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paper, the IFDRC design problem is formulated as a multi-objective or mixed
H∞/H− optimization problem. H∞ performance indicator guarantees the robustness
of residual to disturbance, and H− performance represents the sensitivity index
of residual to the fault. A piecewise Lyapunov-Krasovskii function is employed
together with the MDADT scheme and therefore, sufficient conditions are derived
in terms of linear matrix inequalities (LMIs) to deal with the problem. Then to
clarify the design procedure, we also present an algorithm in light of the proposed
approach. Eventually, to illustrate the efficiency of the suggested approach, the de-
signed IFDRC framework is simulated for a case study of an Electrical Circuit system.
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1 Introduction

As an important class of hybrid systems, switched systems are a combination of multiple
subsystems and a switching law. The switching law determines an active subsystem
at the particular switching time instant. Many practical applications are modeled as
switched systems, such as power electronics [36], Buck-Boost converter [10], Ball-and-
Beam systems [12], flight control systems, etc. [28].

For real-world processes, fault detection (FD) has become more significant due to
the increasing demand for the efficiency of supervision, safety, and reliability. Model-
based FD methods have been widely used and developed over the past decades. This
technique is to construct residuals based on some measured output signals of the system.
The occurrence of faults is determined by comparing residuals in fault-free and faulty
situations [39]. Many results have emerged from this topic for switched systems [23,
29, 37]. On the other hand, it is possible, and more importantly, desirable to consider a
framework for integrating the design of fault diagnosis filters and feedback controllers.
This simultaneous design unifies both control and diagnosis modules into an integrated
unit. Therefore, it is unavoidable and certain that an integrated fault detection and
control (IFDC) design technique should result in a far less general difficulty as compared
to an approach where the two modules are designed separately [7]. Some techniques
in the IFDC area are as follows: a method subject to a dwell time constraint [38],
an approach based on Dynamic Observer [5], A Linear Matrix Inequality Approach
[2], Average Dwell Time constraint [2, 10], and IFDC schemes under mode-dependent
average dwell time constraint [33].

As a common phenomenon in many dynamic physical processes, the delay and
parameter uncertainties may weaken the fault detection sensitivity and disturbance
attenuation capability. Therefore, it is important to take into consideration the effect
of state delay and parameter uncertainties for designing fault detection and control
units under the presence of unknown inputs. Meanwhile, only a few papers have taken
the state delay into account. Some of them have supposed it constant [27, 35, 39]
and others have assumed it time-varying [19, 24]. Due to the complexity caused by the
presence of parameter uncertainties, a few results on FD of switched delay systems with
parameter uncertainties have been reported [21, 24]. As far as we know, there is a very
limited number of research considering both the variable state delay and parameter
uncertainties [24].



3Ejtahed, S.H., et al./ COAM, 7 (2), Summer-Autumn 2022

Innovation and the main contribution

In this paper, we investigate the problems of fault detection and robust control for
switched linear systems in a general framework. Some documents in this field employ
one of the below-mentioned five concepts separately, or at most a combination of two
or three cases of them. To the best of our knowledge, the IFDRC design with a variety
of these five items is not tackled yet for the switched systems. The main contribution
of our work is to propose a general framework for designing IFDRC for the switched
systems considering these concepts:

• MDADT: mode-dependent average dwell time,

• MDTVD: mode-dependent time-varying state delay,

• Parameter Uncertainty,

• Input disturbance,

• Mixed H∞/H−.

In this paper, the mode-dependent average dwell time (MDADT), which will re-
lease the restrictions of ADT, is used with mode-dependent time-varying (MDTV) state
delay, and norm-bounded parameter uncertainties, and unknown input disturbances.
Further, in an output feedback framework, sufficient conditions are derived and formu-
lated for weighted H∞ performance in terms of a set of linear matrix inequalities with
MDADT switching to attenuate the disturbance of the corresponding switched linear
systems. Sufficient conditions for weighted H− performance to amplify fault sensitivity
are also derived and developed in terms of a set of matrix inequalities. Based on the
proposed scheme, the IFDRC problem is solved by the convex optimization technique,
and the dynamic controller/detectors associated with the designed switching law are
obtained such that the system with the mentioned constraint satisfies the indices.

The remainder of this paper is organized as follows: Section 2 presents the problem
statement, necessary definitions, and preliminaries. It recalls the corresponding crite-
rion and lemmas for the switched systems’ fault detection and control with MDADT
switching. In Section 3, the main results for mixed weighted H∞/H− integrated fault
detection and robust control unit (IFDRCU) design for linear uncertain continuous-
time switched systems with MDTV state delay and input disturbance under MDADT
constraint design approaches are illustrated in detail by two theorems. The residual
evaluation function and the threshold are provided. To demonstrate the effectiveness
of the proposed method, an Electrical Circuit system is given as a numerical example
in Section 4, followed by a conclusion in the last section.
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Notations

In this paper, some standard notations are used. For a matrix A,AT denotes its trans-
pose. Here, A ≻ 0(A ≻= 0) and A ≺ 0(A ≺= 0) mean that the matrix is positive
and negative (semi-)definite, respectively. The symbol * used in a matrix denotes
the terms which are readily inferred from symmetry. The Hermitian part of a square
matrix A is denoted by He(A) := A+AT . The values λmax(A) and λmin(A) are the max-
imum and minimum eigenvalues of A, respectively. Rn stands for the n-dimensional
real vector space; where Rn×m indicates the space of n × m matrices with real en-
tries; ∥x∥2 = xT x = x21 + · · · + x2n, where xi is the i-th element of the vector, x ∈ Rn;
let l = {1, . . . , l}, where l is an arbitrary positive integer; Z+ implies the set of positive
integers. l2 stands for the 2-norm; 0 and I represent the zero and identity matrices
with appropriate dimensions, respectively. A⊥ is defined as an orthogonal basis for the
null space of A while satisfying A⊥A = 0.

2 Problem Statement and Preliminaries

In this section, problem formulation, necessary assumptions, definitions, lemmas, and
IFDRC concepts are presented.

2.1 The main system model

Consider the following switched linear system with mode-dependent time-varying state
delays and parameter uncertainty.

ẋ(t) = Aσ(t)(t)x(t) +Ad σ(t)(t)x(t − dσ(t)(t)) +Bσ(t)u(t) +Bωσ(t)(t)ω(t) +Bf σ (t)(t)f (t),

y(t) = Cσ(t)(t)x(t) +Dωσ(t)(t)ω(t) +Df σ (t)(t)f (t),

x(θ) = ϕ(θ), θ ∈ [−d ,0] .
(1)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rm denotes the control input vector, ω(t) ∈ Rr

represents the bounded disturbance input, f (t) ∈ Rs is the fault signal, and y(t) ∈ Rq

signifies the measured output vector. It is assumed that ω(t) and f (t) belong to L2 [0,∞)

and ∥ω(t)∥2 ≤ δω , ∥f (t)∥2 ≤ δf , where δω , δf are represented as known constants. ϕ(θ)
is the continuous vector-valued initial function on [−d,0]. σ(t) : [0,∞)→ l is a right
continuous piecewise constant function that denotes the switching law and l > 1 is the
number of subsystems. σ(t) = i means that the i-th subsystem is activated at time t. If
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t ∈ [tk , tk+1), then σ(t) = σ(tk). The duration time [tk , tk+1) is called the dwell time of the
currently enabled subsystem. The value tk represent the switching time instants and
t0 < t1 < · · · < tk , (k ∈Z+) represents the switching time sequence of the switching signal.
Ai , Adi , Bi , Bωi ,Bf i ,Ci ,Dωi , and Df i represent known real constant system matrices
with appropriate dimensions. di(t) stands for the mode-dependent time-varying delay
in state variables, which is a continuous function satisfying 0 < di(t) < di < d and
ḋi(t) < ρi , and di , d , ρi are known positive scalars.

Assumption 1. ([25]): For input matrices B i ∈ Rn×m with (Bi ) = m, there exist non-
singular matrices Ti such that

TiBi =

I0
 . (2)

In general, for a specified Bi , the corresponding Ti is not unique. One of the matrices
Ti is

Ti =

(BT
i Bi )−1B

T
i

B⊥i

 . (3)

Also, the model uncertainties are as in (4) and ∆Ai ,∆Adi ,∆Bωi ,∆Bf i ,∆Ci ,∆Dωi ,
and ∆Df i are norm-bounded matrices, and therefore, we obtain

Aσ(t)(t) = Aσ(t) +∆Aσ(t)(t),

Ad σ(t)(t) = Ad σ(t) +∆Ad σ(t)(t),

Bσ(t) = Bσ(t),

Bωσ(t)(t) = Bωσ(t) +∆Bωσ(t)(t),

Bf σ (t)(t) = Bf σ (t) +∆Bf σ (t)(t),

Cσ(t)(t) = Cσ(t) +∆Cσ(t)(t),

Dωσ(t)(t) =Dωσ(t) +∆Dωσ(t)(t),

Df σ (t)(t) =Df σ (t) +∆Df σ (t)(t).

(4)

Assumption 2. ([11]): The parameter uncertainties are assumed to satisfy the follow-
ing norm-bounded conditions:∆Ai(t) ∆Adi (t) ∆Bωi (t) ∆Bf i (t)

∆Ci(t) ∆Cdi (t) ∆Dωi (t) ∆Df i (t)

 = Mi1

Mi2

Q(t)
[
Ni1 Ni2 Ni3 Ni4

]
, (5)

where Mij (j = 1,2) and Nik(k = 1,2,3,4) are known real constant matrices and
Q(t) ∈ Rk×k is an unknown Lebesque-measurable real time-varying matrix subject to
the following condition.

QT (t)Q(t) ≤ I , (6)

for each t.



Integrated Fault Detection and Robust Control .../ COAM, 7 (2), Summer-Autumn 20226

Remark 1. It is worth to be mentioned that a regulated output can also be considered
for the main system in which both effects of fault and disturbance should be minimized
on it to achieve a robust control objective. But for the sake of simplicity, it is ignored
in this work [33, 40].

2.2 Integrated fault detection and robust control unit

To generate the control and the residual signal simultaneously, the integrated fault
detection and robust control unit (IFDRCU) is employed, which integrates a fault
detector and an output feedback controller within a switched linear system, as follows:

ẋm(t) = Amσ(t)xm(t) +Bmσ(t)y(t),

r(t) = Cmσ(t)xm(t) +Dmσ(t)y(t),

u(t) = Kmσ(t)xm(t) +Lmσ(t)y(t),

(7)

where xm(t) ∈ Rn represents the controller state vector and r(t) ∈ Rq is the residual
signal. The matrices Ami , Bmi , Cmi , Dmi , Kmi , and Lmi are the IFDRCU gains with
appropriate dimensions, which should be determined.

Assumption 3. ([28]): The switching signal is not known beforehand, but it is assumed
that it is determined instantaneously and IFDRCU switches synchronously with the
main system. This is a common assumption in the literature. It is also considered that
faults will not occur in the switching signal.

2.3 Closed-loop system description

Combining the aforementioned structures of the main system and the IFDRCU and
defining the augmented state vector as ςT (t) = [xT (t) xTm(t)] to include filters state, the
following augmented switched system is obtained:ς̇(t) = Āσ(t)(t)ς(t) + Ād σ(t)(t)ς(t − dσ(t)(t)) + B̄ωσ(t)(t)ω(t) + B̄f σ (t)(t)f (t),

r(t) = C̄σ(t)(t)ς(t) + D̄ωσ(t)(t)ω(t) + D̄f σ (t)(t)f (t),
(8)

where

Āσ(t)(t) =

Aσ(t)(t) +Bσ(t)Lmσ(t)Cσ(t)(t) Bσ(t)Kmσ(t)

Bmσ(t)Cσ(t)(t) Amσ(t)

 ,
Ād σ(t)(t) =

Ad σ(t)(t) 0

0 0

 ,
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B̄ωσ(t)(t) =

Bωσ(t)(t) +Bσ(t)Lmσ(t)Dωσ(t)(t)

Bmσ(t)Dωσ(t)(t)

 ,
B̄f σ (t)(t) =

Bf σ (t)(t) +Bσ(t)Lmσ(t)Df σ (t)(t)

Bmσ(t)Df σ (t)(t)

 ,
C̄σ(t)(t) =

[
Dmσ(t)Cσ(t)(t) Cmσ(t)

]
,

D̄ωσ(t)(t) =Dmσ(t)Dωσ(t)(t),

D̄f σ (t)(t) =Dmσ(t)Df σ (t)(t).

2.4 The IFDRC design problem

In this section, the main problem is formulated as a multi-objective or mixed H∞/H−
optimization problem. Therefore, our objective here is to design a switching law, a
control signal, and a fault detection filter (see Figure 1) such that the exponential
stability of the augmented switched system (8) is guaranteed with the specified mode-
dependent average dwell time (MDADT). By setting the zero initial conditions, the
effect of fault on the residual signal is maximized while the impact of disturbance is
minimized on it considering the parameter uncertainties of the main system.

Figure 1: Switched system and Integrated Fault Detection & Robust Control Unit (IFDRCU).
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2.4.1 Performance indices

For a given αM > 0, disturbance attenuation is characterized by the following weighted
l2 gain, which is called the weighted H∞ performance index (αM ,γ1) problem. It also
ensures that the undetected faults are not disastrous.∫ ∞

0
e−αM trT (t)r(t)dt ≤ γ2

1

∫ ∞
0

ωT (t)ω(t)dt. (9)

Here, γ1 is a prescribed level of disturbance attenuation. The smaller γ1, the less
affected the residual signal by disturbance.

Given αm > 0, fault sensitivity amplification is characterized by the following
weighted l2 gain, which is called the weighted H− performance index (αm,γ2) prob-
lem. ∫ ∞

0
rT (t)r(t)dt ≥ γ2

2

∫ ∞
0

e−αmtf T (t)f (t)dt. (10)

Here, γ2 is a prescribed level of fault sensitivity. The greater γ2, the more sensitive to
fault the residual signal.

Note that in general, αM can be different from αm.

Remark 2. The parameters αM and αm present the weighted l2 gain index owing to
the MDADT switching strategy. If αM = αm is small enough which means that τa is
selected sufficiently large, then the weighted l2 gain approaches obviously the normal
H∞ problem. In fact, H∞ performance is an unsolved problem for switched systems
with the constraint of ADT, and therefore, a weighted H∞ performance index should
be utilized [4, 13]. Some claims in this area, such as those in [25], are not meaningful.
In this work, we used a weighted H∞/H− performance index.

Remark 3. Some authors use a standard H∞ model matching problem to change
the H− optimization problem into an H∞ optimization problem by defining re(t) =

r(t)− fw(t). This means that the residual signal, r(t), robustly tracks a filtered version
of the fault signal, i.e., fw(t). The filter W (s) should be chosen appropriately as a stable
transfer function. Since there is no straightforward method to determine this transfer
function [8], the complexity is increased, and compared to those methods, our approach
is more direct [33]. In some works, such as [24], W (s) is defined as the filter, but the
augmented system is not affected by the filter dynamics. In some other studies, like
[2, 10], the use H∞ problem is used instead of H−, without defining re(t) = r(t)− fw(t).

2.4.2 Problem formulation

In this paper, the whole problem of IFDRC is transformed into the following mixed
H∞/H− optimization problem. It is called a multi-objective or mixed optimization
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problem in the literature because it has two different objects and involves different
norms [16, 20, 30].

min
s.t.

(9),(10)

c1γ1 − c2γ2. (11)

In practice, the two scalars c1, c2 ≥ 0 are used for a trade-off between the fault
detection and control requirements. For example, if the H∞ performance index is
given, the relevant scalar c1 = 0 [33].

2.5 Mathematical preliminaries

This section provides definitions and lemmas corresponding to the switched systems’
fault detection and control with MDADT switching.

Definition 1. ([34]): For a switching signal σ(t) and ∀T ≥ t ≥ 0, let Nσi(t,T ) be the
number of times that the i-th subsystem is activated on the interval [t,T ), and Ti(t,T )

present the total running time of the ith subsystem on the interval [t,T ) , i ∈ l. If there
exist positive numbers N0i ≥ 0 and τai > 0 such that

Nσi(t,T ) ≤ N0i +
Ti (t,T )
τai

, (12)

for each T ≥ t ≥ 0, then we say that σ(t) has a mode-dependent average dwell time,
(MDADT),τai , and the constant N0i is called the mode-dependent chatter bound.

Remark 4. Although the constant N0i should not be less than 2 in the case of average
dwell time switching, it is usual in the literature to be assumed as zero for the sake of
mathematical simplification [18]. In the sequel, we considered it not necessarily zero.

Definition 2. ([31]): Given scalars α > 0 and γ > 0 the augmented system in (8) is
said to be exponentially stable with weighted H∞ performance (α,γ ), if under σ(t), it
is exponentially stable with ω(t) = 0, and under zero initial condition, that is, ϕ(θ) =
0 , θ ∈ [−d,0], for any non-zero ω(t) ∈ L2[0,∞), it holds that.∫ ∞

0
e−αsrT (s)r(s)ds ≤ γ2

∫ ∞
0

ωT (s)ω(s)ds. (13)

Lemma 1. ([3]): (Schur complement lemma) Let Y be a symmetric matrix of real
numbers partitioned as follows and D be invertible. Then Y is positive definite if and
only if D and its Schur complement, (Y /D), are both positive definite.

Y =

 A B

BT D

 ≻ 0 ⇔ D ≻ 0 and Y /D = A−BD−1BT ≻ 0. (14)
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Lemma 2. For two given symmetric matrices, Φ,Φ̃ ∈ Rn×n, where for each i , j

Φii ≤ Φ̃ii and Φij = Φ̃ij ,

we have
Φ̃ ≺ 0⇒Φ ≺ 0. (15)

Proof. Defining Λ = (λ1, · · · ,λn) s.t. λi = Φii − Φ̃ii ≤ 0, from the assumption we have
Φ − Φ̃ =ΛIn×n ≺ 0, therefore,

xT Φ̃x ≺ 0⇒ xT (Φ −ΛIn×n)x ≺ 0⇒ xTΦx − xTΛIn×nx ≺ 0⇒ xTΦx ≺ 0.

Lemma 3. For a positive definite matrix Γ ∈ Rn×n, and any arbitrary symmetric matrix
Λ ∈ Rn×n, we have

ΛΓ−1Λ ≥ 2Λ − Γ. (16)

Proof. From the positive definiteness of Γ, it is clear that xTΓ−1x ≻ 0. One can choose
x = (Γ −Λ)y, therefore, yT (Γ −Λ)Γ−1(Γ −Λ)y ≻ 0 which will result in

yT (In×n −ΛΓ−1)(Γ −Λ)y ≻ 0⇒ yT (Γ −Λ −ΛΓ−1Γ +ΛΓ−1Λ)y ≻ 0

⇒ Γ − 2Λ +ΛΓ−1Λ ≻ 0.

Lemma 4. ([41]): (Generalized square inequality lemma) If X ∈ Rm×n,Y ∈ Rn×m,F ∈
Rn×n, and F can be time-varying, then for arbitrary δ > 0,

FFT ≤ I ⇒He(XFY ) ≤ δXXT + δ−1YTY . (17)

Lemma 5. ([2]): For two arbitrary scalars λ,κ, and two functions ϕ(t), and ϑ(t)

satisfying
ϕ̇(t) ≤ −λϕ(t) +κϑ(t), (18)

we have
ϕ(t) ≤ e−λ(t−t0)ϕ(t0) +κ

∫ t

t0

e−λ(t−ν)ϑ(ν)dν. (19)

This inequality is a special case of the comparison lemma for integrals.

Lemma 6. ([15]): (Finsler’s lemma) If Ψ ∈ Rn×n, Z ∈ Rp×n, where rank(Z) < n, then
the inequality

Z⊥TΨZ⊥ ≺ 0, (20)

is satisfied, if and only if there exists X ∈ Rn×p such that

Ψ +He(XZ) ≺ 0. (21)
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3 The Main Results

As stated in the previous section, the problem of IFDRC design for switched linear sys-
tems with mode-dependent time-varying state delay and parameter uncertainty can be
formulated as a multi-objective or mixed H∞/H− optimization problem. In this section,
we will drive sufficient conditions for analyzing the stability of the augmented system
as well as obtaining fault detection and robust control objectives. These conditions will
be addressed in LMIs forms.

3.1 The weighted H∞ performance problem

In the following theorem, based on Definition 2 and the weighted H∞ performance
index (αM ,γ1) defined in (9), sufficient conditions for the exponential stability of the
augmented system in the presence of parameter uncertainties and input disturbances
are derived. These conditions are in the form of LMIs. Then, an estimate of the state
decay ratio is calculated. In addition, the minimum allowable average time for each
subsystem to be active is calculated to satisfy the weighted H∞ performance index
(αM ,γ1). Finally, the IFDRCU gains are determined.

Theorem 1. For given scalars αM > 0 , µMi ≥ 1, assume that there exist positive definite
matrices Pi ≻ 0 , Ri ≻ 0 , Si ≻ 0 and appropriately-dimensioned real matrices

⌢
Ami ,

⌢
Bmi

, Cmi , Dmi ,
⌢
Kmi ,

⌢
Lmi ,Gi ,Hi = HT

i , as well as constant scalars γ10 > 0 and δ1i > 0 such
that the following inequalities hold:

Pi ≤ µMi Pj , Ri ≤ µMi Rj ,Si ≤ µMi Sj , i, j ∈ l, (22)

ΩMi =

ΦMi ΛMi

∗ −δ1iI

 ≺ 0, (23)

ΣMi =

Hi Gi

∗ e−αMdiSi

 ≻ 0, (24)

where

ΦMi =



ΦMi11 ΦMi12 ΦMi13 ΦMi14 ΦMi15

∗ ΦMi22 0 0 ΦMi25

∗ 0 ΦMi33 ΦMi34 ΦMi35

∗ 0 ∗ −I 0

∗ ∗ ∗ 0 Si − 2Pi


, (25)
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ΛMi =



Pi1Mi1 +T T
i

⌢Lmi

0

Mi2 Pi1Mi1 0

⌢
Bmi Mi2 0 0

0 0 0

0 0 0

0 0 0

DmiMi2 0 0

√
diPi1Mi1

√
diPi1Mi1

√
diT

T
i

⌢Lmi

0

Mi2

0 0
√
di

⌢
Bmi Mi2



(26)

ΦMi11 =He



Pi1Ai +T T

i

⌢Lmi

0

Ci + δ1iN
T
i1Ni1 T T

i

⌢Kmi

0


⌢
Bmi Ci

⌢
Ami




+αMPi +Ri + diHi1 +Gi1 +GT
i1, (27)

ΦMi12 =

Pi1Adi 0

0 0

+ diHi2 −Gi1 +GT
i2,

ΦMi13 =


Pi1Bωi +T T

i

⌢Lmi

0

Dωi +2δ1iN
T
i1Ni3

⌢
Bmi Dωi

 ,
ΦMi14 =

CT
i D

T
mi

CT
mi

 ,
ΦMi15 =

√
di


AT
i Pi1 +CT

i

[
⌢
L
T

mi 0
]
Ti CT

i

⌢
B
T

mi[
⌢
K

T

mi 0
]
Ti

⌢
A
T

mi

 ,
ΦMi22 = −(1− ρi )e−αMdi Ri + diHi3 −Gi2 −GT

i2 + δ1i

NT
i2Ni2 0

0 0

 ,
ΦMi25 =

√
di

AT
diPi1 0

0 0

 ,
ΦMi33 = −γ2

10 I +2δ1iN
T
i3Ni3,

ΦMi34 =DT
ωiD

T
mi ,

ΦMi35 =
√
di

[
BT
ωiPi1 +DT

ωi

[
⌢
L
T

mi 0
]
Ti DT

ωi

⌢
B
T

mi

]
.

In these relations, Mij ,Nij are defined in (5) and Ti ’s are defined in (3) and

Gi ≜
[
GT
i1 GT

i2

]T
, (28)
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Hi ≜

Hi1 Hi2

∗ Hi3

 , (29)

Pi =

Pi1 0

0 Pi2

 , Pi1 = T T
i


⌢
P i1 0

0
⌢
P i2

Ti . (30)

Then the augmented system (8) is exponentially stable and satisfies the weighted H∞
performance index (αM ,γ1) in (9) for any switching signal with MDADT met by (31)

τMai > τM∗ai =
ln µMi
αM

. (31)

Finally, the IFDRCU matrices will be calculated as

Ami = P−1i2

⌢
Ami , Bmi = P−1i2

⌢
Bmi , Kmi =

⌢
P
−1
i1

⌢
Kmi , Lmi =

⌢
P
−1
i1

⌢
Lmi . (32)

Proof. Construct the following Lyapunov-Krasovskii functional (LKF) candidate:

V (ςt ,σ) ≜ V1(ςt ,σ) +V2(ςt ,σ) +V3(ςt ,σ),

V1(ςt ,σ) ≜ ςT (t)Pσ ς(t),

V2(ςt ,σ) ≜
∫ t

t−dσ (t)
eαM (s−t)ςT (s)Rσ ς(s)ds,

V3(ςt ,σ) ≜
∫ 0

−dσ

∫ t

t+θ
eαM (s−t)ς̇T (s)Sσ ς̇(s)dsdθ, (33)

where real matrices Pσ ≻ 0,Rσ ≻ 0, and Sσ ≻ 0 should be determined.
By calculating the derivative of LKF along with the solution of the augmented

system and using the Leibniz integral rule for differentiation under the integral sign,
we have:

V̇ (ςt ,σ) +αMV (ςt ,σ) = 2ςT (t)Pσ ς̇(t)

− (1− ḋσ (t))e−αMdσ (t) ςT (t − dσ (t))Rσ ς(t − dσ (t))

+ ςT (t) (αMPσ +Rσ )ς(t) + dσ ς̇
T (t)Sσ ς̇(t)

−
∫ t

t−dσ
eαM (s−t)ς̇T (s)Sσ ς̇(s)ds, (34)

and note that

−
∫ t

t−dσ
eαM (s−t)ς̇T (s)Sσ ς̇(s)ds ≤ −

∫ t

t−dσ (t)
e−αM dσ ς̇T (s)Sσ ς̇(s)ds, (35)

− (1− ḋσ (t))e−αMdσ (t) ≤ −(1− ρσ )e−αMdσ ≤ −(1− ρ)e−αMd . (36)

It is obvious that
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V̇ (ςt ,σ) +αMV (ςt ,σ) ≤ 2ςT (t)Pσ ς̇(t)

− (1− ρσ )e−αMdσ ςT (t − dσ (t))Rσ ς(t − dσ (t))

+ ςT (t) (αMPσ +Rσ )ς(t) + dσ ς̇
T (t)Sσ ς̇(t)

−
∫ t

t−dσ (t)
e−αMdσ ς̇T (s)Sσ ς̇(s)ds. (37)

Regarding (9), we define I∞(t) ≜ rT (t)r(t)−γ2
10ω

T (t)ω(t), and

V̇ (ςt ,σ) +αMV (ςt ,σ) + I∞(t) ≤ 2ςT (t)Pσ ς̇(t)

− (1− ρσ )e−αMdσ ςT (t − dσ (t))Rσ ς(t − dσ (t))

+ ςT (t) (αMPσ +Rσ )ς(t) + dσ ς̇
T (t)Sσ ς̇(t)

−
∫ t

t−dσ (t)
e−αMdσ ς̇T (s)Sσ ς̇(s)ds

+ rT (t)r(t)−γ2
10ω

T (t)ω(t). (38)

Substituting the derivative of the state vector from equation (8) for f (t) = 0 we find
that

V̇ (ςt ,σ) +αMV (ςt ,σ) + I∞(t) ≤ ςT1 (t,σ)Θσ (t)ς1(t,σ)

−
∫ t

t−dσ (t)
e−αMdσ ς̇T (s)Sσ ς̇(s)ds, (39)

where

ς1(t,σ) ≜
[
ςT (t) ςT (t − dσ (t)) ωT (t)

]T
,

Θσ (t) =


Θσ11(t) Θσ12(t) Θσ13(t)

∗ Θσ22(t) Θσ23(t)

∗ ∗ Θσ33(t)

 ,
Θσ11(t) =He(Pσ Āσ (t)) +αMPσ +Rσ + dσ Ā

T
σ (t)Sσ Āσ (t) + C̄T

σ (t)C̄σ (t),

Θσ12(t) = Pσ Ādσ (t) + dσ Ā
T
σ (t)Sσ Ādσ (t),

Θσ13(t) = Pσ B̄ωσ (t) + dσ Ā
T
σ (t)Sσ B̄ωσ (t) + C̄T

σ (t)D̄ωσ (t),

Θσ22(t) = −(1− ρσ )e−αMdσ Rσ + dσ Ā
T
dσ (t)Sσ Ādσ (t),

Θσ23(t) = dσ Ā
T
dσ (t)Sσ B̄ωσ (t),

Θσ33(t) = dσ B̄
T
ωσ (t)Sσ B̄ωσ (t) + D̄T

ωσ (t)D̄ωσ (t)−γ2
10 I. (40)

Defining ς2(t,σ) ≜
[
ςT (t) ςT (t − dσ (t))

]T
and Hσ ≜

Hσ1 Hσ2

∗ Hσ3

, we obtain

∫ t

t−dσ (t)
ςT2 (t,σ)Hσ ς2(t,σ)ds ≤ dσς

T
2 (t,σ)Hσ ς2(t,σ). (41)
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By the Newton-Leibniz formula, for any arbitrary matrices Gσ ≜
[
GT
σ1 GT

σ2

]T
, we

have
ςT2 (t,σ)Gσ

[
ς(t) − ς(t − dσ (t))−

∫ t

t−dσ (t)
ς̇(s)ds

]
= 0. (42)

Suppose that the Lyapunov matrix Pσ can be considered as a block-diagonal matrix
such that in (30), by Tσ as defined in (3) we obtain

Pσ1Bσ = T T
σ


⌢
P σ1 0

0
⌢
P σ2

TσBσ = T T
σ


⌢
P σ1 0

0
⌢
P σ2


I0

 = T T
σ

⌢P σ1

0

 ,
Pσ1BσLmσ = T T

σ

⌢P σ1

0

Lmσ = T T
σ

⌢P σ1 Lmσ

0

 ≜ T T
σ

⌢Lmσ

0

 ,
Pσ1BσKmσ = T T

σ

⌢P σ1

0

Kmσ = T T
σ

⌢P σ1 Kmσ

0

 ≜ T T
σ

⌢Kmσ

0

 ,
⌢
Amσ≜ Pσ2Amσ ,

⌢
Bmσ≜ Pσ2Bmσ . (43)

By combining (39), (41) and (42), we can write

V̇ (ςt ,σ) +αMV (ςt ,σ) + I∞(t) ≤ ςT1 (t,σ)Πσ (t)ς1(t,σ)

−
∫ t

t−dσ (t)
ςT3 (t, s,σ )ΣMσ ς3(t, s,σ )ds, (44)

where ΣMσ is defined in (24) and

ς3(t, s,σ ) ≜
[
ςT (t) ςT (t − dσ (t)) ς̇T (s)

]T
, (45)

Πσ (t) ≜


Πσ11(t) Πσ12(t) Πσ13(t)

∗ Πσ22(t) Πσ23(t)

∗ ∗ Πσ33(t)

 , (46)

Πσ11(t) =He



Pσ1Aσ (t) +T T

σ

⌢Lmσ

0

Cσ (t) T T
σ

⌢Kmσ

0


⌢
Bmσ Cσ (t)

⌢
Amσ




+αMPσ +Rσ + dσHσ1 +Gσ1 +GT
σ1 + dσ Ā

T
σ (t)Sσ Āσ (t) + C̄T

σ (t)C̄σ (t),

Πσ12(t) =

Pσ1Adσ (t) 0

0 0

+ dσ Ā
T
σ (t)Sσ Ādσ (t) + dσHσ2 −Gσ1 +GT

σ2,

Πσ13(t) =


Pσ1Bωσ (t) +T T

σ

⌢Lmσ

0

Dωσ (t)

⌢
Bmσ Dωσ (t)

+ dσ Ā
T
σ (t)Sσ B̄ωσ (t) + C̄T

σ (t)D̄ωσ (t),
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Πσ22(t) = −(1− ρσ )e−αMdσ Rσ + dσ Ā
T
dσ (t)Sσ Ādσ (t) + dσHσ3 −Gσ2 −GT

σ2,

Πσ23(t) = dσ Ā
T
dσ (t)Sσ B̄ωσ (t),

Πσ33(t) = dσ B̄
T
ωσ (t)Sσ B̄ωσ (t) + D̄T

ωσ (t)D̄ωσ (t)−γ2
10 I . (47)

From (44), it is clear that V̇ (ςt ,σ)+αMV (ςt ,σ)+I∞(t) ≤ 0 if Πσ (t) ≺ 0 and ΣMσ ≻ 0.
By applying the Schur complement lemma 1, i.e., (14) to the inequality Πσ (t) ≺ 0 ,
and using Lemmas 2, 28 with Λ = (0,0,0,2Pσ − Sσ − PσS−1σ Pσ ), this inequality can be
substituted by Ξσ (t) ≺ 0. Then, by considering uncertainties in system parameters
defined in (4), which cause system matrices to be time-dependent, we can separate
Ξσ (t) to

Ξσ (t) = Ξσ +∆Ξσ (t) ≺ 0, (48)

where

Ξσ ≜



Ξσ11 Ξσ12 Ξσ13 Ξσ14 Ξσ15

∗ Ξσ22 0 0 Ξσ25

∗ 0 −γ2
10 I Ξσ34 Ξσ35

∗ 0 ∗ −I 0

∗ ∗ ∗ 0 Sσ − 2Pσ


,

Ξσ11 =He



Pσ1Aσ +T T

σ

⌢Lmσ

0

Cσ T T
σ

⌢Kmσ

0


⌢
Bmσ Cσ

⌢
Amσ




+αMPσ +Rσ + dσHσ1 +Gσ1 +GT
σ1,

Ξσ12 =

Pσ1Adσ 0

0 0

+ dσHσ2 −Gσ1 +GT
σ2,

Ξσ13 =


Pσ1Bωσ +T T

σ

⌢Lmσ

0

Dωσ

⌢
Bmσ Dωσ

 ,
Ξσ14 =

CT
σ D

T
mσ

CT
mσ

 ,
Ξσ15 =

√
dσ


AT
σPσ1 +CT

σ

[
⌢
L
T

mσ 0
]
Tσ CT

σ

⌢
B
T

mσ[
⌢
K

T

mσ 0
]
Tσ

⌢
A
T

mσ

 ,
Ξσ22 = −(1− ρσ )e−αMdσ Rσ + dHσ3 −Gσ2 −GT

σ2,

Ξσ25 =
√
dσ

AT
dσPσ1 0

0 0

 ,
Ξσ34 =DT

ωσD
T
mσ ,
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Ξσ35 =
√
dσ

[
BT
ωσPσ1 +DT

ωσ

[
⌢
L
T

mσ 0
]
Tσ DT

ωσ

⌢
B
T

mσ

]
,

∆Ξσ11(t) =He(


Pσ1∆Aσ (t) +T T

σ

⌢Lmσ

0

∆Cσ (t) 0

⌢
Bmσ ∆Cσ (t) 0

),
∆Ξσ12(t) =

Pσ1∆Adσ (t) 0

0 0

 ,
∆Ξσ13(t) =


Pσ1∆Bωσ (t) +T T

σ

⌢Lmσ

0

∆Dωσ (t)

⌢
Bmσ ∆Dωσ (t)

 ,
∆Ξσ14(t) =

∆CT
σ (t)D

T
mσ

0

 ,
∆Ξσ15(t) =

√
dσ

∆AT
σ (t)Pσ1 +∆CT

σ (t)
[
⌢
L
T

mσ 0
]
Tσ ∆CT

σ (t)
⌢
B
T

mσ

0 0

 ,
∆Ξσ25(t) =

√
dσ

∆AT
dσ (t)Pσ1 0

0 0

 ,
∆Ξσ34(t) = ∆DT

ωσ (t)D
T
mσ ,

∆Ξσ35(t) =
√
dσ

[
∆BT

ωσ (t)Pσ1 +∆DT
ωσ (t)

[
⌢
L
T

mσ 0
]
Tσ ∆DT

ωσ (t)
⌢
B
T

mσ

]
.

Referring to Assumption 2, we get

∆Ξσ (t) =He(ΛMσ (Q(t),Q(t),Q(t))ΓMσ ), (49)

where ΛMσ is defined in (26), and

ΓMσ ≜


Nσ1 0 0 0 Nσ3 0 0 0

0 0 Nσ2 0 0 0 0 0

Nσ1 0 0 0 Nσ3 0 0 0

 , (50)

and by using the generalized square inequality in Lemma 4, that is (17), we get

∆Ξσ (t) ≤ δ−11σΛMσΛ
T
Mσ + δ1σΓ

T
MσΓMσ . (51)

Now according to (51), inequality (48) can be rearranged to

(Ξσ + δ1σΓ
T
MσΓMσ ) + δ−11σΛMσΛ

T
Mσ ≤ 0, (52)

and by the new variable ΦMσ ≜ Ξσ + δ1σΓ
T
MσΓMσ , we have

ΦMσ + δ−11σΛMσΛ
T
Mσ ≤ 0, (53)



Integrated Fault Detection and Robust Control .../ COAM, 7 (2), Summer-Autumn 202218

where ΦMσ is defined in (25). Finally, by using the Schur complement in Lemma 1,
that is (14), inequality (53) turns to (23).

Also, from (43), it is apparent that we can calculate IFDRCU parameters and get
(32).

At this point, we will prove the exponential stability of the augmented system (8)
with ω(t) = 0, f (t) = 0 and without parameter uncertainties. If (23) and (24) are held,
then from (44), we have

V̇ (ςt ,σ) < −αMV (ςt ,σ)− rT (t)r(t) < −αMV (ςt ,σ). (54)

Using Lemma 5, and by integrating (54) from tk to t we get:

V (ςtk ,σ) ≤ e−αM (t−tk )V (ςtk ,σ(tk)), (55)

where tk is the switching time instant. Using (22) at instant tk , we have

V (ςtk ,σ(tk)) ≤ µMtk V (ςt−k ,σ(t
−
k )). (56)

It follows from (55), (56), and (12) that

V (ςt ,σ) ≤ µMtk e−αM (t−tk ) V (ςt−k ,σ(t
−
k )) ≤ · · ·

≤
Nσ (t0,t)∏
j=1

µMσ(tj )e
−αM (t−t0) V (ςt0 ,σ(t0))

≤ e
∑l

p=1N0p lnµM
p e

max
p∈l

(
lnµMp

τMap
−αM )(t−t0)

V (ςt0 ,σ(t0)). (57)

On the other hand, using Rayleigh’s inequality [22], one can easily find from (33)
that

a∥ς(t)∥2 ≤ V (ςt ,σ) ≤ b ∥ς(t)∥2 ,

(58)

where

a =min {λmin(Pσ ) |σ ∈ l } ,

b =max {λmax(Pσ ) |σ ∈ l }+ d.max {λmax(Rσ ) |σ ∈ l } ,

+
d2

2
max {λmax(Sσ ) |σ ∈ l } .

Notice from (58) that

V (ςt ,σ) ≥ a∥ς(t)∥2 ,
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V (ςt0 ,σ(t0)) ≤ b ∥ς(t0)∥2 . (59)

Combining (57) and (59) results in

∥ς(t)∥2 ≤
b
a
e
∑l

p=1N0p lnµM
p e

max
p∈l

(
lnµMp

τMap
−αM )(t−t0)

∥ς(t0)∥2 , (60)

∥ς(t)∥ ≤
√

b
a
e
∑l

p=1N0p lnµ
M
p e
− 1

2 max
p∈l

(αM−
lnµMp

τMap
)(t−t0)

∥ς(t0)∥ . (61)

This means that the switched system (8) is exponentially stable with the estimated
state decay ratio given by (61).

Remark 5. For µMi = 1 in τMai > τM∗ai = ln µM
i

αM
we have τa > τ∗a = 0 which means that the

switching signal is arbitrary, and the only possible case for (22) is the equality instead
of inequality which imposes a common Lyapunov function for all subsystems.

Now, we will establish the weighted H∞ performance (αM ,γ1) for the augmented
system without fault and parameter uncertainties. If (23) and (24) are held, from (44),
we have

V̇ (ςt ,σ) < −αMV (ςt ,σ)− I∞(t). (62)

For any t > 0 and for any arbitrary piecewise constant switching signal σ(t), we let
t0 = 0 < t1 < t2 < · · · < tk < · · · < tNσ (0,t) denote the switching points of the σ(t) over the
interval [0, t], where Nσ (0, t) =

∑l
k=1Nk(0, t). For any t ∈ [tk , tk+1), the σ(tk)th subsystem

is active. Using Lemma 5, by integrating (62) from tk to t, it follows from (55), (56)
and (12) that

V (ςt ,σ) ≤ e−αM (t−tk )V (ςtk ,σ(tk))−
∫ t

tk

e−αM (t−ν) I∞(ν)dν

=
l∏

p=1

µ
Nσp(t0,t)
p e−αM (t−t0) V (ςt0 ,σ(t0))

−
∫ t

t0

l∏
p=1

µ
Nσp(ν,t)
p e−αM (t−ν) I∞(ν)dν. (63)

Notice that for the time between two consequence switching instants, we have from
(12):

∀ tj−1 < ν < tj ⇒Nσp(ν, t) ≤N0p +
Tp (ν, t)

τap
=N0p +

Tp (tj−1, t)

τap
=Nσp(tj−1, t). (64)

Since V (ςt ,σ) is positive, for zero initial condition, (63) results in∫ t

t0

e−αM (t−ν)+
∑l

p=1Nσp(ν,t) lnµM
p rT (ν)r(ν)dν
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≤ γ2
10

∫ t

t0

e−αM (t−ν)+
∑l

p=1Nσp(ν,t) lnµM
p ωT (ν)ω(ν)dν. (65)

Multiplying the both sides of (65) by e−
∑l

p=1Nσp(0,t) lnµM
p yields:∫ t

t0

e−αM (t−ν)+(
∑l

p=1(Nσp(ν,t)−Nσp(0,t)) lnµM
p )rT (ν)r(ν)dν

≤ γ2
10

∫ t

t0

e−αM (t−ν)−
∑l

p=1Nσp(0,ν) lnµM
p ωT (ν)ω(ν)dν. (66)

From (12) and (31), we know that

−
l∑

p=1

Nσp(0,ν) lnµ
M
p ≥ −αMν −αM

l∑
p=1

τMapN0p . (67)

Therefore∫ t

t0

e−αM trT (ν)r(ν)dν ≤ eαM
∑l

p=1 τ
M
apN0pγ2

10

∫ t

t0

e−αM (t−ν)ωT (ν)ω(ν)dν.

(68)

And we get ∫ t

t0

e−αM trT (ν)r(ν)dν ≤ γ2
1

∫ t

t0

e−αM (t−ν)ωT (ν)ω(ν)dν. (69)

Integrating the both sides of (69) from t0 to ∞ will result in∫ ∞
t0

e−αMνrT (ν)r(ν)dν ≤ γ2
1

∫ ∞
t0

ωT (ν)ω(ν)dν. (70)

This means that the switched system (8) satisfies the weighted H∞ performance
(αM ,γ1) with γ1 = γ10 exp

(
0.5αM

∑l
p=1 τ

M
apN0p

)
in (9). This completes the proof.

3.2 The weighted H− performance problem

In the following theorem, given the IFDRCU gain matrices and based on the weighted
H− performance index (αm,γ2) defined in (10), sufficient conditions in the form of
matrix inequalities are derived for the exponential stability of the augmented system
in the presence of parameter uncertainties and input disturbances. In addition, the
minimum allowable average time per each subsystem activity is calculated to satisfy
the weighted H− performance index (αm,γ2).
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Theorem 2. For given scalars αm > 0 , µmi ≥ 1 and appropriately-dimensioned real
matrices

⌢
Ami ,

⌢
Bmi , Cmi , Dmi ,

⌢
Kmi ,

⌢
Lmi , if there exist positive definite matrices Pi ≻

0 , Ri ≻ 0 , Si ≻ 0 , appropriately-dimensioned real matrices Gi ,Hi =HT
i ,Yki (i = 1,2,3),

and constant scalars γ20 > 0 , δ2i > 0 such that the following inequalities hold, then we
have

Pi ≤ µmi Pj , Ri ≤ µmi Rj ,Si ≤ µmi Sj i, j ∈ l, (71)

Ωmi =

Φmi Λmi

∗ −δ2iI

 ≺ 0, (72)

Σmi =

Hi Gi

∗ e−αmdiSi

 ≻ 0, (73)

where

Φmi =



Φmi11 Φmi12 Φmi13 Φmi14 Φmi15

∗ Φmi22 0 0 Φmi25

∗ 0 Φmi33 Φmi34 Φmi35

∗ 0 ∗ −3I 0

∗ ∗ ∗ 0 Si − 2Pi


, (74)

Λmi =



Pi1Mi1 + (T T
i

⌢Lmi

0

−YT
1iDmi )Mi2 Pi1Mi1 0

(
⌢
Bmi −YT

2iDmi )Mi2 0 0

0 0 0

0 0 0

−YT
3iDmiMi2 0 0

DmiMi2 0 0

√
diPi1Mi1

√
diPi1Mi1

√
diT

T
i

⌢Lmi

0

Mi2

0 0
√
di

⌢
Bmi Mi2



, (75)

Φmi11 =He



Pi1Ai + (T T

i

⌢Lmi

0

−YT
1iDmi )Ci + δ2iN

T
i1Ni1 T T

i

⌢Kmi

0

−YT
1iCmi

(
⌢
Bmi −YT

2iDmi )Ci
⌢
Ami −YT

2iCmi


 ,

+αmPi +Ri + diHi1 +Gi1 +GT
i1,

Φmi12 =

Pi1Adi 0

0 0

+ diHi2 −Gi1 +GT
i2,
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Φmi13 =


Pi1Bf i + (T T

i

⌢Lmi

0

−YT
1iDmi )Df i −CT

i D
T
miY3i +2δ2iN

T
i1Ni4

(
⌢
Bmi −YT

2iDmi )Df i −CT
miY3i

 ,
Φmi14 =

YT
1i +CT

i D
T
mi

YT
2i +CT

mi

 ,
Φmi15 =

√
di


AT
i Pi1 +CT

i

[
⌢
L
T

mi 0
]
Ti CT

i

⌢
B
T

mi[
⌢
K

T

mi 0
]
Ti

⌢
A
T

mi

 ,
Φmi22 = −(1− ρi )e−αmdi Ri + diHi3 −Gi2 −GT

i2 + δ2i

NT
i2Ni2 0

0 0

 ,
Φmi25 =

√
di

AT
diPi1 0

0 0

 ,
Φmi33 = γ2

20 I −He(YT
3iDmiDf i ) + 2δ2iN

T
i4Ni4,

Φmi34 =DT
f iD

T
mi +YT

3i ,

Φmi35 =
√
di

[
BT
f iPi1 +DT

f i

[
⌢
L
T

mi 0
]
Ti DT

f i

⌢
B
T

mi

]
, (76)

where Mij ,Nij are defined in (5), Ti is defined in (3), and

Gi ≜
[
GT
i1 GT

i2

]T
, (77)

Hi ≜

Hi1 Hi2

∗ Hi3

 , (78)

Pi =

Pi1 0

0 Pi2

 , Pi1 = T T
i


⌢
P i1 0

0
⌢
P i2

Ti , (79)

⌢
Ami = Pi2Ami ,

⌢
Bmi= Pi2Bmi ,

⌢
Kmi =

⌢
P i1 Kmi ,

⌢
Lmi=

⌢
P i1 Lmi . (80)

Then the augmented system (8) is exponentially stable and satisfies the weighted H−
performance index (αm,γ2) in (10) for any switching signal with MDADT met by (81)

τmai > τm∗ai =
ln µmi
αm

. (81)

Proof. By defining I−(t) ≜ γ2
20f

T (t)f (t)− rT (t)r(t), this theorem can be proved by em-
ploying similar techniques as in the proof of Theorem 1.

For ω(t) = 0, the inequality V̇ (ςt ,σ) +αmV (ςt ,σ) + I−(t) ≤ 0 holds if both (73) and
the inequality (82) hold.
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Ψσ11(t) Ψσ12(t) Ψσ13(t) Ψσ14(t)

∗ Ψσ22(t) 0 Ψσ24(t)

∗ 0 Ψσ33(t) Ψσ34(t)

∗ ∗ ∗ −PσS−1σ Pσ

−

C̄T
σ (t)C̄σ (t) 0 C̄T

σ (t)D̄f σ (t) 0

0 0 0 0

∗ 0 D̄T
f σ (t)D̄f σ (t) 0

0 0 0 0

 ≺ 0. (82)

Applying Lemmas 2 and 28, (82) can be rewritten as
Ψσ11(t) Ψσ12(t) Ψσ13(t) Ψσ14(t)

∗ Ψσ22(t) 0 Ψσ24(t)

∗ 0 Ψσ33(t) Ψσ34(t)

∗ ∗ ∗ Sσ − 2Pσ

−

C̄T
σ (t)

0

D̄T
f σ (t)

0


[
C̄σ (t) 0 D̄f σ (t) 0

]
≺ 0. (83)

This is apparently equal to

E⊥Tσ ∆σ (t)E
⊥
σ ≺ 0, (84)

with

E⊥σ =



I 0 0 0

0 I 0 0

0 0 I 0

C̄σ (t) 0 D̄f σ (t) 0

0 0 0 I


,

∆σ (t) ≜



Ψσ11(t) Ψσ12(t) Ψσ13(t) 0 Ψσ14(t)

∗ Ψσ22(t) 0 0 Ψσ24(t)

∗ 0 Ψσ33(t) 0 Ψσ34(t)

0 0 0 −I 0

∗ ∗ ∗ 0 Sσ − 2Pσ


. (85)

Then, if we choose Eσ =
[
−C̄σ (t) 0 −D̄f σ (t) I 0

]
as one annihilator for E⊥σ and

an arbitrary matrix Yσ =
[[
Y1σ Y2σ

]
0 Y3σ −I 0

]T
, using the similar technique as

in [40, 32], and by Finsler’s Lemma 6, we deduce that (84) holds if

Tσ (t) = ∆σ (t) +He(YσEσ ) ≺ 0, (86)

in which Yiσ (i = 1,2,3) are some arbitrary tuning matrices.

Remark 6. Since a particular structure is chosen for the tuning matrix in Finsler’s
lemma in (86), it becomes a sufficient condition for satisfying (84). A more general form
for the tuning matrix can also be chosen, but the complexity of the resulting LMIs will
be increased.
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Therefore, it is evident that V̇ (ςt ,σ) +αmV (ςt ,σ) + I−(t) ≤ 0 holds, if both (73) and
the following inequality hold.

Tσ (t) =



Ψσ11(t)−He(
[
Y1σ Y2σ

]T
C̄σ (t)) Ψσ12(t) Ψσ13(t)−

[
Y1σ Y2σ

]T
D̄f σ (t)− C̄Tσ (t)Y3σ

[
Y1σ Y2σ

]T
+ C̄Tσ (t) Ψσ14(t)

∗ Ψσ22(t) 0 0 Ψσ24(t)

∗ 0 Ψσ33(t)−He(YT3σ D̄f σ (t)) D̄T
f σ (t) +YT3σ Ψσ34(t)

∗ 0 ∗ −3I 0
∗ ∗ ∗ 0 −Sσ


≺ 0.

(87)

Referring to Assumption 2, and pursuing the same line as in Theorem 1, we have

∆Tσ (t) =He(Λmσ (Q(t),Q(t),Q(t))Γmσ ), (88)

where Λmσ is defined in (75) and

Γmσ ≜


Nσ1 0 0 0 Nσ4 0 0 0

0 0 Nσ2 0 0 0 0 0

Nσ1 0 0 0 Nσ4 0 0 0

 , (89)

and by using the generalized square inequality Lemma 4, i.e., (17), we obtain

∆Tσ (t) ≤ δ−12σΛmσΛ
T
mσ + δ2σΓ

T
mσΓmσ . (90)

And we can get
Φmσ + δ−12σΛmσΛ

T
mσ ≤ 0, (91)

where Φmσ is defined in (74). Finally, using the Schur complement lemma (14), in-
equality (91) turns to (72).

The rest of the proof is omitted because it is similar to that of Theorem 1. This
means that the switched system (8) satisfies the weighted H− performance (αm,γ2) with

γ2 = γ20 exp

−0.5αm

l∑
p=1

τmapN0p


in (10). This completes the proof.

3.3 The mixed weighted H∞/H− problem

In this section, the combination of both the problems of disturbance attenuation and
fault sensitivity amplification is described by the following corollary as a mixed weighted
H∞/H− problem. To solve this problem, an algorithm is also presented.

Corollary 1. By combining the results of Theorems 1 and 2 referring to the opti-
mization problem defined in (11), the proposed IFDRC scheme can be summarized as
follows:
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Under the switching law σ(t) with the defined MDADT in (92), if conditions (22)-
(24) and (71)-(73) are satisfied, then the augmented system (8) is exponentially stable
with the estimated state decay ratio in (61), and also satisfies mixed weighted H∞/H−
performance indices (9) and (10).

τai ≥max(τm∗ai ,τ
M∗
ai ). (92)

Moreover, the IFDRCU matrices can be constructed by (32).
Since (22)-(24) are in the LMI form, and (71)-(73) are BMI, the IFDRCU design

problem yields the following two-step optimization algorithm [17].

Algorithm 1
0. Select the scalars αM > 0 , µMi ≥ 1 , αm > 0 , µmi ≥ 1.
1. Solve (22)-(24) to obtain the minimum permitted level of disturbance attenuation,

γ1, which will lead to the appropriate robust controller to satisfy the H∞ performance
index (9).

2. Substitute the resulted controller gains from the first step into (71)-(73) and check
the feasibility of these inequalities to find the maximum permitted level of fault
sensitivity, γ2, that satisfies the H− performance index (10).

Also, compromising between the desired γ1,γ2 can be done by repeating the two
aforementioned steps.

3.4 Residual signal evaluation

For successful fault detection and generating fault occurrence alarm, the last step after
designing the residual generator is to evaluate the residual signal (Figure 1). This step
includes two tasks:

- Producing an evaluation function (JRMS (L))

- Specifying a threshold (Jth).

By employing a similar method to the other fault detection literature [6, 14], which
relaxes the necessity to estimate the fault signal, the following residual evaluation func-
tion is used:

JRMS (L) = ∥r(t)∥2 =
(
1
L

∫ t0+L

t0

rT (τ)r(τ)dτ
) 1
2

, (93)

where L is the evaluation time step and t0 is the initial evaluation time instant.
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To identify when a fault has occurred, this evaluation function can be compared to
the threshold by the following rule:

JRMS (L)− Jth =

> 0, fault occured ⇒ Alarm,

< 0, No fault.
(94)

As indicated in [9], the threshold can be chosen as

Jth = sup∥ω(t)∥2≤δω ,f =0JRMS (L). (95)

4 A Numerical Example

In this section, a numerical example is considered as a case study for simulating the
proposed framework for the IFDRCU design technique to illustrate the effectiveness
and applicability of the theoretical results.

The realization of this numerical example can be given by the Electrical Circuit
system, which is shown in Figure 2.

Figure 2: A sample Electrical Circuit switched system.

According to Kirchhoff’s Circuit Law, for two switching modes of this Electrical
Circuit, we have

KCL : C
deC
dt

+
eC(t)
R

+ iL(t) · (σ(t)− 2) +α · eC(t − dσ(t)(t))

− β · iL(t − dσ(t)(t)).(σ(t)− 2)−λ ·ω(t) = 0,

KV L : L
diL
dt
− eC(t) · (σ(t)− 2)− δ · eC(t − dσ(t)(t)) · (σ(t)− 1)

−γ · iL(t − dσ(t)(t))− es(t)− η · f (t) = 0. (96)

The state-space representations of this circuit are given by

ẋ(t) =

 − 1
RC

(2−σ(t))
C

(σ(t)−2)
L 0

x(t) +  −α
C

β.(σ(t)−2)
C

δ.(σ(t)−1)
L

γ
L

x(t − dσ(t)(t))
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+

01
L

u(t) +  λC0
ω(t) +

0η
L

 f (t), (97)

where
[
x1(t) x2(t)

]T
=

[
eC(t) iL(t)

]T
and u(t) = eS (t) are the state vector and input

signal, respectively.
When the parameters α , β , δ , γ , η , λ are set to zero in this electrical circuit, this

is equivalent to the Boost Converter switched system. As a typical circuit system, the
Boost Converter is used to transform the source voltage into a higher voltage. This
class of power converters has been modeled as switched systems. In recent years, the
fault detection and control problems for such power converters have been widely studied
in the literature [10, 26]. More details of this system are given in [36].

For α = −0.2 , β = 0.3 , δ = 0.4 , γ = −0.5 , λ = −0.1 , η = 0.4 and R = 1Ω , L =

1H , C = 1F the following state-space matrices are obtained.

A1 =

−1 1

−1 0

 , Ad1 =

0.2 −0.3
0 −0.5

 , B1 =

01
 , Bω1 =

0.10
 ,

Bf 1 =

 0

0.4

 , C1 =
[
0.1 0.1

]
, Dω1 = [0] , Df 1 = [0.1] ,

A2 =

−1 0

0 0

 , Ad2 =

0.2 0

0.4 −0.5

 , B2 =

01
 , Bω2 =

0.10
 ,

Bf 2 =

 0

0.4

 , C2 =
[
0.3 0.4

]
, Dω2 = [0] , Df 2 = [0.1] , (98)

which are similar to the Boost Converter matrices in [10], except that it does not have
state delay. Also, output matrices are considered the same as in [10].

For parameter uncertainties, the following real constant matrices and Q(t) = sin(3t)

are considered:

M1 =

 0.1−0.2
 , M2 = [0.1] , (99)

N1 =
[
−0.2 0.1

]
, N2 =

[
0.1 −0.1

]
, N3 = [0.2] , N4 = [−0.1] .

Time-varying state delays for two subsystems are supposed to be d1(t) = 0.2 +

0.1cos(t) and d2(t) = 0.3 − 0.2sin(t). Therefore, the upper bound of delay and its
derivative for two modes will be d1 = 0.3 , ρ1 = 0.1 and d2 = 0.5 , ρ2 = 0.2, respectively.

Given αM = 0.1,αm = 0.3,µM1 = 1.01,µm1 = 1.1,µM2 = 1.02,µm2 = 1.5, the allowed
minimum MDADT for each subsystem could be obtained from (31) and (81), and
(92) as τ∗a1 = max(0.3177,0.0995) = 0.3177, τ∗a2 = max(1.3516,0.1980) = 1.3516. By
MDADT constraints τa1 = 0.53,τa2 = 1.39, the switching signal in Figure 3.a is chosen.
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Figure 3: (a). Switching signal (b). Fault and disturbance signals.

Solving the LMIs in (22)-(24) by MOSEK solver [1] in MATLAB/YALMIP, re-
sults in the following controller/detector gains, and minimum disturbance attenuation
level,γ1 = 0.187.


Am1 Bm1

Cm1 Dm1

Km1 Lm1

 =

−0.7175 0.3226 −0.0786
0.3226 −0.7175 −0.0786
−0.0113 −0.0113 −0.4972
−0.1252 −0.1252 −1.6310

 ,

Am2 Bm2

Cm2 Dm2

Km2 Lm2

 =

−0.7378 0.3134 −0.0284
0.3134 −0.7378 −0.0284
−0.0208 −0.0208 −0.2519
0.1272 0.1272 −1.6611

 , (100)

Then, solving the LMIs in (71)-(73) results in the fault sensitivity level, γ2 = 0.016.
For simulation, we assume that the unknown bounded input, called disturbance, is

given by ω(t) = 0.5exp(−2(t−15))cos(0.2π(t−15))u(t−15) with δω = 0.5, and the fault
occurs as a step in t = 35s and remains for 5 seconds, while disturbance is present from
t = 15 s as shown in Figure 3.b.

Choosing the initial state x0 =
[
0.6 −0.4

]T
, Figure 4.a and Figure 4.b show trajec-

tories of the state responses of the system (x(t)) and its control input (u(t)), respectively,
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from which we can see that the closed-loop system is exponentially stable under the
initial state and unknown disturbances.

Figure 4: (a). State responses of the closed-loop system. (b). Control input.

The generated residual signal and the evolution of the residual evaluation function
are shown in Figure 5.a and Figure 5.b.

Simulating the system in a fault-free case, the threshold can be determined as
Jth = 0.004. It can be seen from Figure 5.b that fault is detected at t = 35.2 s

Simulation results show that the early detection of fault can be achieved by the
controller/detector immediately and effectively when faults occur, although distur-
bance input, mode-dependent time-varying state delay, and parameter uncertainties
are present and the control loop is closed. The benefit of integrated fault detection and
control design of the system is that fault occurrence cannot be hidden by the control
action.

To illustrate the excellence of the proposed technique, it is compared with the exist-
ing method [10] in two cases; with and without state delay and parameter uncertainty.
Comparing the disturbance attenuation level values (γ1), as shown in Table 1, show
that the proposed approach is less conservative. It has a better disturbance rejection
capacity because the residual signal is less affected by the unknown input.

By comparing the minimum allowed average dwell time values in Table 1, the pro-
posed approach has more flexibility in the switching times, since it admits different
average dwell times for each subsystem. Note that since the compared paper did not
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Figure 5: (a). Generated residual signal. (b). Residual evaluation function.

Table 1: Comparison with the existing results

Method Delay Uncertainty Disturbance attenuation Average Dwell Average Dwell
level (γ1) time#1 time#2

[10] No No 0.91 12.307 12.307
This paper Yes Yes 0.1871 0.3176 1.3516
This paper No No 0.1644 0.3176 1.3516

consider state-space delay and parameter uncertainties, our results were reported with
and without state delay and parameter uncertainties.

5 Conclusion

The proposed MDADT switching strategy was less conservative and allowed lower and
as well different ADTs for each subsystem compared with the general ADT switching
method. The main objective of this paper was to propose a general framework for
IFDRC of linear continuous-time switching systems suffering from mode-dependent
time-varying state delay, parameter uncertainties, and input disturbance. Sufficient
conditions for IFDRC design were derived based on the MDADT technique. Multiple
Lyapunov-Krasovskii functions under the framework of mixed H∞/H−, and the fault
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detection filters and controllers were developed together. Finally, the proposed scheme
was applied to a switched model of an Electrical Circuit system, and the simulation
results indicated the effectiveness of the proposed technique.
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