[1] Abdelsamea, M.M., Gnecco G., Gaber, M.M. (2014). “An efficient self-organizing active contour model for image segmentation”, Neurocomputing, 149, 820-835.
[2] Alvarez, L., Baumela, L., Marquez-Neila, P., Henriquez, P. (2010). “Morphological snakes”, Computer Vision and Pattern Recognition, 2197-2202.
[3] Caselles, V., Kimmel, R., Sapiro, G. (1997). “Geodesic active contours”, International Journal of Computer Vision, 22, 61-79.
[4] Fox, V.L., Milanova, M., Al-Ali, S. “A hybrid morphological active contour for natural images”, Available at SSRN 3775362, 2021.
[5] Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M. (2001). “Fast geodesic active contours”, IEEE Transactions Image Process, 10, 1467-1475.
[6] Kussener, F. (2011). “A parallel genetic algorithm approach”, International Conference on Swarm Intelligence, 1-9.
[7] Osher, S., Sethian, J.A. (1988). “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations”, Journal of Computational Physics, 79, 12-49.
[8] Wang, M., Li, P., Liu, F. (2019). “Multi-atlas active contour segmentation method using template optimization algorithm”, BMC Medical Imaging, 19(1), 1-13.
[9] Wu, B., Yang, Y. (2012)., “local- and global-statistics-based active contour model for image segmentation”, Mathematical Problems in Engineering, 1-16.
[10] Yeo, S. Y., Xie, X., Sazonov, I., Nithiarasu, P. (2014). “Segmentation of biomedical images using active contour model with robust image feature and shape prior”, International Journal for Numerical Methods in Biomedical Engineering, 30, 232-248.