In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Author

Department of Mathematics‎, ‎Payame Noor University (PNU)‎, P.O‎. ‎Box 19395-4697‎, ‎Tehran‎, ‎Iran‎.

Abstract

This paper introduces several Abadie-type constraint qualifications and derives necessary optimality conditions in the Karush-Kuhn-Tucker‎ ‎for both weakly efficient solutions and efficient solutions of a nonsmooth multi-objective semi-infinite programming problem characterized by locally Lipschitz data‎. ‎The findings are expressed in terms of the Micheal-Penot subdifferential‎.

Keywords

Main Subjects

[1] Borwein, J.M., Lewis, A.S. (2000). “Convex Analysis and Nonlinear Optimization: Theory and Examples”, Springer, New York.
[2] Caristi, G., Ferrara, M., Stefanescu, A. (2012). “Semi-infinite multiobjective programming with generalized invexity”, Journal of Mathematical Analysis and Applications, 388, 432-450.
[3] Clarke, F.H. (1983). “Optimization and nonsmooth analysis”, Wiley, Interscience.
[4] Giorgi, J., Gwirraggio, A., Thierselder, J. (2004). “Mathematics of optimization: Smooth and non-smooth cases”, Elsevier.
[5] Goberna, M.A., Kanzi, N. (2017). “Optimality conditions in convex multiobjective SIP”, Mathematical Programming, 164, 167-191.
[6] Habibi, S., Kanzi, N., Ebadian, A. (2020). “Weak Slater qualification for nonconvex multiobjective semi-infinite programming,” Iranian Journal of Science and Technology, Transactions A: Science, 44, 417-424.
[7] Hettich, R., Kortanek, O. (1993). “Semi-infinite programming: Theory, methods, and applications”, SIAM Review, 35, 380-429.
[8] Hiriart-Urruty, J.B., Lemarechal, C. (1193). “Convex analysis and minimization algorithms‎. ‎I: ‎F‎undamentals”, Part of the book series: Grundlehren der mathematischen Wissenschaften (GL, volume 305), ‎Springer‎, ‎Berlin‎.
[9] Kanzi, N. (2013). “Lagrange multiplier rules for nondifferentiable DC generalized semi-infinite programming problems,” Journal of Global Optimization, 56, 417-430.
[10] Kanzi, N. (2014). “Constraint qualifications in semi-infinite systems and their applications in non-smooth semiinfinite problems with mixed constraints,” SIAM Journal on Optimization, 24, 559-572.
[11] Kanzi, N.(2015).“Karush–Kuhn–Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems,” Journal of Mathematical Extension, 9, 45-56.
[12] Kanzi, N. (2017). “Necessary and sufficient conditions for (weakly) efficient of nondifferentiable multi-objective semi-infinite programming,” Iranian Journal of Science and Technology, Transaction A, Science, 42, 1537-1544.
[13] Kanzi, N., Soleimani-Damaneh, M. (2020). “Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization”, Journal of Global Optimization, 77, 627-641.
[14] Kanzi, N., Shaker Ardekani, J., Caristi, G. (2018). “Optimality, scalarization and duality in linear vector semi-infinite programming”, Optimization, 67, 523-536.
[15] Li, W., Nahak, C., Singer, I. (2000). “Constraint qualifications in semi-infinite systems of convex inequalities”, SIAM Journal on Optimization, 11, 31-52.
[16] Michel, P., Penot, J.P. (1984). “Calcul sous- differentiel pour des fonctions lipschitziennes et nonlipschitziennes”, Comptes Rendus de l’Académie des sciences numérisés sur le Paris sér. I Mathematics, 12(1984), 269-272.
[17] Michel‎, ‎P.‎, ‎Penot‎, ‎J.P‎. ‎(1992)‎. "A Generalized derivative for calm and stable functions”‎, ‎Differential and Integral Equations‎, ‎5‎, ‎433-454‎.
[18] Rockafellar, R.T. (1970). “Convex analysis”, Princeton University Press, Princeton, NJ In Press
[19] Rockafellar, R.T., Wets, J.B. (1998). “Variational analysis”, Springer-Verlag.
[20] Upadhyay, B.B., Ghosh, A., Kanzi, N., Soroush, H. (2024). “Constraint qualifications for nonsmooth multiobjective programming problems with switching constraints on Hadamard manifolds”, Bulletin of the Malaysian Mathematical Sciences Society, 47, 1-28.
[21] Winkler, K.A. (2008). “Characterization of efficient and weakly efficient points in convex vector optimization”, SIAM Journal on Optimization, 19, 756-765.