[1] Askenazy, P. (2003). “Symmetry and optimal control in economics”, Journal of Mathematical Analysis and Applications, 282(2), 603-613.
[2] EdrisiTabriz, Y., Lakestani, M.(2015).“ Direct solution of nonlinear constrained quadratic optimal control problems using B-spline functions”, Kybernetika, 51(1), 81-89.
[3] El-Gindy, T.M., El-Hawary, H.M., Salim, M.S., El-Kady, M.(1995).“ A Chebyshev approximation for solving optimal control problems”, Computers & Mathematics with Applications, 29(6), 35-45.
[4] Elnagar, G.N. (1997). “State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems”, Journal of Computational and Applied Mathematics, 79(1), 19-40.
[5] Gachpazan, M., Mortazavi, M. (2015). “Traveling wave solutions for some nonlinear (N + 1)-dimensional evolution equations by using (G′/G) and (1/G′)-expansion methods”, International Journal of Nonlinear Science, 19(3), 137-144.
[6] Gholami Baladezaei, M., Gachpazan, M., Borzabadi, A.H. (2020). “Extraction of approximate solution for a class of nonlinear optimal control problems using 1/G′-expansion technique”, Control and Optimization in Applied Mathematics, 5(2), 65-82.
[7] Highfill, J., McAsey, M.(2001).“An application of optimal control to the economics of recycling”, SIAM Review, 43(4), 679-693.
[8] Kafash, B., Delavarkhalafi, A., Karbassi, S.M. (2012). “Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems”, Scientia Iranica, 19(3), 795-805.
[9] Kim, H., Sakthivel, R. (2010). “Travelling wave solutions for time-delayed nonlinear evolution equations”, Applied Mathematics Letters, 23(5), 527-532.
[10] Li, L.X., Li, E.Q., Wang, M.L. (2010). “The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations”, Applied Mathematics-A Journal of Chinese Universities, 25(4), 454-462.
[11] Mehne, H.H., Borzabadi, A.H. (2006). “A numerical method for solving optimal control problems using state parametrization”, Numerical Algorithms, 42(2), 165-169.
[12] Rafiei, Z., Kafash, B., Karbassi S.M. (2017). “A computational method for solving optimal control problems and their applications”, Control and Optimization in Applied Mathematics, 2(1), 1-13.
[13] Salam, A., Sharif Uddin, M.D., Dey, P. (2015). “Generalized Bernoulli sub-ODE method and its applications”, Annals of Pure and Applied Mathematics, 10(1), 1-6.
[14] Salama,A.A.(2006).“Numerical methods based on extended one-step methods for solving optimal control problems”, Applied Mathematics and Computation, 183(1), 243-250.
[15] Seierstad, A., Sydsaeter, K. (1986). “Optimal control theory with economic applications”, Elsevier North-Holland, Inc.
[16] Skandari, M.H.N., Tohidi, E. (2011). “Numerical solution of a class of nonlinear optimal control problems using linearization and discretization”, Applied Mathematics, 2(5), 646-652.
[17] Solaymani Fard, O., Borzabadi, A.H. (2007). “Optimal control problem, quasi assignment problem and genetic algorithm”, 422-424.
[18] Tohidi, E., Saberi, Nik, H. (2015). “A Bessel collocation method for solving fractional optimal control problems”, Applied Mathematical Modelling, 39, 455-465.
[19] Tohidi, E., Navid Samadi, O.R., Farahi, M.H. (2011). “Legendre approximation for solving a class of nonlinear optimal control problems”, Journal of Mathematical Finance, 1(1), 8-13.
[20] Wang, M., Li, X., Zhang, J. (2008). “The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics”, Physics Letters A, 372(4), 417-423.
[21] Yokus, A. (2011). “Solutions of some nonlinear partial differential equations and comparison of their solutions”, Ph.D. Thesis, Fırat University, Turkey.
[22] Zhang, S., Tong, J.L., Wang, W. (2008). “A generalized (G′/G)-expansion method for the mKdV equation with variable coefficients”, Physics Letters A, 372(13), 2254-2257.
[23] Zheng, B.(2011).“A new Bernoulli sub-ODE method for constructing traveling wave solutions for two nonlinear equations with any order”, University Politechnica of Bucharest Scientific Bulletin Series A, 73(3), 85-94.
[24] Zheng, B. (2012). “Application of A generalized Bernoulli sub-ODE method for finding traveling solutions of some nonlinear equations”, WSEAS Transactions on Mathematics, 7(11), 618-626.