E1|1, . . . ,EL−1|L−1) ≜ inf
Q◦P∈RL

D(Q ◦P∥Q ◦Pm), m = 1,L− 1,

E∗L|L(E1|1, . . . ,EL−1|L−1) ≜ min
l=1,L−1

E∗l |L. (5)

In Figure 1, we show the reigns rule for the case of l = 1,2,3 hypotheses testing.

Figure 1: The reigns rule.

The following theorems are the main results of papers [6] and [13], respectively.

Theorem 1. Let X = {1,2, . . . , I } be a finite set of the states of the stationary Markov chain
possessing an irreducible transition matrix P and A be a nonempty and open subset or convex
subset of joint distributions Q ◦ P and Qm is stationary distribution for Pm, then for the type
Q ◦P(x) of a vector x from Qm ◦Pm on X :

lim
N→∞

− 1
N

logQm ◦PN
m {x :Q ◦P(x) ∈ A} = inf

Q◦P∈A
D(Q ◦P∥Q ◦Pm).

Theorem 2. Let X be a fixed finite set, for a family of distinct distributions P1, · · · ,PL the
following two statements hold. If the positive finite numbers E1|1, · · · ,EL−1|L−1 satisfy conditions:

0 < E1|1 <min[D(Qm ◦Pm∥Qm ◦P1), m = 2,L],
...

0 < El |l <min[E∗l |m(Em|m), m = 1, l − 1,D(Qm ◦Pm∥Qm ◦Pl ), m = l +1,L],

l = 2,L− 1,

(6)

then
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a. there exists a LAO (logaritmically asymptotically optimal) sequence of tests ϕ∗, the
reliability matrix of which

{
E∗l |m(ϕ

∗)
}
is defined in (5), and all elements of it are positive,

b. even if one of conditions (6) is violated, then the reliability matrix of an arbitrary test
necessarily has an element equal to zero (the corresponding error probability does not
tend exponentially to zero).

3 The Problem of Identification of Distributions for Two Independent Markov
Chains and Formulation of Results

In this section we expand the concept of Section 2 for two independent homogeneous station-
ary finite Markov chain. Let x1 and x2 be independent RV taking values in the same finite
state of Markov cvhains of set X with one of L PDs, they are characteristics of corresponding
independent objects, the random vector (X1,X2) assumes values (x1,x2) ∈ X ×X .

Let

(x1,x2) =
(
(x10,x

2
0), . . . , (x

1
n,x

2
n), . . . , (x

1
N ,x2N )

)
,xi ∈ X ,

i = 1,2, n = 1,N ,

be a sequence of results of N +1 independent observations of a simple homogeneous stationary
Markov chain with finite number I of states . The statistication must define unknown PDs

of the objects on the base of observed data. Select for each object and denote it by ΦN . The
objects independence test ΦN may be considered as the pair of the tests φ1

N and φ2
N for the

respective separate objects. We will show the whole compound test sequence by Φ. The test
φi
N is defined by a partition of the space N+1 on the L sets and to every trajectory x the test

ϕN puts in correspondence one from L hypotheses. So the space XN+1 will be divided into L

parts,

GNl,i = {xi, ϕN (xi) = l}, l = 1,L, i = 1,2.

We define

α
(N )
l1,l2 |m1,m2

(ΦN ) =Qm1
◦Pm1

(GNl1,1)Qm2
◦Pm2

(GNl2,2),

be the probability of the erroneous acceptance by the test ΦN of the hypotheses pair (Hl1 ,Hl2 )
provided that (Hm1

,Hm2
) is true, where (m1,m2) , (l1, l2), mi , li = 1,L, i = 1,2. The probability

to reject a true pair of hypotheses (Hm1
,Hm2

) by analogy with (1) is the following:

α
(N )
m1,m2 |m1,m2

(ΦN ) ≜
∑

(l1,l2),(m1,m2)

αN
l1,l2 |m1,m2

(ΦN ). (7)

We also study corresponding limits El1,l2 |m1,m2
(ΦN ) of error probability exponents of the

sequence of tests Φ, called reliabilities :

El1,l2 |m1,m2
(Φ) ≜ lim

N→∞
− 1
N

logαl1,l2 |m1,m2
(ΦN ), mi , li = 1,L, i = 1,2. (8)
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We denote by E(φi ), the reliability matrices of the sequences of tests φi , i = 1,2, for each
of the objects.

By using (7) and (8), it follows

Em1,m2 |m1,m2
(Φ) = min

(l1,l2),(m1,m2)
El1,l2 |m1,m2

(Φ). (9)

In this section we use the following lemma.

Lemma 1. [7], [8] If elements El |m(φi ), m, l = 1,L, i = 1,2, are strictly positive, then the
following equalities hold for Φ = (φ1,φ2):

El1,l2 |m1,m2
(Φ) = El1 |m1

(φ1) +El2 |m2
(φ2), if m1 , l1, m2 , l2, (10)

El1,l2 |m1,m2
(Φ) = Eli |mi

(φi ), if m3−i = l3−i mi , li , i = 1,2. (11)

Consider for given positive elements Em,m|m,L and Em,m|L,m, m = 1,L− 1, the family of
regions:

R(1)
m ≜ {Q ◦P :D(Q ◦P∥Q ◦Pm) ≤ Em,m|L,m}, m = 1,L− 1,

R(2)
m ≜ {Q ◦P :D(Q ◦P∥Q ◦Pm) ≤ Em,m|m,L}, m = 1,L− 1,

R(1)
L ≜ {Q ◦P :D(Q ◦P∥Q ◦Pm) > Em,m|L,m, m = 1,L− 1},

R(2)
L ≜ {Q ◦P :D(Q ◦P∥Q ◦Pm) > Em,m|m,L, m = 1,L− 1}.

There are two error probabilities for each (r1, r2), ri = 1,L, i = 1,2, the probability
α
(N )
(l1,l2),(r1,r2)|(m1,m2)=(r1,r2)

to accept (l1, l2) different from (r1, r2), when (r1, r2) is in reality, and the

probability α
(N )
(l1,l2)=(r1,r2)|(m1,m2),(r1,r2)

that (r1, r2) is accepted, when it is not correct. The prob-

ability α
(N )
(l1,l2),(r1,r2)|(m1,m2)=(r1,r2)

is already known, it coincides with the probability α
(N )
(r1,r2)|(r1,r2)

.

Our aim is to determine the dependence of α(N )
(l1,l2)=(r1,r2)|(m1,m2),(r1,r2)

on given α
(N )
(r1,r2)|(r1,r2)

.

We need to use the probabilities of different hypotheses. Let us assume that the hypotheses
Hl : l = 1,L have, say, probabilities Pr(r), r = 1,L. The only assumption we shall use is that
Pr(r) > 0, r = 1,L. We will see, that the result formulated in the following theorem does not
depend on values of Pr(r), r = 1,L, if they all are strictly positive. Now we can make the
following reasoning for each ri = 1,L, i = 1,2 :

α
(N )
(l1,l2)=(r1,r2)|(m1,m2),(r1,r2)

=
P
(N )
r ((l1, l2) = (r1, r2), (m1,m2) , (r1, r2))

Pr(m1,m2) , (r1, r2))
,

α
(N )
(l1,l2)=(r1,r2)|(m1,m2),(r1,r2)

=

1∑
m:(m1,m2),(r1,r2)

Pr(m1,m2)

∑
m:(m1,m2),(r1,r2)

α(m1,m2)|(r1,r2)P
(N )
r (m1,m2).

Finally for r = 1,L, we can write:

E(l1,l2)=(r1,r2)|(m1,m2),(r1,r2) = min
(m1,m2):(m1,m2),(r1,r2)

E∗(r1,r2)|(m1,m2)
. (12)
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For each LAO test Φ∗ from(9), (10), (11) and (11) we obtain that

E(l1,l2)=(r1,r2)|(m1,m2),(r1,r2) = min
m1,r1,m2,r2

(E1
r1 |m1

,E2
r2 |m2

), (13)

where E1
r1 |m1

,E2
r2 |m2

are determined by (5) for, correspondingly, the first and the second objects.
For each LAO test Φ∗ from (9), (10) and (11) we deduce that

E(r1,r2)|(r1,r2) = min
m1,r1,m2,r2

(E1
r1 |m1

,E2
r2 |m2

) = min(E1
r1 |r1 ,E

2
r2 |r2 ), (14)

and each of E1
r1 |r1

,E2
r2 |r2

satisfies the following conditions (see Theorem 2, condition (6)).

0 < E1
r1 |r1 <min

[
min

l=1,r1−1
E∗l |m(E

1
l |l ), min

l=r1+1,L
D(Ql ◦Pl∥Ql ◦Pr1 )

]
, (15)

0 < E2
r2 |r2 <min

[
min

l=1,r2−1
E∗l |m(E

2
l |l ), min

l=r2+1,L
D(Ql ◦Pl∥Ql ◦Pr2 )

]
. (16)

From (5) we see that the elements E∗l |m(E
1
l |l ), r1 = 1, r1 − 1 and E∗l |m(E

2
l |l ), r2 = 1, r2 − 1 are

determined only by E1
l |l and E2

l |l . But we are considering only elements E1
r1 |r1

and E2
r2 |r2

. By using
Theorem 1, (15) and (16) we obtain

0 < E1
r1 |r1 <min

[
min

l=1,r1−1
D(Ql ◦Pl∥Ql ◦Pr1 ), min

l=r1+1,L
D(Ql ◦Pl∥Ql ◦Pr1 )

]
, (17)

0 < E2
r2 |r2 <min

[
min

l=1,r2−1
D(Ql ◦Pl∥Ql ◦Pr2 ), min

l=r2+1,L
D(Ql ◦Pl∥Ql ◦Pr2 )

]
. (18)

Let us denote r =max(r1, r2) and k =min(r1, r2). From (13) we have that, when E(r1,r2)|(r1,r2) =
E1
r1 |r1

, then E1
r1 |r1
≤ E2

r2 |r2
and when E(r1,r2)|(r1,r2) = E2

r2 |r2
, then E1

r1 |r1
≥ E2

r2 |r2
. Hence, we deduce

that given strictly positive elements E(r1,r2)|(r1,r2) must meet both inequalities (17), (18) and the
combination of these restrictions gives

0 < E(r1,r2)|(r1,r2) <min
[
min

l=1,r−1
D(Ql ◦Pl∥Ql ◦Pr ), min

l=r+1,L
D(Ql ◦Pl∥Ql ◦Pk)

]
. (19)

Using (15) and (16) we can determine reliability E(l1,l2)=(r1,r2)|(m1,m2),(r1,r2) in a function of
E(r1,r2)|(r1,r2) , namely,

E(l1,l2)=(r1,r2)|(m1,m2),(r1,r2)(E(r1,r2)|(r1,r2)) =

min
m1,r1,m2,r2

(Er1 |r1(E(r1,r2)|(r1,r2)),Er2 |r2(E(r1,r2)|(r1,r2)), (20)

where (Er1 |r1(E(r1,r2)|(r1,r2)) and Er2 |r2(E(r1,r2)|(r1,r2)) are determined by (5). The results can be
summarized in the following theorem.

Theorem 3. If the distrbutions Hm, m = 1,L, are different and the given strictly positive
number E(r1,r2)|(r1,r2) satisfy condition (19), then the reliability E(l1,l2)=(r1,r2)|(m1,m2),(r1,r2)is defined
in (20).
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Figure 2: Diagram of E(1,1)|(2,2),E(1,2)|(1,2) and E(2,1)|(2,1) for Example 1

Figure 3: Diagram of E1|2(E1|1) for the first object of Example 1

Figure 4: Diagram of E1|3(E1|1) for the second object of Example 1
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4 Numerical Examples

We consider text classification on application of multiple Hypotheses testing for Markov chains.
Assume that a model English text as a Markov process where the probability of observing any
text word depends on the previous word.

For this example we consider a document which is comprised of an ordered sequence of
word events. Suppose that the probability of each word in the document depends on of the
previous word, but it is independent of its position in the document. In other words if we
have vocabulary X = {x1, . . . ,xL} each category of the document is described by the conditional
probabilities matrix P = {P(x|u),u,x ∈ X }. Now our aim is to assign each document to the
appropriate category, based on the designed rules. So, we have L hypotheses and based on
sequence of words the classifier has to decide if a particular feature vector is likely to be drawn
from a given category or not and try to minimize misclassification (error probabilities).

In order to better understand the hypotheses testing and text categorization theories it
would be pertinent to discuss an example with the binary set X = {0,1}. In the example we
assume that there are given two Markov sources with alphabet X = {0,1}.

Suppose an outcome of language research that enables a representation of different languages
genres reflected in the following transition matrices as hypothesis to test for each of two texts:

Example 1.

H1 : P1 =

0.295 0.705
0.1 0.9

 ,H2 : P2 =

0.49 0.51
0.92 0.08

 ,H3 : P3 =

 0.9 0.1
0.45 0.55

 .
Example 2.

H1 : P1 =

0.705 0.295
0.295 0.705

 ,H2 : P2 =

0.49 0.51
0.92 0.08

 ,H3 : P3 =

 0.9 0.1
0.45 0.55

 .
In this kind of categorization problems the performance of algorithms is discussed in com-

plexities point of view. In term of this example we would like to introduce a framework of
problems where the quality of categorization of objects is considered via error exponents anal-
ysis.

For the aforementioned hypotheses, applying Theorem 3 in [7] we got values for all elements
of reliability matrix, given fixed elements E3,1|1,1,E3,2|2,2 and E2,3|2,2. For numerical experiments
we generate a sequence of those reliability matrices in the following way. At first we initialize
a matrix with fixed components equal to 0.01. By increasing those values by step δ = 0.1,
we get a sequence of reliability matrices. Based on that sequence we draw the surface of
(E1,1|2,2,E1,2|1,2,E2,1|2,1) in Figure 2.

Applying Lemma 1 for each object we get the planes (E1|2(E1|1),E1|1) and (E1|3(E1|1),E1|1)
with the graphs in Figures 3 and 4, respectively.
The surface in Figure 2 illustrates the interdependence of reliabilities E1,1|2,2, E1,2|1,2 and E2,1|2,1.

Note that in Figure 3 starting from the value of E1|1 ≈ 0.35 the value of reliability E1|2(E1|1)
decreases faster. In Figure 4 the value of reliability E1|3(E1|1) decreases faster starting from the
value of E1|1 ≈ 0.25.
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