In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

Department of Mathematics‎, ‎Payame Noor University (PNU)‎, P.O. ‎Box 19395-3697, ‎Tehran‎, ‎Iran‎.

10.30473/coam.2025.72875.1273

Abstract

This paper presents an iterative computational method for addressing constrained nonlinear optimal control problems‎, ‎specifically those involving terminal state‎, ‎state saturation‎, ‎and control saturation constraints‎. ‎The proposed approach reformulates the original problem into a sequence of constrained linear time-varying quadratic optimal control problems‎. ‎This is achieved by iteratively approximating the nonlinear dynamic system using constrained linear time-varying models‎. ‎Each reformulated problem is then converted into a standard quadratic programming problem by applying Chelyshkov polynomials in conjunction with a collocation method‎. ‎Finally‎, ‎the resulting problems are solved to obtain optimal control solutions

Keywords

Main Subjects

[1] Ahmed, I.N., Ouda, E.H. (2020). “An iterative method for solving quadratic optimal control problem using scaling Boubaker polynomials”, Open Science Journal, 5(2), doi: 10.23954/osj.v5i2.2538.
[2] Alipour, M., Vali, M.A., Borzabadi, A.H. (2019). “A hybrid parametrization approach for a class of nonlinear optimal control problems”, Numerical Algebra, Control and Optimization, 9(4), 493-506, doi: 10.3934/naco.2019037.
 [3] Banks, S.P., Dinesh, K. (2000). “Approximate optimal control and stability of nonlinear finite and infinite-dimensional systems”, Annals of Operations Research, 98, 19-44, doi: 10.1023/A: 1019279617898.
[4] Betts, J. T., (2020). “Practical methods for optimal control and estimation using nonlinear programming”, 3rd ed. SIAM, doi:10.1137/1.9780898718577.
[5] Chelyshkov, V.S. (2006). “Alternative orthogonal polynomials and quadratures”, Electronic Transactions on Numerical Analysis, 25(7), 17-26.
[6] Delphi, M., Shihab, S. (2019). “Modified iterative algorithm for solving optimal control problems”, Open Science Journal of Statistics and Application, 6(2), 20-27.
[7] Diveev, A., Sofronova, E., Konstantinov, S. (2021). “Approaches to numerical solution of optimal control problem using evolutionary computations”, Applied Sciences, 11(15), doi: 10.3390/app11157096.
[8] Eide, J.D., Hager, W.W., Rao, A.V.(2021).“ Modified Legendre–Gauss–Radau collocation method for optimal control problems with nonsmooth solutions”, Journal of Optimization Theory and Applications, 191, 600-633, doi: 10.1007/s10957-021-01810-5.
[9] Figueiredo, M.A.T., Nowak, R.D., Wright, S.J. (2007). “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems”, IEEE Journal of Selected Topics in Signal Processing, 1, 586-597, doi: 10.1109/JSTSP.2007.910281.
[10] Fischer, B. (2011). “Polynomial based iteration methods for symmetric linear systems”, Society for Industrial and Applied Mathematics, doi:10.1137/1.9781611971927.
[11] Frankowska, H., Zhang, H., Zhang, X.(2019).“Necessary optimality conditions for local minimizers of stochastic optimal control problems with state constraints”, Transactions of the American Mathematical Society, 327, 1289-1331.
[12] Gentle, J.E. (2024). “Matrix algebra theory, computations and applications in statistics”, Third Edition, Springer, doi: 10.1007/978-3-031-42144-0.
[13] Horn, R.A., Johnson, Ch.R. (2013). “Matrix analysis”, Second Edition, Cambridge University Press,
[14] Jaddu, H. (2002). “Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials”, Journal of the Franklin Institute, 339(4), 479-498, doi: 10.1016/S0016-0032(02)00028-5.
[15] Jaddu, H., Majdalawi, A. (2014). “Legendre polynomials iterative technique for solving a class of nonlinear optimal control problems”, International Journal of Control and Automation, 7, 17-28, doi: 10.14257/ijca.2014.7.3.03.
[16] Jaddu, H., Vlach, M. (2002). “Successive approximation method for non-linear optimal control problems with applications to a container crane problem”, Optimal Control Applications and Methods, 23(5), 275-288, doi: 10.1002/oca.713.
[17] Kendall, A., Weimin, H. (2009). “Theoretical numerical analysis, A functional analysis framework”, 3rd Ed., Springer, doi: 10.1007/978-1-4419-0458-4.
[18] Mehne, H.H., Borzabadi, A.H. (2006). “A numerical method for solving optimal control problems using state parameterization”, Numerical Algorithms, 42, 165-169, doi: 10.1007/s11075-006-9035-5.
[19] Samareh Hashemi, S.A., Saeedi, H., Foroush Bastani, A. (2024). “A hybrid Chelyshkov wavelet-finite differences method for time-fractional black-Scholes equation”, Journal of Mahani Mathematical Research, 13(2), 423-452, doi: 10.22103/jmmr.2024.22371.1526.
[20] Tomas-Rodriguez, M., Banks, S.P.(2003).“ Linear approximations to nonlinear dynamical systems with applications to stability and spectral theory”, IMA Journal of Control and Information, 20(1), 89-103, doi:10.1093/imamci/20.1.89.
[21] Tomas-Rodriguez, M., Banks, S.P. (2006). “An iterative approach to eigenvalue assignment for nonlinear systems”, Proceedings of the 45th IEEE Conference on Decision & Control, 977-982, doi: 10.1109/CDC.2006.376758.
[22] Vlassenbroeck, J. (1988). “A Chebyshev polynomial method for optimal control with state constraints”, Automatica, 24(4), 499-506, doi: 10.1016/0005-1098(88)90094-5.