In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Author

Department of Mathematics‎, ‎Payame Noor University (PNU)‎, ‎P.O‎. ‎BOX 19395-4697‎, ‎Tehran‎, ‎Iran‎.

Abstract

This paper addresses a non-smooth multi-objective semi-infinite programming problem that involves a feasible set defined by inequality constraints‎. ‎Our focus is on introducing a new weak Slater constraint qualification and deriving the necessary and sufficient conditions for (weakly‎, ‎properly) efficient solutions to the problem using (weak and strong) Karush-Kuhn-Tucker types‎. ‎Additionally‎, ‎we present two duals of the Mond-Weir type for the problem and provide (weak and strong) duality results for them‎. ‎All of the results are given in terms of Clarke subdifferential‎.

Keywords

[1] Barilla D., Caristi G., Kanzi N. (2022). “Optimality and duality in nonsmooth semi-infinite optimization, using a weak constraint qualification”, Decisions in Economics and Finance, 45(2), 503-519.
[2] Caristi G., Kanzi N. (2015). “Karush-Kuhn-Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming”, International Journal of Mathematical Analysis, 9, 1929-1938.
[3] Clarke F.H. (1983). “Optimization and nonsmooth analysis”, Wiley, Interscience.
[4] Ehrgott M. (2005). “Multicriteria optimization”, Springer, Berlin.
[5] Gao X.Y. (2012). “Necessary optimality and duality for multiobjective semi-infinite programming”, Journal of Theoretical and Applied Information Technology, 46, 347-353.
[6] Goberna M.A., Kanzi N. (2017). “Optimality conditions in convex multiobjective SIP”, Mathematical Programming, 164, 167-191.
[7] Goberna M.A., López M.A. (1998). “Linear semi-infinite optimization”, Wiley, Chichester.
[8] Goberna M.A., Guerra-Vazquez F., Todorov M.I. (2013). “Constraint qualifications in convex vector semi-infinite optimization”, European Journal of Operational Research, 249, 12-21.
[9] Guerra-Vazquez F., Todorov M.I. (2016). “Constraint qualifications in linear vector semi-infinite optimization”, European Journal of Operational Research, 227, 32-40.
[10] Habibi S., Kanzi N., Ebadian A. (2020). “Weak Slater qualification for nonconvex multiobjective semi-infinite programming”, Iranian Journal of Science and Technology, Transaction A: Science, 44, 417-424 .
[11] Hettich R., Kortanek O. (1993). “Semi-infinite programming: theory, methods, and applications”, SIAM Review, 35, 380-429.
[12] Hiriart-Urruty J.B., Lemarechal C. (1991). “Convex analysis and minimization algorithms, I & II”, Springer, Heidelberg, Berlin.
[13] Kanzi N. (2011). “Necessary optimality conditions for nonsmooth semi-infinite programming problems”, Journal of Global Optimization, 49, 713-725.
[14] Kanzi N. (2014). “Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints”, SIAM Journal on Optimization, 24, 559-572.
[15] Kanzi N. (2015). “Karush–Kuhn–Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems”, Journal of Mathematical Extension, 9, 45-56.
[16] Kanzi N. (2015). “On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data”, Optimization Letters, 9, 1121-1129.
[17] Kanzi N. (2017). “Necessary and sufficient conditions for (weakly) efficient of nondifferentiable multi-objective semi-infinite programming”, Iranian Journal of Science and Technology Transactions A: Science, 42, 1537-1544.
[18] Kanzi N., Nobakhtian S. (2010). “Optimality conditions for non-smooth semi-infinite programming”, Optimization, 59, 717-727.
[19] Kanzi N., Nobakhtian S. (2013). “Optimality conditions for nonsmooth semi-infinite multiobjective programming”, Optimization Letters, 8, 1517-1528.
[20] Kanzi N., Nobakhtian S. (2017). “Nonsmooth multiobjective semi-infinite problems with mixed constraints”, Pacific Journal of Optimization, 13, 43-53.
[21] Kanzi N., Shaker Ardekani J., Caristi G. (2018). “Optimality, scalarization and duality in linear vector semi-infinite programming”, Optimization, 67, 523-536.
[22] López M.A., Vercher E. (1983). “Optimality conditions for nondifferentiable convex semi-infinite Programming”, Math. Programming, 27, 307-319.
[23] Mond B., Weir T. (1981). “Generalized concavity and duality”, In, Schaible, S., Ziemba, W.T. (eds), Generallized Concavity in Optimization and Economics. 263-279, Academic Press, New York.
[24] Stein O. (2003). “Bi-Level strategies in semi-infinite programming”, Kluwer, Boston.
[25] Tung L. (2022). “Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems with vanishing constraints”, Applied Set-Valued Analysis and Optimization, 4 (1), 1-26.
[26] Upadhyay B.B., Mishra S.K. (2015). “Nonsmooth semi-infinite min-max programming involving generalized (ϕ, ρ)-invexity”, Journal of Systems Science and Complexity, 28 (4), 857-875.