In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of Physics‎, ‎Faculty of Basic Sciences‎, ‎Shahid Sattari University‎, ‎Tehran‎, ‎Iran.

2 Department of Mathematics‎, ‎Faculty of Basic Sciences‎, ‎Shahid Sattari University‎, ‎Tehran‎, ‎Iran.

3 Quantum Research Center‎, ‎Shahid Sattari University‎, ‎Tehran‎, ‎Iran‎.

10.30473/coam.2024.70032.1250

Abstract

This study presents a model of ‎a quantum dot laser with a planar cavity, employing numerical methods and artificial neural networks for simulation purposes. The investigation focuses on the influence of critical parameters, including the injection current into the active layer of the quantum dot laser and the carrier relaxation time to a lower energy state level. The model delves into the intricate carrier and photon dynamics within the laser, solving a system of coupled equations that describe these interactions. The fourth-order Runge-Kutta method is utilized to solve these equations numerically. ‎‎The results indicate that increased pumping power enhances the stable power levels and the peak power output of the laser. Additionally, analysis of the power versus intensity of current ($P-I$) characteristic curve‎ ‎ reveals that a longer carrier relaxation time to a lower energy state leads to a higher threshold current and a reduction in the quantum efficiency of the device‎. ‎The study also examines the laser switch-on time against the injection current. Finally, the deterioration in the quality of quantum dots and quantum wells is scrutinized‎. To gain deeper insights into the effect of increased pumping current on laser switch-on time‎, ‎the study complements numerical findings with the application of artificial neural networks, yielding significant results.

Keywords

Main Subjects

[1] Asada, M., Miyamoto, Y., Suematsu, Y. (1986). “Gain and the threshold of three-dimensional quantum-box lasers”, IEEE Journal of Quantum Electronics, 22, 1915-1921.
[2] Azam, N., Najabat Ali, M., Javaid Khan, T. (2021). “Carbon quantum dots for biomedical applications: Review and analysis”, Frontiers in Materials, 8, 700403.
[3] Daraei, A., Izadyar, S.M., Chenarani, N. (2013). “Simulation and analysis of carrier dynamics in the inas/gaas quantum dot laser, based upon rate equations”, Optics and Photonics Journal, 3.
[4] Effati, S., Mansoori, A., Eshaghnezhad, M. (2021). “Linear quadratic optimal control problem with fuzzy variables via neural network”, Journal of Experimental & Theoretical Artificial Intelligence, 33, 283-296.
[5] Eshaghnezhad, M., Rahbarnia, F., Effati, S., Mansoori, A. (2019). “An artificial neural network model to solve the fuzzy shortest path problem”, Neural Processing Letters, 50, 1527-1548.
[6] Facure, M., Schneider, R., Mercante, L., Correa, D. (2020). “A review on graphene quantum dots and their nanocomposites: From laboratory synthesis towards agricultural and environmental applications”, Environmental Science Nano, 7.
[7] Fathpour, S., Zetian Mi, Bhattacharya, P. (2005). “High-speed quantum dot lasers”, Journal of Physics D: Applied Physics, 38, 2103.
[8] Filali, S., Pirot, F., Miossec, P. (2020). “Biological applications and toxicity minimization of semiconductor quantum dots”, Trends in Biotechnology, 38, 163-177.
[9] García de Arquer, F.P., Talapin, D.V., Klimov, V.I., Arakawa, Y., Bayer, M., Sargent, E.H. (2021). “Semiconductor quantum dots: Technological progress and future challenges”, Science, 373.
[10] Ghaffarkhah, A., Hosseini, E., Kamkar, M., Sehat, A.A., Dordanihaghighi, S., Allahbakhsh, A., van der Kuur, C., Arjmand, M. (2022). “Synthesis, applications, and prospects of graphene quantum dots: A comprehensive review”, Small, 18, 2102683.
[11] Ghosh, D., Sarkar, K., Devi, P., Kim, K. H., Kumar, P. (2021). “Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices”, Renewable and Sustainable Energy Reviews, 135, 110391.
[12] Ghosh, S., Bhattacharya, P., Stoner, E., Singh, J., Jiang, H., Nuttinck, S., Laskar, J. (2001).
“Temperature-dependent measurement of Auger recombination in self-organized In 0.4 Ga 0.6 As/GaAs quantum dots”, Applied Physics Letters, 79, 722-724.

[13] Gupta, R.R., Ranga, V. (2021). “Comparative study of different reduced precision techniques in deep neural network”, In Proceedings of International Conference on Big Data, Machine Learning and their Applications: ICBMA 2019, 123-136.
[14] Gidwani, B., Sahu, V., Shukla, S.S., Pandey, R., Joshi, V., Jain, V.K., Vyas, A. (2021).  “Quantum dots: Prospectives, toxicity, advances and applications”, Journal of Drug Delivery Science and Technology, 61, 102308.
[15] Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (2017). “Quantum dot semiconductor optical amplifier: Role of second excited state on ultrahigh bit-rate signal processing”, Applied Optics, 56, 3599-3607.
[16] Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (2018). “Quantum dot semiconductor optical amplifier: Investigation of amplified spontaneous emission and noise figure in the presence of second excited state”, Optical and Quantum Electronics, 50, 1-13.
[17] Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (2020). “Quantum dot semiconductor optical amplifier: Investigation of ultra-fast cross gain modulation in the presence of a second excited state”, Journal of Physics D: Applied Physics, 53, 355108.
[18] Jennings, C., Ma, X., Wickramasinghe, T., Doty, M., Scheibner, M., Stinaff, E., Ware, M. (2020). “Self-assembled InAs/GaAs coupled quantum dots for photonic quantum technologies”, Advanced Quantum Technologies, 3.
[19] Jung, H., Ahn, N., Klimov, V.I. (2021). “Prospects and challenges of colloidal quantum dot laser diodes”, Nature Photonics, 15, 643-655.
[20] Kargozar, S., Hoseini, S.J., Brouki Milan, P., Hooshmand, S., Kim, H.W., Mozafari, M.(2020). “Quantum dots: A review from concept to clinic”, Biotechnology Journal, 15, e2000117.
[21] Koley, S., Cui, J., Panfil, Y.E., Banin, U. (2021). “Coupled colloidal quantum dot molecules”, Accounts of Chemical Research, 54, 1178-1188.
[22] Ledentsov, N.N., Ustinov, V.M., Egorov, A.Y., Zhukov, A.E., Maksimov, M.V., Tabatadze, I.G., Kop’ev, P.S. (1994). “Optical properties of heterostructures with InGaAs-GaAs quantum clusters”, Semiconductors, 28, 832-834.
[23] Lee, I.H., Rao, V., Martin, R.M., Leburton, J.P. (2021). “Shell filling of artificial atoms within the density functional theory”, In Physical Models for Quantum Dots, 103-122.
[24] Liu, L., Najar, A., Wang, K., Du, M., Liu, S. (2022). “Perovskite quantum dots in solar cells”. Advanced Science, 9, 2104577.
[25] Liu, Z., Hantschmann, C., Tang, M., Lu, Y., Park, J.S., Liao, M., Liu, H. (2019). “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon”, Journal of Lightwave Technology, 38, 240-248.
[26] Liu, Z., Lin, C.H., Hyun, B.R., Sher, C.W., Lv, Z., Luo, B., He, J.H. (2020). “Micro-light-emitting diodes with quantum dots in display technology”, Light: Science & Applications, 9, 83.
[27] Liu, H.Y., Sellers, I.R., Badcock, T.J., Mowbray, D.J., Skolnick, M.S., Groom, K.M., Beanland, R. (2004). “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer”, Applied Physics Letters, 85(5), 704-706.
[28] Lv, Z.R., Zhang, Z.K., Yang, X.G., Yang, T. (2018). “Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping”, Applied Physics Letters, 113.
[29] Lv, S.F., Montrosset, I., Gioannini, M., Song, S.Z., Ma, J.W. (2011). “Modeling and simulation of InAs/GaAs quantum dot lasers”, Optoelectronics Letters, 7, 122-125.
[30] Lüdge, K., Bormann, M.J., Malić, E., Hövel, P., Kuntz, M., Bimberg, D., Knorr, A. Schöll, E. (2008). “Turn-on dynamics and modulation response in semiconductor quantum dot lasers”, Physical Review B, 78(3), 035316.
[31] Mansoori, A., Effati, S. (2019). “An efficient neurodynamic model to solve nonlinear programming problems with fuzzy parameters”, Neurocomputing, 334, 125-13.
[32] Molaei, M.J. (2020). “Principles, mechanisms, and application of carbon quantum dots in sensors: A review”, Analytical Methods, 12, 1266-1287.
[33] Ozaki, N., Hayashi, Y., Ohkouchi, S., Ohsato, H., Watanabe, E., Ikeda, N., Hogg, R.A. (2021). “Emission wavelength control of InAs/GaAs quantum dots using an As2 source for near-infrared broadband light source applications”, Applied Physics Express, 14.
[34] Rakhlin, M., Klimko, G., Sorokin, S., Kulagina, M., Zadiranov, Y., Kazanov, D., Toropov, A. (2022). “Bright single-photon sources for the telecommunication O-band based on an InAs quantum dot with (In) GaAs asymmetric barriers in a photonic nanoantenna”, Nanomaterials, 12.
[35] Razaghi, M., Izadyar, S.M., Madanifar, K.A. (2017). “Investigation of amplified spontaneous emission in quantum dot semiconductor optical amplifier in presence of second excited state”, In 2017 International Conference on Numerical Simulation of Optoelectronic Devices, 37-38.
[36] Roh, J., Park, Y.S., Lim, J. Klimov, V.I. (2020). “Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity”, Nature Communications, 11, 271.
[37] Selopal, G.S., Zhao, H., Wang, Z.M., Rosei, F. (2020). “Core/shell quantum dots solar cells, Advanced Functional Materials, 30, 1908762.
[38] Shojaeifard, A., Amroudi, A.N., Mansoori, A., Erfanian, M. (2019). “Projection recurrent neural network model: A new strategy to solve weapon-target assignment problem”, Neural Processing Letters, 50, 3045-3057.
[39] Shu, Y., Lin, X., Qin, H., Hu, Z., Jin, Y., Peng, X. (2020). “Quantum dots for display applications”. Angewandte Chemie International Edition, 59, 22312-22323.
[40] Sugawara, M. (1998). “Effect of carrier dynamics on quantum-dot laser performance and the possibility of bi-exciton lasing”, In Physics and Simulation of Optoelectronic Devices, 3283, 88-99.
[41] Sugawara, M., Mukai, K., Nakata, Y., Ishikawa, H., Sakamoto, A. (2000). “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In x Ga 1- x A s/G a A s quantum dot lasers”, Physical Review B, 61.
[42] Urayama, J., Norris, T.B., Singh, J., Bhattacharya, P. (2001). “Observation of phonon bottleneck in quantum dot electronic relaxation”, Physical review letters, 86, 4930.
[43] Wan, Y., Norman, J., Liu, S., Liu, A., Bowers, J.E. (2021). “Quantum dot lasers and amplifiers on silicon: Recent advances and future developments”, IEEE Nanotechnology Magazine, 15, 8-22.
[44] Wang, J., Wang, L., Yu, S., Ding, T., Xiang, D., Wu, K. (2021). “Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots”, Nature Communications, 12.