Numerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method

Document Type: بنیادی - نظری

Author

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran

Abstract

‎The controlled harmonic oscillator with retarded damping‎, ‎is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems‎. ‎In this paper‎, ‎to solve this problem‎, ‎we presented an analytical method‎. ‎This approach is based on the homotopy perturbation method‎. ‎The solution procedure becomes easier‎, ‎simpler and more straightforward‎. ‎In order to use the proposed method‎, ‎a control design algorithm with low computational complexity is presented‎. ‎Through the finite iterations of the proposed algorithm‎, ‎a suboptimal control law is obtained for the problems‎. ‎Finally‎, ‎the obtained results have been compared with the exact solution of the controlled harmonic oscillator and variational iteration method‎, ‎so that the high accuracy of the results is clear.

Keywords

Main Subjects


[1] Ayati Z.‎, ‎Biazar J.‎, ‎Ebrahimi S‎. ‎(2015)‎. ‎``A new homotopy perturbation method for solving two-dimensional reaction–diffusion brusselator system''‎, ‎Journal of Mathematics and Computer Science‎, ‎15‎, ‎195-203‎.

[2] Banks H‎. ‎T.‎, ‎Burns J‎. ‎A‎. ‎(1978)‎. ‎``Hereditary control problem‎: ‎Numerical methods based on averaging approxi‎‎mations''‎, ‎SIAM Journal on Control and Optimization‎, ‎16 (2)‎, ‎169-208‎.

[3] Dooren R‎. ‎V.‎, ‎Vlassenbroeck J‎. ‎(1982)‎. ‎`` Chebyshev series solution of the controlled duffing oscillator''‎, ‎Journal of Computational Physics‎, ‎47‎, ‎321-329‎.

[4] El-kady M.‎, ‎Elbarbary E‎. ‎M‎. ‎E‎. ‎(2002)‎. ‎``A Chebyshev expansion method for solving nonlinear optimal control problems''‎, ‎Applied Mathematics and Computation‎, ‎129‎, ‎171-182‎.

[5] Elnagar G.‎, ‎Khamayseh A‎. ‎(1997)‎. ‎``On the optimal spectral Chebyshev solution of a controlled nonlinear dynamical system''‎, ‎IMA Jounal of Applied Mathematics‎, ‎58‎, ‎147-157‎.

[6] Feki M‎. ‎(2003)‎. ‎``Observer-based exact synchronization of ideal and mismatched chaotic systems''‎, ‎Physics Letters A‎, ‎309‎, ‎53-60‎.

[7] Ghorbani A‎. ‎(2009)‎. ‎``Beyond Adomian polynomials‎: ‎He polynomials''‎, ‎Chaos‎, ‎Solutions & Fractals‎, ‎39‎, ‎1486-1492‎.

[8] He‎, ‎J‎. ‎H‎. ‎(1999)‎. ‎''Homotopy perturbation technique''‎, ‎Computer Methods in Applied Mechanics and Engineering‎, ‎178‎, ‎257-262‎.

[9] He‎, ‎J‎. ‎H‎. ‎(1999)‎. ‎``Variational iteration method-a kind of nonlinear analytical technique‎: ‎some examples''‎, ‎International Journal of Nonlinear Mechanics‎, ‎699-708

[10] He J‎. ‎H‎. ‎(2006)‎. ‎``Some asymptotic methods for strongly nonlinear equations''‎, ‎International Journal of Modern Physics B‎, ‎20 (10)‎, ‎1141-1199‎.

[11] Haddadi N.‎, ‎Ordokhani Y.‎, ‎Razzaghi M‎. ‎(2012)‎. ‎``Optimal control of delay systems by using a hybrid functions‎ ‎approximation''‎, ‎Journal of Optimization Theory and Applications‎, ‎153‎, ‎338-356‎.

[12] Jia W.‎, ‎He X.‎, ‎Guo L‎. ‎(2017)‎. ‎``The optimal homotopy analysis method for solving linear optimal control problems''‎, ‎Applied Mathematical Modelling‎, ‎45‎, ‎865-880‎.

[13] Kharatishvili G‎. ‎L‎. ‎(1961)‎. ‎``The maximum principle in the theory of optimal process with time-lags''‎, ‎Doklady Akademii Nauk SSSR‎, ‎136‎, ‎39-42‎.

[14] Khellat F.‎, ‎Vasegh N‎. ‎(2011)‎. ‎``Suboptimal control of linear systems with delays in state and input by orthogonal basis''‎, ‎International Journal of Computer Mathematics‎, ‎88(4)‎, ‎781-794‎.

[15] Maimistov A‎. ‎I‎. ‎(2000)‎. ‎``Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium''‎, ‎Quantum Electronics‎, ‎30‎, ‎287-304‎.

[16] Maimistov A‎. ‎I‎. ‎(2003)‎. ‎``Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order duffing model''‎, ‎Optics and Spectroscopy‎, ‎94‎, ‎251-257‎.

[17] Marzban H‎. ‎R.‎, ‎Razzaghi M‎. ‎(2003)‎. ‎``Numerical solution of the controlled duffing oscillator by hybrid functions''‎, ‎Applied Mathematics and Computation‎, ‎140‎, ‎179-190‎.

[18] Mirhosseini-Alizamini S‎. ‎M.‎, ‎Effati S.‎, ‎Heydari A‎. ‎(2015)‎. ‎``An iterative method for suboptimal control of linear time-delayed systems''‎, ‎Systems & Control Letters‎, ‎82‎, ‎40-50‎.

[19] Mirhosseini-Alizamini S‎. ‎M.‎, ‎Effati S.‎, ‎Heydari A‎. ‎(2016)‎. ‎``Solution of linear time-varying multi-delay systems via variational iteration method''‎, ‎Journal of Mathematics and Computer Science‎, ‎16‎, ‎282-297‎.

[20] Rad J‎. ‎A.‎, ‎Kazem S.‎, ‎Parand K‎. ‎(2012)‎. ‎`` Numerical solution of the nonlinear controlled Duffing oscillator by‎ ‎radial basis functions''‎, ‎Computers and Mathematics with Applications‎, ‎64‎, ‎2049-2065‎.

[21] Razzaghi M.‎, ‎Elnagar G‎. ‎(1994)‎. ‎``Numerical solution the controlled duffing oscillator by the pseudospectral method''‎, ‎Journal of Computatational and Applied Mathematics‎, ‎56‎, ‎253-261‎.

[22] Ravindra B.‎, ‎Mallik A‎. ‎K‎. ‎(1998)‎. ‎``Dissipative control of chaos in non-linear vibrating systems''‎, ‎Journal of Sound and Vibration‎, ‎211‎, ‎709-715‎.

[23] Saberi nik H.‎, ‎Zahedi M‎. ‎S.‎, ‎Buzhabadi R.‎, ‎Effati S‎. ‎(2013)‎. ‎``Homotopy perturbation method and He's polynomials for solving the porous media equation''‎, ‎Computational Mathematics and Modeling‎, ‎24 (2)‎, ‎279-292‎.

[24] Scaramozzino S‎. ‎(2013).``Optimal control of time-varying harmonic Oscillator at resonance''‎, ‎New York‎.

[25] Shirazian M.‎, ‎Effati S‎. ‎(2012)‎. ‎``Solving a class of nonlinear optimal control problems via He's variational iteration method''‎, ‎International Journal of Control‎, ‎Automation and Systems‎, ‎10 (2)‎, ‎249-256‎.

[26] Stokes J‎. ‎J‎. ‎(1950)‎. ‎``Nonlinear Vibrations''‎, ‎Intersciences‎, ‎New York‎.

[27] Yang S‎. ‎P.‎, ‎Xiao A‎. ‎G‎. ‎(2011)‎. ‎`` Of the variational iteration method for solving multi-delay differential equations''‎, ‎Computers and Mathematics with Applications‎, ‎61‎, ‎2148-2151‎.

[28] Yu Z‎. ‎H‎. ‎(2008)‎. ‎``Varaitional iteration method for solving the multi-pantograph delay equation''‎, ‎Physics Letters A‎, ‎372‎, ‎6475-6479‎.

[29] Wang G.‎, ‎Zhenga W.‎, ‎He S‎. ‎(2002).``Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator''‎, ‎Signal Processing‎, ‎82‎, ‎103-115‎.

[30] Zeeman E‎. ‎(1976)‎. ‎``Duffing equation in brain modelling''‎, ‎Bull IMA‎, ‎12‎, ‎207-214‎.