[1] Asada, M., Miyamoto, Y., Suematsu, Y. (1986). “Gain and the threshold of three-dimensional quantum-box lasers”, IEEE Journal of Quantum Electronics, 22, 1915-1921.
[2] Azam, N., Najabat Ali, M., Javaid Khan, T. (2021). “Carbon quantum dots for biomedical applications: Review and analysis”, Frontiers in Materials, 8, 700403.
[3] Daraei, A., Izadyar, S.M., Chenarani, N. (2013). “Simulation and analysis of carrier dynamics in the inas/gaas quantum dot laser, based upon rate equations”, Optics and Photonics Journal, 3.
[4] Effati, S., Mansoori, A., Eshaghnezhad, M. (2021). “Linear quadratic optimal control problem with fuzzy variables via neural network”, Journal of Experimental & Theoretical Artificial Intelligence, 33, 283-296.
[5] Eshaghnezhad, M., Rahbarnia, F., Effati, S., Mansoori, A. (2019). “An artificial neural network model to solve the fuzzy shortest path problem”, Neural Processing Letters, 50, 1527-1548.
[6] Facure, M., Schneider, R., Mercante, L., Correa, D. (2020). “A review on graphene quantum dots and their nanocomposites: From laboratory synthesis towards agricultural and environmental applications”, Environmental Science Nano, 7.
[7] Fathpour, S., Zetian Mi, Bhattacharya, P. (2005). “High-speed quantum dot lasers”, Journal of Physics D: Applied Physics, 38, 2103.
[8] Filali, S., Pirot, F., Miossec, P. (2020). “Biological applications and toxicity minimization of semiconductor quantum dots”, Trends in Biotechnology, 38, 163-177.
[9] García de Arquer, F.P., Talapin, D.V., Klimov, V.I., Arakawa, Y., Bayer, M., Sargent, E.H. (2021). “Semiconductor quantum dots: Technological progress and future challenges”, Science, 373.
[10] Ghaffarkhah, A., Hosseini, E., Kamkar, M., Sehat, A.A., Dordanihaghighi, S., Allahbakhsh, A., van der Kuur, C., Arjmand, M. (2022). “Synthesis, applications, and prospects of graphene quantum dots: A comprehensive review”, Small, 18, 2102683.
[11] Ghosh, D., Sarkar, K., Devi, P., Kim, K. H., Kumar, P. (2021). “Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices”, Renewable and Sustainable Energy Reviews, 135, 110391.
[12] Ghosh, S., Bhattacharya, P., Stoner, E., Singh, J., Jiang, H., Nuttinck, S., Laskar, J. (2001).
“Temperature-dependent measurement of Auger recombination in self-organized In 0.4 Ga 0.6 As/GaAs quantum dots”, Applied Physics Letters, 79, 722-724.
[13] Gupta, R.R., Ranga, V. (2021). “Comparative study of different reduced precision techniques in deep neural network”, In Proceedings of International Conference on Big Data, Machine Learning and their Applications: ICBMA 2019, 123-136.
[14] Gidwani, B., Sahu, V., Shukla, S.S., Pandey, R., Joshi, V., Jain, V.K., Vyas, A. (2021). “Quantum dots: Prospectives, toxicity, advances and applications”, Journal of Drug Delivery Science and Technology, 61, 102308.
[15] Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (2017). “Quantum dot semiconductor optical amplifier: Role of second excited state on ultrahigh bit-rate signal processing”, Applied Optics, 56, 3599-3607.
[16] Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (2018). “Quantum dot semiconductor optical amplifier: Investigation of amplified spontaneous emission and noise figure in the presence of second excited state”, Optical and Quantum Electronics, 50, 1-13.
[17] Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (2020). “Quantum dot semiconductor optical amplifier: Investigation of ultra-fast cross gain modulation in the presence of a second excited state”, Journal of Physics D: Applied Physics, 53, 355108.
[18] Jennings, C., Ma, X., Wickramasinghe, T., Doty, M., Scheibner, M., Stinaff, E., Ware, M. (2020). “Self-assembled InAs/GaAs coupled quantum dots for photonic quantum technologies”, Advanced Quantum Technologies, 3.
[19] Jung, H., Ahn, N., Klimov, V.I. (2021). “Prospects and challenges of colloidal quantum dot laser diodes”, Nature Photonics, 15, 643-655.
[20] Kargozar, S., Hoseini, S.J., Brouki Milan, P., Hooshmand, S., Kim, H.W., Mozafari, M.(2020). “Quantum dots: A review from concept to clinic”, Biotechnology Journal, 15, e2000117.
[21] Koley, S., Cui, J., Panfil, Y.E., Banin, U. (2021). “Coupled colloidal quantum dot molecules”, Accounts of Chemical Research, 54, 1178-1188.
[22] Ledentsov, N.N., Ustinov, V.M., Egorov, A.Y., Zhukov, A.E., Maksimov, M.V., Tabatadze, I.G., Kop’ev, P.S. (1994). “Optical properties of heterostructures with InGaAs-GaAs quantum clusters”, Semiconductors, 28, 832-834.
[23] Lee, I.H., Rao, V., Martin, R.M., Leburton, J.P. (2021). “Shell filling of artificial atoms within the density functional theory”, In Physical Models for Quantum Dots, 103-122.
[24] Liu, L., Najar, A., Wang, K., Du, M., Liu, S. (2022). “Perovskite quantum dots in solar cells”. Advanced Science, 9, 2104577.
[25] Liu, Z., Hantschmann, C., Tang, M., Lu, Y., Park, J.S., Liao, M., Liu, H. (2019). “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon”, Journal of Lightwave Technology, 38, 240-248.
[26] Liu, Z., Lin, C.H., Hyun, B.R., Sher, C.W., Lv, Z., Luo, B., He, J.H. (2020). “Micro-light-emitting diodes with quantum dots in display technology”, Light: Science & Applications, 9, 83.
[27] Liu, H.Y., Sellers, I.R., Badcock, T.J., Mowbray, D.J., Skolnick, M.S., Groom, K.M., Beanland, R. (2004). “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer”, Applied Physics Letters, 85(5), 704-706.
[28] Lv, Z.R., Zhang, Z.K., Yang, X.G., Yang, T. (2018). “Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping”, Applied Physics Letters, 113.
[29] Lv, S.F., Montrosset, I., Gioannini, M., Song, S.Z., Ma, J.W. (2011). “Modeling and simulation of InAs/GaAs quantum dot lasers”, Optoelectronics Letters, 7, 122-125.
[30] Lüdge, K., Bormann, M.J., Malić, E., Hövel, P., Kuntz, M., Bimberg, D., Knorr, A. Schöll, E. (2008). “Turn-on dynamics and modulation response in semiconductor quantum dot lasers”, Physical Review B, 78(3), 035316.
[31] Mansoori, A., Effati, S. (2019). “An efficient neurodynamic model to solve nonlinear programming problems with fuzzy parameters”, Neurocomputing, 334, 125-13.
[32] Molaei, M.J. (2020). “Principles, mechanisms, and application of carbon quantum dots in sensors: A review”, Analytical Methods, 12, 1266-1287.
[33] Ozaki, N., Hayashi, Y., Ohkouchi, S., Ohsato, H., Watanabe, E., Ikeda, N., Hogg, R.A. (2021). “Emission wavelength control of InAs/GaAs quantum dots using an As2 source for near-infrared broadband light source applications”, Applied Physics Express, 14.
[34] Rakhlin, M., Klimko, G., Sorokin, S., Kulagina, M., Zadiranov, Y., Kazanov, D., Toropov, A. (2022). “Bright single-photon sources for the telecommunication O-band based on an InAs quantum dot with (In) GaAs asymmetric barriers in a photonic nanoantenna”, Nanomaterials, 12.
[35] Razaghi, M., Izadyar, S.M., Madanifar, K.A. (2017). “Investigation of amplified spontaneous emission in quantum dot semiconductor optical amplifier in presence of second excited state”, In 2017 International Conference on Numerical Simulation of Optoelectronic Devices, 37-38.
[36] Roh, J., Park, Y.S., Lim, J. Klimov, V.I. (2020). “Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity”, Nature Communications, 11, 271.
[37] Selopal, G.S., Zhao, H., Wang, Z.M., Rosei, F. (2020). “Core/shell quantum dots solar cells, Advanced Functional Materials, 30, 1908762.
[38] Shojaeifard, A., Amroudi, A.N., Mansoori, A., Erfanian, M. (2019). “Projection recurrent neural network model: A new strategy to solve weapon-target assignment problem”, Neural Processing Letters, 50, 3045-3057.
[39] Shu, Y., Lin, X., Qin, H., Hu, Z., Jin, Y., Peng, X. (2020). “Quantum dots for display applications”. Angewandte Chemie International Edition, 59, 22312-22323.
[40] Sugawara, M. (1998). “Effect of carrier dynamics on quantum-dot laser performance and the possibility of bi-exciton lasing”, In Physics and Simulation of Optoelectronic Devices, 3283, 88-99.
[41] Sugawara, M., Mukai, K., Nakata, Y., Ishikawa, H., Sakamoto, A. (2000). “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In x Ga 1- x A s/G a A s quantum dot lasers”, Physical Review B, 61.
[42] Urayama, J., Norris, T.B., Singh, J., Bhattacharya, P. (2001). “Observation of phonon bottleneck in quantum dot electronic relaxation”, Physical review letters, 86, 4930.
[43] Wan, Y., Norman, J., Liu, S., Liu, A., Bowers, J.E. (2021). “Quantum dot lasers and amplifiers on silicon: Recent advances and future developments”, IEEE Nanotechnology Magazine, 15, 8-22.
[44] Wang, J., Wang, L., Yu, S., Ding, T., Xiang, D., Wu, K. (2021). “Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots”, Nature Communications, 12.