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1 Introduction

In recent years, the number of complex problems that engineers have to deal with has progres-
sively increased. One strategy for solving such problems is to transfer them to a distributed
network of smaller and simpler subsystems, resulting in a Multi-Agent System (MAS) instead
of a single, complicated system. In a MAS, agents efficiently cooperate to achieve group be-
havior through local interaction. The structure of the MASs has been inspired by the group
life of animals, where each agent (subsystem) communicates with other adjacent agents while
performing its independent tasks until the system achieves its overall and final goal. Further
explanations of system types and their control are provided in the next section.

In this context, the consensus problem is a crucial research area, which involves achieving
the convergence of the outputs or states of all agents to a common value with minimal compu-
tational costs and communication requirements. Due to its importance, multiple scientific and
research communities have pointed to MAS control design as a challenging and applicable new
area of research. MASs have numerous applications in military [7], autonomous vehicles [10],
and robotics [5, 18].

The consensus problem involves achieving the convergence of the outputs or states of all
agents to a common value [26]. A theoretical description of consensus controls was proposed
for the Vicsek model [6, 32] while in [22] a general structure of the consensus problem for
networks of integrators was developed. For more details on the consensus problem and its
solutions, see [1, 3, 21, 27]. In [25], a sufficient condition was derived to achieve consen-
sus for first-order integrator MASs with jointly connected communication graphs. The con-
sensus problem for networks of second-order and high-order integrators was investigated in
[8, 15, 23, 24, 28, 40]. Additionally, the consensus problem of MASs with general linear dy-
namics has been studied in several works, including [11, 14, 16, 17, 29, 31, 33, 34, 35, 37].
In [30, 36], conditions were established for achieving consensus of MASs with Lipschitz-type
nonlinearity. Additionally, a consensus algorithm for MASs with quantized communication
links was proposed in [4, 12]. Consensus algorithms can be classified into two types: consen-
sus without any leader and consensus with a leader. The former is called leaderless consensus,
while the latter is referred to as leader-follower consensus. In the problems with only one leader,
distributed tracking control is observed. However, in some practical applications, it is necessary
to deal with more than one leader, which leads to the containment control problem.

In recent years, SMC techniques have been applied to a wide range of MASs. In [39], SMC
techniques were employed for a class of leader-follower tracking error problems of a general
linear MAS. Moreover, a robust consensus protocol for a linear MAS was developed using the
SMC in [13].

In this paper, we propose a separating plane-based sliding mode controller to solve the
second-order dynamic consensus problem of multi-agent leader-follower systems. The pro-
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posed controller is asymptotically stable in the Lyapunov sense. Moreover, the proposed slid-
ing mode controller has a faster convergence speed than other classical methods, implying that
follower agents reach the leader state vector much faster than traditional methods. Addition-
ally, the control presented in this paper causes the state vectors of the system to reach a sliding
surface in a finite time. It is worth noting that the changes in the value of control do not depend
on the sign of sliding surface, but rather on the placement of S within or outside of the cone
generated by the rows of a matrix. This feature reduces the probability of the appearance of
chattering.

This paper is structured as follows: In Section 2, we present some preliminaries related
to graph theory, the hyperplane separation theorem, and the leader-follower MASs, as well as
the Lyapunov stability theorem. Section 3 addresses the problem of designing a fuzzy sliding
mode controller based on a separating hyperplane for the leader-follower MAS with second-
order dynamics. In Section 4, simulation results are provided to illustrate the effectiveness of
the proposed controller. Finally, the last section concludes this paper.

2 Preliminaries

In this section, we give provide some preliminaries related to graph theory, the particle swarm
optimization algorithm, the hyperplane separation theorem, the leader-follower MAS, and the
Lyapunov stability theorem. Firstly, we introduce some notions used throughout this paper.
We use x(t) to denote a function of t, ẋ(t) to denote the derivative of x(t) with respect to
t, and ẍ(t) to denote the second derivative of x(t). The transpose of a matrix or vector A,
denoted by AT . We denote the non-negative part of Rn by Rn

+, which is defined as Rn
+ =

{(x1, . . . , xn) |xi ∈ R+ ∪ {0}, i = 1, . . . , n}. TheKronecker product of amatrixA ∈ Rp×Rq

and a matrix B ∈ Rr × Rs is denoted by A⊗B and defined as

A⊗B =


a11B . . . a1qB
... . . . ...

ap1B . . . apqB

 .
Let G = (V,E) as be an undirected graph, where V = {v1, v2, . . . , vN} is the set of all

vertices and E = {(i, j)|i, j ∈ V } is the set of edges consisting of unordered pairs (i, j),
which are called edges of G. Vertices i and j are said to be adjacent if the edge (i, j) exists in
E. A path between vertices i1, il in G is a sequence of edges (i1, i2), . . . , (il−1, il) such that
(ik, ik+1) for k = 1, . . . , l − 1 are in E. The graph G is said to be connected if there is at
least one path between two vertices of G. The adjacency matrix of G is a symmetric matrix
A = [aij ] ∈ RN ×RN where aij = 1 if (i, j) ∈ E and aij = 0 otherwise. The degree ofG is a
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diagonal matrix D = diag(d1, . . . , dN ), where di =
N∑
j=1

aij for i = 1, . . . , N . The Laplacian

matrix of G is defined as L = D − A, which is also symmetric. In this paper, we consider
simple graphs that contain spanning trees with a fixed topology.

2.1 Particle swarm optimization algorithm

Consider a non-empty set C ⊆ Rn and a function f : C −→ R, where the minimization
problem for f at C is to find x∗ ∈ C such that

f(x∗) = min
{
f(X) : X ∈ C

}
. (1)

Particle Swarm Optimization (PSO) is an algorithm that can efficiently find good solutions
for problems like (1). The PSO was introduced by Jame Kennedy and Russel Ebhart [9] and is
inspired by observing the group behavior of animals in their natural habitat, such as bird flocking
or fish schooling. In the PSO algorithm, all particles share information, and each particle has
a position and velocity. The position and velocity of each particle are updated iteratively as
follows:

xi(k + 1) = xi(k) + vi(k + 1), (2)

vi(k + 1) = vi(k) + C1Rand(0, 1) (pbesti(k)− xi(k)) + C2Rand(0, 1) (gbesti(k)− xi(k)) ,
(3)

where i is the particle index, k is the iteration number, xi(k) and vi(k) are the position and
velocity of the particle respectively, C1 and C2 are the acceleration constants for the cognitive
component and the social component respectively, pbesti(k) is the location with the best fitness
of all the visited locations of particle i, gbest(k) is the location with the best fitness among all
the visited locations of all the particles, and Rand(0, 1) is a random value between 0 and 1. The
pseudo-code of the basic PSO algorithm is presented in Algorithm 1.

The constants C1 and C2 are also known as trust parameters. C1 expresses how much
confidence a particle has in itself, while C2 expresses how much confidence a particle has in
its neighbors. If C1 = C2, then the particles are attracted towards the average of the pbesti(k)
and the gbest(k).

It is worth mentioning that the PSO algorithm can be combined with deterministic methods
to increase the chance of finding themost likely global optimal point of the function. In addition,
in [20] Hybrid formulation for optimization problems that use PSO has been studied. As follow
we give some definitions related to cones.

Definition 1. A subset C of a vector space V is a cone (also called a linear cone) if for every
x ∈ C and all positive scalars α, we have αx ∈ C.
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Algorithm 1 Particle swarm optimization
procedure PSOf(x), S

for Each particle do
Initialize xi, vi randomly
Evaluate the fitness f(xi)

end for
repeat

for each particle i in S do
if f(xi) < f(pbesti) then

pbesti = xi

end if
if f(pbesti) < f(gbest) then
gbest = pbesti

end if
end for
for each particle i in S do
vi = vi + C1Rnd(0, 1) (pbesti − xi) + C2Rnd(0, 1) (gbest− xi)
xi = xi + vi

end for
k = k + 1

until k < Iterations
end procedure

Definition 2. A cone C is a convex cone if αx+βy ∈ C for any positive scalars α, β, and any
x, y ∈ C.

Definition 3. A polyhedral cone can be represented in two different ways; as an intersection of
inequalities or as the conical hull of vectors. In the description by the inequality, the polyhedral
cone can be given by a matrix A ∈ Rm × Rn such that C = {x ∈ Rn|Ax ∈ Rm

+}. In the
conical combination description, it can be represented by a finite set of vectors v1, . . . , vk such
that C = {α1v1 + . . .+ αkvk|αi ∈ R+ ∪ {0}, i = 1, . . . , k}.

In the following, we recall two hyperplane separation theorems that will be needed later
[2].

Theorem 1. Suppose that there are two disjoint convex setsC andD. Then, there always exists
a hyperplane aTx− b = 0 that separates them. Note that, here, the separation is not strict.
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Theorem 2. If C is a convex set and p is a point outside of C, then there always exists a
hyperplane aTx−b = 0 that strictly separatesC and p, therefore aT p−b > 0 and aTx−b < 0

for all x in C.

2.2 Leader-follower multi-agent system

In the context of MAS, an agent is a dynamical system with a state vector that evolves through
time based on its past value and a control input vector. The state of an agent is typically not
dependent on any other agent, but the control input is a function of the agent’s state vector as
well as the state vectors of other agents. AMAS is a set of agents that exchange information and
collaborate with each other based on a common control strategy to achieve a goal that cannot
be achieved by each agent alone. In a MAS, each agent is characterized by a vertex or node
in the graph G, where each edge from node vi to node vj represents the information flow of
the agent i to agent j. Each edge (vj , vi) ∈ E is associated with a weight aij > 0, which
models the strength of the interaction between the nodes. For example, if agent j has higher
social standing, then aij might be selected to be larger so that agent i is more responsive to the
behaviors of agent j. A graph is bidirectional if aij 6= 0 and aji 6= 0 so that communication
between agents occurs bidirectionally. A graph is said to be undirected if aij = aji, for all i, j,
meaning it is bidirectional and the weights of edges (vi, vj) and (vj, vi) are equal. In a MAS
with dynamic graph topology, the communication graph between agents changes with respect
to time. However, in this paper, we focus on MAS with undirected fixed graphs, as undirected
graphs are very common in practice and many real-world relationships are better modeled with
undirected graphs. A MAS can be classified as homogeneous if the dynamics and exchanged
information of all the agents are identical, otherwise, it is referred to as a heterogeneous MASs.

A MAS is said to follow a distributed control strategy with topology G if the control input
of each agent is a function of its own state (or output) and states (or outputs) of other agents
that are in the set of neighbors of that agent in the graph.

The state of node vi is denoted by xTi ∈ Rn. Then, the state of G is represented as x =

[xT1 , . . . , x
T
N ]T in Rn×N . In a consensus problem, all agents must converge to the same value.

In a consensus problemwith a leader, all nodes of theMAS are coordinated to the state trajectory
of the leader node.

2.3 Lyapunov stability

The following is a statement of the Lyapunov theorem, which has been proven in [19].
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Theorem 3. Let V (x, t) be a non-negative function with derivative V̇ along the trajectories of
the system. The following statements hold:

1. If V (x, t) is locally positive definite and V̇ ≤ 0 locally in x and for all t, then the origin
of the system is locally stable (in the sense of Lyapunov).

2. If V (x, t) is locally positive definite and decrescent, and V̇ ≤ 0 locally in x and for all
t, then the origin of the system is uniformly locally stable (in the sense of Lyapunov).

3. If V (x, t) is locally positive definite and decrescent, and −V̇ is locally positive definite,
then the origin of the system is uniformly locally asymptotically stable.

4. If V (x, t) is positive definite and decrescent, and−V̇ is positive definite, then the origin
of the system is globally uniformly asymptotically stable.

Next, we recall a fundamental lemma that we will need in the sequel, which has been proven
in [38].

Lemma 1. For any vectors x, y of appropriate dimensions and any symmetric positive definite
matrix Z of appropriate dimension, the following inequality holds:

±2xT y ≤ xTZx+ yTZ−1y. (4)

Finally, we state the following lemma:

Lemma 2. If at time t = 0, the state vectors of the system are not on the sliding surface,
i.e., s(0) 6= 0, and control u is designed in such a way that the system satisfies the condition
sṡ ≤ −η |s|, then the state vectors of the system reach the sliding surface in finite time tr, Such
that:

tr ≤
|s(0)|
η

. (5)

Proof. In relation sṡ ≤ −η |s|, if it is s ≥ 0 , then we have ṡ ≤ −η, and hence we have:∫ s(tr)

s(0)
ds ≤

∫ t=tr

t=0
−η dt,

s(tr)− s(0) ≤ −ηtr,

which gives

tr ≤
s(0)

η
.

If s ≤ 0, then we have tr ≤ − s(0)
η . Since the right hand side of inequalities tr ≤ s(0)

η and
tr ≤ − s(0)

η is positive, relation (5) is always valid.
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3 Main Results

In this section, we present a study on a fuzzy sliding mode controller based on a separating
plane for solving a consensus problem in leader-follower MASs.

Assumption 1. If f(x(t), ẋ(t), t) is a real-valued vector function, then there exist two real
positive constantsWx andWv such that f holds in the following inequality

‖f(x(t), ẋ(t), t)− f(y(t), ẏ, t)‖ ≤Wx‖x(t)− y(t)‖+Wv‖ẋ(t)− ẏ(t)‖.

Consider a team of N identical agents with one leader. The dynamic equation of the i-th
agent is given by :

ẍi(t) = f(xi(t), ẋi(t), t) + g(xi(t), ẋi(t), t)ui, i = 1, . . . , N. (6)

The dynamic equation of the leader is given by:

ẍ0(t) = f(x0(t), ẋ0(t), t), (7)

where xi(t), ui are column vectors in Rn and f(xi(t), ẋi(t), t) ∈ Rn and g(xi(t), ẋi(t), t) ∈
Rn×Rn are real-valued vector functions for all i = 1, . . . , N ; and g(x(t), ẋ(t), t) is invertible
for all x(t).

We define the global functions F and G as follows:

F (x, ẋ, t) =
[
f(x1(t), ẋ1(t), t)

T , . . . , f(xN (t), ẋN (t), t)T
]T ∈ Rn×N , (8)

U = [uT1 , . . . , u
T
N ]T ∈ Rn×N ,

G(x, ẋ, t) =


g(x1(t), ẋ1(t), t) O . . . O

O g(x2(t), ẋ2(t), t) . . . O

:
. . . :

O . . . O g(xN (t), ẋN (t), t)

 ,

where O presents a square zero matrix of order n, and G ∈ Rn×N × Rn×N .
Equations (6) and (7) can be written as:

ẋi(t) = vi(t),

v̇i(t) = f(xi(t), vi(t), t) + g(xi(t), vi(t), t)ui, i = 1, . . . , N,

and

ẋ0(t) = v0(t),

v̇0(t) = f(x0(t), v0(t), t).
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The local neighborhood consensus error for each follower agent is expressed as:

εxi =

N∑
j=1

aij(xi(t)− xj(t)) + bi(xi(t)− x0(t)), (9)

εvi =

N∑
j=1

aij(vi(t)− vj(t)) + bi(vi(t)− v0(t)), (10)

where εxi , εvi ∈ Rn and bi ≥ 0.
Note that bi > 0 if and only if the i-th agent is connected to the leader. We have εx =

[εx1 , . . . , εxN ]
T ∈ Rn×N and εv = [εv1 , ..., εvN ]

T ∈ Rn×N .

Definition 4. Consider a MAS with N followers and one leader with second-order dynamics.
If xi(t) is the state of the i-th agent and x0(t) is the state of the leader. We say the MAS will
reach a consensus successfully if for all i = 1, . . . , N

lim
t→∞

(‖xi(t)− x0(t)‖+ ‖ẋi(t)− ẋ0(t)‖) = 0.

We define some notations that we will use in the sequel as follows:

1 := [1, . . . , 1]T ∈ RN ,

I := 1⊗ In,

l := (L+ B)⊗ In.

where B is a diagonal matrix N ×N with diagonal elements bi. Also, L is a Laplacian matrix
associated with the graph topology of MAS.

Moreover, we define exi := xi(t)− x0(t), evi := vi(t)− v0(t), and

ex := [eTx1
, ..., eTxN

]T ∈ Rn×N ,

ev := [eTv1 , . . . , e
T
vN

]T ∈ Rn×N ,

and x0(t) := Ix0(t).
Now, it is easy to see that

εx = lex.

Let f(x0(t), v0(t), t) := If(x0(t), v0(t), t), then we define

Fe(x, ẋ, t) := F (x, ẋ, t)− f(x0(t), v0(t), t).

Therefore, we get

ε̇x = εv, (11)

ε̇v = l (Fe(x, v, t) +G(x, v, t)U) . (12)
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3.1 Sliding mode control

To design a standard sliding mode controller, sliding surfaces si = 0 must be set for i =

1, . . . , N such that
si = ciInεxi + ε̇xi , ci > 0, (13)

and
ṡi = ciIn ˙εxi + ε̈xi . (14)

It is evident that si, ṡi ∈ Rn for i = 1, . . . , N, and if si = 0, then εvi = −ciεxi . Hence,
εxi → 0 and εvi → 0. Therefore, the control input ui must be determined for all i such that
each εxi can be driven to the sliding surface si = 0. However, finding ui directly from si = 0

and ṡi = 0 is not possible.
The sliding surfaces can be represented in matrix form as

S = Cεx + εv, (15)

where
S =

[
sT1 , . . . , s

T
N

]T ∈ Rn×N ,

and C = diag(c1, . . . , cN )⊗ In in Rn×N × Rn×N . Then

Ṡ = Cεv + lFe(x, v, t) + lGU. (16)

Let M := lG, and let C be the polyhedral cone generated by the rows of M. We define
C =

{
x : x =MT y, y ∈ Rn×N

+

}
. If S is not in polyhedral cone generated by rows ofM, we

can use Theorem 2,to propose a separating plane aTx− b = 0 such that

a = S− ĉ,

and
b =
‖ S ‖ − ‖ ĉ ‖

2
,

where
ĉ = argmin {‖S− c‖| c ∈ C} . (17)

Here, ĉ is obtained by solving the optimization problem

ĉ = argmin
{
‖S−MT y‖, y ∈ Rn×N

+

}
. (18)

It is obvious that ĉ may not be a solution of the system of the equationsMT y = S. Thus,
to obtain ĉ, we need to solve the minimization problem (18), which can be achieved using
Algorithm 1. Hence we define
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Ũ = a−M−1b−M−1KS, (19)

where b := b1 and

K := κIN , (20)

such that

κ := 1 +
βTS
‖ S ‖2

, (21)

β := [β1, . . . , βN ]T ,

and

βi := aTMi − b.

If S is already in the cone C, we define USW := −M−1S. In other words, we can say that

USW =

Ũ, if S /∈ C,

−M−1S, if S ∈ C.
(22)

We assume that M is positive definite and by using Theorem 2, we can say that Ũ defined in
(19) satisfies

STMŨ = −ξ ‖ S ‖, ξ ≥ 0.

We denote the SMC based on the separating plane by USM, which is determined as

USM = M−1 (−Cεv − lFe(x, v, t)) + ρUSW , (23)

where ρ is an arbitrary positive number.
To stabilize the sliding surface S and the SMC, proposed in (23), we consider the Lyapunov
function

V =
1

2
STS, (24)

V̇ = ST Ṡ. (25)

Using (16), (15) and (25), we have

V̇ = εTv Cεv + εTx C2εv + εTx ClFe + εTv lFe + ST lGUSM.

It is important to note that for both cases of switching control, USM satisfies the following
condition.

V̇ ≤ −η ‖ S ‖, η ≥ 0. (26)
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Remark 1. In the reaching phase, the state vectors of the system reach the sliding surface, and
in the sliding phase, the sliding mode controller in 23 drives the system to the equilibrium point.
Using the proposed sliding mode controller (23) in (16), we obtain

Ṡ =Ma− b−
(
1 +

βTS
‖ S ‖2

)
S,

Ṡ =β −
(
1 +

βTS
‖ S ‖2

)
S.

which shows an exponential term for all follower agents. Therefore, the state vector of each
agent is forced to reach the sliding surface faster.

Remark 2. The proposed sliding mode controller (23) satisfies (26), and according to Lemma
2, the reaching time is finite when S(0) 6= 0 where 0 is the zero vector in Rn×N .

3.2 Fuzzy sliding mode controller

In theory, an ideal sliding mode implies infinite switching frequency, which results in the chat-
tering phenomenon. Chattering is a harmful phenomenon that causes high wear of moving
mechanical parts, and high heat losses in power circuits. In the previous subsection, the pro-
posed sliding mode controller may have faced the chattering phenomenon due to the change
of S at each moment. To address this issue, a fuzzy sliding mode controller is used. For the
proposed fuzzy sliding mode controller, the fuzzy rules are assumed as follows:

If S /∈ Cone(M) then µ = 1. (27)

If S ∈ Cone(M) then µ = 0. (28)

The rule (27) specifies that USM is obtained using the separating plane when S does not belong
to the cone generated by the rows ofM. Specifically, we have

USM = M−1 (−Cεx − lFe(x, v, t)) + θ(a−M−1b−M−1KS).

Similarly using (28), USM is obtained as:

USM = M−1 (−Cεx − lFe(x, v, t))− θS,

when S belongs to the coneC. Based on these rules, the fuzzy slidingmode controller is defined
as:

UFSM = M−1 (−Cεx − lFe(x, v, t))

+ µθ(a−M−1b−M−1KS)− (1− µ)θS. (29)
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The input variable of the fuzzy system is determined as the minimum component of the
vector y, which is obtained by solving the equations S −MT y = 0. If y ∈ Rn×N

+ , then its
smallest component is positive, and if y /∈ Rn×N

+ , then its smallest component is negative.
Let positive and negative linguistic variables be transformed into fuzzy values with the input
membership function. By adopting the rules established in (28), theMamdani inference system,
and the inverse defuzzification method, the output of the fuzzy system µ is obtained. The
input and output fuzzy membership functions are illustrated in Figure 1. The block diagram for
the simulation of the separating plane-based sliding mode controller simulation is presented in
Figure 2. The blocks shown in the figure are user-defined functions in MATLAB.
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Figure 1: Fuzzy membership functions.
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4 Implementation

This section provides three numerical examples to demonstrate the effectiveness of the theoret-
ical results obtained in Sections 3.

In these examples:

• We aim to solve the minimization problem min{‖S−MT y ‖, y ∈ Rn×N
+ } using Algo-

rithm 1, where S is a sliding surface,M = lG and y belongs to Rn×N
+ .

• Since S is a function of the time t, the objective function changes at each time step.

• For Algorithm 1, we set C1 = C2 = 0.001, the number of iterations 10, and the number
of particles to 50.

Furthermore, the input and output fuzzy membership functions used in all three examples
are presented in Figure 1. To implement these examples, MATLAB Simulink is employed with
a step size of 10−1.

Example 1. We present Example 1 to illustrate our approach for a MAS consisting of one
leader and three followers. The leader is indexed by 0, and the followers are indexed by 1,
2, and 3. The exchange of information between agents is represented by a fixed, connected
and undirected graph topology as shown in Figure 3. The corresponding Laplacian matrix L is
given by:

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Figure 3: Graph topology of Example 1.

The states of the leader and followers are vectors in R3. The dynamics of the followers are
defined as follows:



Izadi, N., Dastjerdi, M.T./ COAM, 9 (1), Winter-Spring (2024) 15

ẋi(t) = vi(t),

v̇i(t) = [0.85xi1(t)− 0.6vi1(t)− 1 + ui1, xi2(t)− vi2(t)− 1 + ui2, xi3(t)− 2vi3(t)− 1 + ui3]
T ,

(30)

where i = 1, 2, 3. The dynamics of the leader are given by:

ẋ0(t) = v0(t),

v̇0(t) = [0.85x01(t)− 0.6v01(t)− 1, x02(t)− v02(t)− 1, x03(t)− 2v03(t)− 1]T . (31)

It should be noted that the nonlinear term fi(x, v, t) in (30) satisfies Assumption 1 where
Wx = 1 andWv = 2.

To simulation Example 1, we set ρ =
1

1+ ‖ S ‖
in (23). The initial position and velocity of

the leader are vectors in R3:

x0(0) = [0, 0, 0]T , v0(0) = [0.2, 0.25, 0.8]T .

The initial positions of the three followers are:

x1(0) = [4, 3, 1]T , x2(0) = [1.5,−2.5, 1.2]T , x3(0) = [−2.5, 5, 1]T .

The initial velocity conditions of the followers are:

v1(0) = [−0.8,−0.5, 1.8]T , v2(0) = [1.5, 1.6, 1.2]T , v3(0) = [−2.5,−1.2, 1]T .

As shown in Figures 4, 5, and 6, the designed controller successfully makes all nodes follow
the leader with an error of less than 10−8 in 30 seconds.

Figures 7, 8, and 9, depict the error trajectory of all follower agents inR3, which rapidly and
continuously decreases. To provide a clearer view, we zoomed in on the figures from t = 28 to
t = 30. The simulation results demonstrate that the initial error converges to zero with an error
of less than 10−9.

Moreover, Figures 10, 11, and 12 display the velocity of all nodes in R3. It is evident from
Figures 4, 5, and 6 that the trajectories of the follower agents converge to that of the leader.

The equations of the leader trajectory are as follows:

x0(t) = 0.1031 (exp(0.6695t)− exp(−1.2695t)) + 100

85
,

y0(t) = −0.1118 (exp(−1.6180t)− exp(0.6180t)) + 1,

z0(t) = 0.8t exp(−t) + 1, (32)

where x0(t), y0(t) and z0(t) represent the components of the trajectory in the x, y, and z axes,
respectively. Regarding the equations in (32), It can be observed that the values of the trajectory
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Figure 4: Trajectory of all the agents in x-axis in 30 seconds.
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Figure 5: Trajectory of all the agents in y-axis in 30 seconds.

and velocity of the agents on the x and y axes increase significantly to the variable t. Figures 4,
5, and 6 demonstrate that the trajectories of the follower agents converge to the leader trajectory.
Additionally, the simulation results in Figures 10, 11, and 12 indicate that the velocity of all
follower agents is consistent with the velocity equations of the leader.

We use the fuzzy system to overcome the chattering phenomenon as illustrated in Figures
13, 14, and 15.
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Figure 6: Trajectory of all the agents in z-axis in 30 seconds.
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Figure 7: Error trajectory of all the agents in x-axis in 30 seconds.

4.1 SMC based on separating plane without any fuzzy controllers

In practical applications of sliding mode controls, the phenomenon of chattering may occur,
which manifests as oscillations with finite frequency and amplitude. Chattering is a detrimental
phenomenon that can lead to low control accuracy, high wear of moving mechanical parts, and
high heat losses in power circuits.
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Figure 8: Error trajectory of all the agents in y-axis in 30 seconds.
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Figure 9: Error trajectory of all the agents in z-axis in 30 seconds.

We implement the proposed controller on the same MAS defined by (30) and (31) without
using fuzzy rules. As shown in Figures 16 and 17, the obtained results are satisfactory, and the
states of the agents and leader reach a consensus. However, the lack of a fuzzy controller leads
to the chattering phenomenon in the control of the MAS as shown in Figure 18.

Now, we give an example to show an application of an SMC based on a separating plane
for homogeneous leader-follower MASs with a fixed graph topology.
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Figure 10: Velocity of all the agents in x-axis in 30 seconds.
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Figure 11: Velocity of all the agents in y-axis in 30 seconds.

Example 2. In this study, we consider a homogeneous multi-agent leader-follower system con-
sisting of six agents to demonstrate the control presented in Section 3. The exchange of infor-
mation between agents is shown by the graph topology in Figure 19. The dynamic equations
of the agents are given by the Van der Pol oscillator equation (33), defined as follows

ẋi(t) = vi(t),
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Figure 12: Velocity of all the agents in z-axis in 30 seconds.
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Figure 13: FSMC based on a separating plane of the first agent in three dimensions.

v̇i(t) = −xi(t) + 3(1− x2i (t))vi(t) + ui, i = 1, . . . , 5, (33)

where xi(t) and vi(t) are real-valued functions, and i = 1, . . . , 5. The dynamic equation of the
leader is defined as follows

ẋ0(t) = v0(t),

v̇0(t) = −x0(t), (34)

where xi(t), vi(t) ∈ R for all i = 0, . . . , 5. The initial values of the followers are given as
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Figure 14: FSMC based on a separating plane of the second agent in three dimensions.
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Figure 15: FSMC based on a separating plane of the third agent in three dimensions.
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(b) Second agent
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(c) Third agent

Figure 16: Trajectory of all the agents using SMC based on a separating plane without using a fuzzy system.
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(b) Second agent
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(c) Third agent

Figure 17: Velocity of all the agents using SMC based on a separating plane without using a fuzzy system.
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(b) Second agent
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(c) Third agent

Figure 18: SMC based on a separating plane without using a fuzzy system in 30 seconds.

Figure 19: Graph topology of Example 2.

x1(0) = 0.1, x2(0) = 0.4, x3(0) = 0.2, x4(0) = 0.3, x5(0) = 0.5,

v1(0) = 0.2, v2(0) = 0.1, v3(0) = 0.1, v4(0) = 0.1, v5(0) = 0.1,

and the initial values of the leader are given by

x0(0) = 0.2,

v0(0) = 0.

The Laplacian matrix L of the graph topology of the MAS is given as
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L =


1 0 −1 0 0

0 1 0 0 −1
−1 0 2 −1 0

0 0 −1 1 0

0 −1 0 0 1

 .

In this example, we apply two control methods to reach a consensus among the agents. The
first control method is FSMC based on a separating plane, and the second one is an equivalent
sliding mode control. The simulation results show that the FSMC based on a separating plane
achieves consensus faster than the equivalent sliding mode control.

4.2 FSMC based on separating plane

By taking the parameter ρ =
1

1+ ‖ S ‖
corresponding to the provided control, the tracking er-

rors of the trajectory and velocity of the follower nodes are shown in Figures 20 and 21 respec-
tively. Note that since the step size is 0.1, it appears from Figures 20 and 21 that the trajectory
and velocity errors decrease after 10 iterations. Moreover, the numerical results indicate that
the error value is less than 10−8.
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Figure 20: Trajectory error of all the agents in 10 seconds.

Figures 22 and 23 depict the trajectory and velocity curves of the follower agents and the
leader, respectively. It is observed that similar to Example 1, the states of the follower agents
reach a consensus very quickly, with an error less than 10−8, and coincide with the state of
the leader. The simulation results demonstrate that the accuracy of this experiment is less than
10−8. To examine the behavior of all the followers and the leader, that is the velocity and the
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Figure 21: Velocity error of all the agents in 10 seconds.

trajectory of the agents are shown in Figures 22 and 23 using the zoom commands of MATLAB
software.
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Figure 22: Trajectory of all the agents in 10 seconds.

In the sequel, Figure 24 shows that the proposed fuzzy controller has no chattering phe-
nomenon.

Figure 25 displays the variations of the Lyapunov function to the variable t for the five
nodes.

It is important to note that the objective function’s behavior changes with respect to the vari-
able t. Therefore, we set t = 0.1 and plotted the graph of the objective function corresponding
to the number of iterations in Figure 26.
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Figure 23: Velocity of all the agents in 10 seconds.
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Figure 24: FSMC based on a separating plane in 10 second.

We ran this example under various conditions, and in most cases, the chattering phe-
nomenon was not observed. This occurred because the S vector was frequently found outside
the cone generated by the rows ofM during the simulation run, preventing the chattering phe-
nomenon from being observed.

4.3 SMC based on an equivalent control

To achieve a consensus in the van der pol MAS defined by equations (33) and (34), we imple-
ment a sliding mode control based on an equivalent control. The results of this implementation
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Figure 25: Lyapunov function of the MAS.
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Figure 26: Objective function values with respect to the iterations at t = 0.1.

are presented in Figures 27 and 28. It is noteworthy that the proposed SMC in this paper shows
a faster convergence rate toward consensus compared to other SMC methods, such as the SMC
based on an equivalent control. Additionally, the chattering phenomenon in the sliding mode
controller of the MAS can be seen in Figure 29. Comparing the proposed controller with the
equivalent sliding mode controller, it can be seen that the former is more accurate, while the
latter faces the chattering phenomenon.

Example 3. One of the main reason for using sliding mode or fuzzy control is to mitigate the
effects of uncertainty and disturbance. In this Example, we demonstrate the effectiveness of
the control presented in Section 3, by considering a homogeneous multi-agent leader-follower
system with six agents. The dynamics of the agents are subject to uncertainty and are defined
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Figure 27: Trajectory of all the agents using SMC based on an equivalent control.
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Figure 28: Velocity of all the agents using SMC based on an equivalent control.

as follow:

ẋi(t) = vi(t),

v̇i(t) = −0.5vi(t) + xi(t)− x3i (t) + 13ui(t) + w(t), i = 1, . . . , 5, (35)

in which w(t) =
1

2 + 4t2
is a bounded uncertainty. The exchange of information between

agents is shown by a graph topology in Figure 30.
Also, the dynamics of the leader are

ẋ0(t) = v0(t),

v̇0(t) = 2π cos(2πt). (36)
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Figure 29: The SMC based on an equivalent control for all the agents in 10 second.
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Figure 30: Graph topology of Example 3.

The initial values of the followers are given as

x1(0) = 0.5, x2(0) = 1, x3(0) = −0.5, x4(0) = 0.5, x5(0) = 0.7,

v1(0) = −1, v2(0) = 1, v3(0) = −0.5, v4(0) = 0.5, v5(0) = 0.5,

and the initial values of the leader are given as

x0(0) = 0,

v0(0) = 2π.

The Laplacian matrix L of the graph topology of the MAS is provided as
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L =


4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

 .

As shown in Figures 31 and 32, the states of the follower agents quickly reach a consensus
with an error less than 10−4, similar to Examples 1 and 2.
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Figure 31: Trajectory of all the agents in 10 seconds.
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Figure 32: Velocity of all the agents in 10 seconds.
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By taking the parameter ρ =
1

1+ ‖ S ‖
corresponding to the provided control, the tracking

errors of the trajectory and velocity of the follower nodes are shown in Figures 33 and 34
respectively.
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Figure 33: Trajectory error of all the agents in 10 seconds.
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Figure 34: Velocity error of all the agents in 10 seconds.

As shown in Figures 35 and 36 the fuzzy sliding mode controller based on a separating
plane , which is proposed in this paper , does not exhibit the chattering phenomenon.
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Figure 35: SMC based on a separating plane for agents 1 and 2.
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Figure 36: SMC based on a separating plane for agents 3,4 and 5.

5 Conclusion

This paper conducted a study on study a fuzzy sliding mode controller (FSMC) that is based
on a separating plane for a specific class of nonlinear multi-agent systems (MASs). The pur-
pose of this study was to demonstrate the advantages of the proposed FSMC, and to do so, we
presented three numerical examples. Our results showed that the proposed FSMC achieved a
faster convergence to reach a consensus compared to other SMCs, such as the one based on an
equivalent control. As a potential future direction for this research, it would be interesting to
further investigate the application of the proposed FSMC to leaderless consensus problems.
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