In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of Electrical and Computer Engineering‎, ‎University of Science and Technology of Mazandaran‎, ‎Behshahr‎, ‎Iran

2 Department of Applied Mathematics‎, ‎University of Science and Technology of Mazandaran‎, ‎Behshahr‎, ‎Iran‎..

10.30473/coam.2025.72829.1272

Abstract

This paper addresses the challenges of power control‎, ‎radar assignment, and signal timing to improve the detection and‎ ‎tracking of multiple targets within a mono-static cognitive‎ ‎radar network‎. ‎A fusion center is utilized to integrate target‎ ‎velocity data gathered by radars‎. ‎The primary objective is to‎ ‎minimize the mean square error in target velocity estimation while‎  ‎adhering to constraints related to global detection probability and‎ ‎total radar power consumption for effective target detection and‎ ‎tracking‎. ‎The optimization problem is formulated and a low-complexity method is proposed using the genetic algorithm (GA)‎. ‎In‎ ‎this approach‎, ‎the radars and their transmission powers are‎ ‎represented as chromosomes and the network's quality of service‎ ‎(QoS) requirements serve as inputs to the GA‎. ‎The output of the GA‎ ‎is the mean error square of the target velocity estimation‎. ‎Once the‎ ‎problem is resolved‎, ‎the power allocation for each radar assigned to‎ ‎a specific target is determined‎. ‎Simulation results demonstrate the‎ ‎effectiveness of the proposed algorithm in enhancing detection‎ ‎performance and improving tracking accuracy when compared to other‎ ‎benchmark algorithms‎.

Highlights

  • Introduced a novel algorithm that optimally sets the signal duration, transmission power, and radar-target assignments to enhance target detection and velocity estimation accuracy.
  • Formulated the resource allocation problem to minimize target velocity estimation MSE under constraints of detection performance and power budget.
  • Employed a genetic algorithm to derive an approximate optimal solution, effectively addressing the non-convex and NP-hard characteristics of the problem.
  • Simulation results showcase the algorithm's superior detection and tracking accuracy performance compared to existing benchmark methods.

Keywords

Main Subjects

[1] Akhondi Darzikolaei, M., Mollaei, M., & Najimi, M. (2021). “An effective PSO-based power allocation for target tracking in MIMO radar with widely separated antennas”, Physical Communication, 51, doi: 10.1016/j.phycom.2021.101544.
[2] Boyd, S., & Vandenberghe, L. (2004). “Convex optimization”, Cambridge: Cambridge University Press.
[3] Chavali, Ph., & Nehorai, A. (2012). “Scheduling and power allocation in a cognitive radar network for multiple-target tracking”, IEEE Transactions on Signal Processing. 60. 715-729, doi: 10.1109/TSP.2011.2174989.
[4] Garcia, N., Haimovich, A.M., Coulon, M. & Lops, M., (2013). “Resource allocation in MIMO radar with multiple targets for non-coherent localization”, IEEE Transactions on Signal Processing, 62(10), 2656-2666, doi: 10.1109/TSP.2014.2315169.
[5] Geng, Zh., Wang, B., Yan, H., Zhang, J., & Zhu, D. (2022). “Moving target detection and tracking with multiplatform radar network (MRN)”, IET Radar, Sonar & Navigation, 16(5), 815-824, doi: 10.1049/rsn2.12222
[6] Godrich, H., Petropulu, A.P., & Poor, H.V. (2011). “Power allocation strategies for target localization in distributed multiple-radar architectures”, IEEE Transactions on Signal Processing, 59(7), 3226-3240, doi: 10.1109/TSP.2011.214497.
 [7] Goldberg, D.E. (1989). “Genetic algorithm in search optimization and learning machine”, Addison Wesley.
 [8] He, Q., Blum, R.S., Godrich, H., & Haimovich, A.M. (2010). “Target velocity estimation and antenna placement for MIMO radar with widely separated antennas”, IEEE Journal of Selected Topics in Signal Processing, 4(1), 79-100, doi:  10.1109/JSTSP.2009.2038974.
 [9] Hosseini Andargoli, S.M., & Malekzadeh, J. (2019). “LPI radar network optimization based on geometrical measurement fusion”, Optimization and Engineering Journal, 20(1), 119-150, doi: 10.1007/s11081-018-9401-x.
[10] Jin, B., Kuang, X., Liu, Sh., Zhang, Zh., & Lian, Zh. (2023). “Joint allocation of transmit power and signal bandwidth for distributed cognitive tracking radar network using cooperative game”, Digital Signal Processing, 135, doi:  10.1016/j.dsp.2023.103964.
[11] Jin, B., kuang, X., Peng, Y., Zhang, Zh., Wang, B., Li, S., & Lian, Zh. (2022). “Distributed power allocation for cognitive tracking based on non- cooperative game in decentralized netted radar”, Digital Signal Processing, 126, doi: 10.1016/j.dsp.2022.103499.
[12] Kurdzo, J.M., & Palmer, R.D. (2011). “On the use of genetic algorithms for optimization of a multi-band, multi-mission radar network”, IEEE Radar Conference, 231-236, doi: 10.1109/RADAR.2011.5960534.
[13] Li, F., Gao, X., & Li, B. (2014). “A study on search strategies of netted surveillance radar”, In: International Conference on Logistics Engineering, Management and Computer Science, LEMCS 2014, Atlantis Press, doi: 10.2991/lemcs-14.2014.54.
[14] Niu, R.X., Blum, R.S., Varshney, P.K., & Drozd, A.L. (2012). “Target localization and tracking in noncoherent multiple-input multiple-output radar systems”, IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1466-1489, doi: 10.1109/TAES.2012.6178073.
[15] Richards, M.A., & Holm, W.A. (2010). “Principles of modern radar: Basic principles”, Science and Technology Publishing.
[16] Shi, C., Wang, F., Sellathurai, M., & Zhou, J. (2014). “LPI optimization framework for target tracking in radar network architectures using information-theoretic criteria”, International Journal of Antennas and Propagation, 21, 1-10, doi: 10.1155/2014/654561.
[17] Skolnik, M.I. (1962). “Introduction to radar, in: Radar Handbook”, 2nd Edition, McGraw-Hill Publishing Company, New York, 1990.
[18] Song, X., Zheng, N., Yan, Sh., & Li, H. (2018). “A joint resource allocation method for multiple targets tracking in distributed MIMO radar systems”, EURASIP Journal on Advances in Signal Processing, 65, 1-12, doi: 10.1186/s13634-018-0587-z.
[19] Tichavsky, P., Muravchik, C.H., & Nehorai, A. (1998). “Posterior Cramer-Rao bounds for discrete time nonlinear filtering”, IEEE Transactions on Signal Processing, 46, 1386-1396, doi: 10.1109/78.668800.
[20] Xie, M., Yi, W., Kirubarajan, Th., & Kong, L. (2018). “Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks”, IEEE Transactions on Signal Processing, 66(3), 729-743, doi: 10.1109/tsp.2017.2777394.
[21] Yan, J., Liu, H., & Bao, Zh. (2018). “Power allocation scheme for target tracking in clutter with multiple radar system”, Elsevier Signal Processing Journal, 144, 453-458, doi: 10.1016/j.sigpro.2017.11.006.
[22] Yan, J.K., Liu, H.W., Jiu, B., Chen, B., Liu, Z., & Bao, Z. (2015). “Simultaneous multi beam resource allocation scheme for multiple target tracking”, IEEE Transactions on Signal Processing, 63(12), 3110-3122, doi: 10.1109/TSP.2015.2417504.
[23] Zhu, P., Liang, J., Luo, Z., & Shen, X. (2023). “Cognitive radar target tracking using intelligent waveforms based on reinforcement learning”, IEEE Transactions on Geoscience and Remote Sensing, 61, doi: 10.1109/TGRS.2023.3298355.