[1] Bahar, A., Mao, X. (2004). “Stochastic delay Lotka-Volterra model”, Journal of Mathematical Analysis and Applications, 292(2), 364-380.
[2] Cai, Y., Guo, Q., Mao, X. (2023). “Positivity preserving truncated scheme for the stochastic Lotka-Volterra model with small moment convergence”, Calcolo, 60(2), 24.
[3] Hairer, E., Wanner, G., Nørsett, S.P. (2009). “Solving ordinary differential equations. Part I. Non-stiff problems”, Springer.
[4] Higham, D.J. (2001). “An algorithmic introduction to numerical simulation of stochastic differential equations”, SIAM Review, 43(3), 525-546.
[5] Jiang, D., Ji, C., Li, X., O’Regan, D. (2012). “Analysis of autonomous Lotka-Volterra competition systems with random perturbation”, Journal of Mathematical Analysis and Applications, 390(2), 582-595.
[6] Kloeden, P.E., Platen, E. (1999). “Numerical solution of stochastic differential equations”, Springer, Berlin.
[7] Lamba, H. (1997). “Step size control for the Milstein scheme using first-exit-times”, Preprint, available at http://math.gmu.edu/~harbir/newtsm102307.pdf. Accessed, 8(08), 2013.
[8] Li, Y., Cao, W.(2023).“ A positivity preserving Lamperti transformed Euler–Maruyama method for solving the stochastic Lotka-Volterra competition model”, Communications in Nonlinear Science and Numerical Simulation, 122, 107260.
[9] Liu, Q. (2015). “The effects of time-dependent delays on global stability of stochastic Lotka-Volterra competitive model”, Physica A: Statistical Mechanics and its Applications, 420, 108-115.
[10] Lotka, A.J. (1925). “Elements of physical biology”, Williams & Wilkins.
[11] Mao, X., Wei, F., Wiriyakraikul, T. (2021). “Positivity preserving truncated Euler–Maruyama Method for stochastic Lotka-Volterra competition model”, Journal of Computational and Applied Mathematics, 394, 113566.
[12] Mauthner, S. (1998). “Step size control in the numerical solution of Stochastic Differential Equations”, J. Comput. Appl. Math. 100, 93-109.
[13] Milshtein, G.N. (1986). “Weak approximation of solutions of systems of stochastic differential equations”, Theory of Probability and Its Applications, 30(4), 750-766.
[14] Nguyen, D.H., Yin, G. (2017). “Coexistence and exclusion of stochastic competitive Lotka-Volterra models”, Journal of Differential Equations, 262(3), 1192-1225.
[15] Shekarabi, H.F., Khodabin M. (2016). “Numerical solutions of stochastic Lotka-Volterra equations via operational matrices”, Journal of Interpolation and Approximation in Scientific Computing, 37-42.
[16] Tran, K., Yin, G. (2015). “Optimal harvesting strategies for stochastic competitive Lotka-Volterra ecosystems”, Automatica 55, 236-246.
[17] Vadillo, F. (2019). “Comparing stochastic Lotka-Volterra predator-prey models”, Applied Mathematics and Computation, 360, 181-189.
[18] Valinejad, A., Hosseini, S.M. (2010). “A variable step-size control algorithm for the weak approximation of stochastic differential equations”, Numerical Algorithms, 55, 429-446.
[19] Volterra, V.(1926).“ Variazioni e fluttuazioni del numero d'individui in specie animali conviventi”, Società anonima tipografica Leonardo da Vinci.
[20] Wang, H., Dong, L. (2021). “Analysis of a periodic stochastic three-species Lotka-Volterra model with distributed delay and dispersal”, Mathematical Methods in the Applied Sciences. DOI: 10.1002/mma.7338.
[21] Wei, C. (2021). “Parameter estimation for stochastic Lotka-Volterra model driven by small Lévy noises from discrete observations”, Communications in Statistics-Theory and Methods, 50(24), 6014-6023.
[22] Zhang, C., Xie, Y. (2019). “Backward Euler-Maruyama method applied to nonlinear hybrid stochastic differential equations with time-variable delay”, Science China Mathematics, 62, 597-616.
[23] Zhang, M., Tian, J., Zou, K. (2023). “Asymptotic stability of a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps”, Electronic Journal of Differential Equations, 2, 1-18.