In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

Department of Mathematics and Applied Mathematics‎, ‎University of the Western Cape‎, ‎Private Bag X17‎, ‎Bellville 7535‎, ‎South Africa‎.

10.30473/coam.2025.73788.1292

Abstract

Malaria continues to represent a significant public health concern in Sudan‎, ‎with cases rising over 40% from 2015 to 2020‎. ‎This research investigates how climate change affects malaria transmission patterns using a mathematical model in an ordinary differential equation framework‎. ‎The analysis involves calculating the basic reproduction number and evaluating the system's qualitative properties to gain insights into disease dynamics‎. ‎Additionally‎, ‎a sensitivity analysis is conducted to evaluate how climatic conditions‎, ‎e.g.‎, ‎rainfall and temperature, influence key model parameters‎. ‎Statistical approaches are utilized to estimate parameters‎ ‎and calibrate the model using empirical data from Sudan‎, ‎ensuring consistency between the model and observed trends‎. ‎Numerical simulations demonstrate the growing influence of climate variability on the spatial distribution of malaria vectors and the transmission progression over time‎. ‎The study establishes a strong association between climatic changes and the exacerbation of malaria prevalence in Sudan‎. ‎These findings emphasize the urgent need for climate-adaptive strategies‎, ‎including improved vector control‎, ‎strengthened surveillance systems‎, ‎and climate-resilient public health interventions‎, ‎to address the increased risks posed by changing environmental conditions‎. ‎The research provides valuable insights to inform evidence-based policies aimed at reducing malaria transmission in Sudan and other regions that are experiencing similar challenges due to climate change‎.

Highlights

  • A mathematical model employing Ordinary Differential Equations (ODEs) is developed to assess the impact of climate change on malaria transmission dynamics.
  • The basic reproduction number (R0) is derived, accompanied by qualitative analysis to elucidate the underlying mechanisms governing disease propagation.
  • Sensitivity analysis evaluates the influence of climatic variables—such as rainfall and temperature—on critical transmission parameters. 
  • The model calibration using empirical field data ensures consistency between theoretical predictions and observed malaria incidence trends in Sudan. 
  • Numerical simulations demonstrate a significant correlation between climate variability and alterations in vector distribution and malaria transmission patterns. 
  • Findings highlight the necessity for climate-adaptive public health strategies, including improved vector control measures, enhanced surveillance systems, and climate-resilient intervention frameworks.
  • This study offers evidence-based insights to inform malaria control policies in Sudan and other regions vulnerable to climate-induced impacts on disease dynamics.

Keywords

Main Subjects

[1] Abdelrazecy, A., Okuneye, K., Gumel, A.B. (2018). “Mathematical analysis of a weather-driven model for the population ecology of mosquitoes”, Mathematical Biosciences & Engineering, 15(1), 57-93, doi: 10.3934/mbe.2018003.
[2] Abdu, Z., Mohammed, Z., Bashier, I., Eriksson, B. (2004). “The impact of user fee exemption on service utilization and treatment seeking behaviour: The case of malaria in Sudan”, The International Journal of Health Planning and Management, 19(1), 95-106, doi: 10.1002/hpm.777.
[3] Adam, I., Ibrahim, Y., Elhardello, O. (2018). “Prevalence, types, and determinants of anemia among pregnant women in Sudan: A systematic review and meta-analysis”, BMC Hematology, 18(1), 1-8, doi: 10.1186/s12878-018-0124-1.
[4] Akbari, R., Leader, N., Mohammad, S. (2024). “Dynamical behaviour of fractional order SEIR mathematical model for infectious disease transmission”, Control and Optimization in Applied Mathematics, 9(1), 35-48, doi: 10.30473/coam.2023.64849.1210.
[5] Baker, R.E., Mahmud, A.S., Miller, I.F., Rajeev, M., Rasambainarivo, F., Rice, B.L., Takahashi, S., Tatem, A.J., Wagner, C.E., Wang, L.F., Wesolowski, A. (2022). “Infectious disease in an era of global change”, Nature Reviews Microbiology, 20(4), 193-205, doi: 10.1038/ s41579-021-00639-z.
[6] Beck-Johnson, L.M., Nelson, W.A., Krijn, P.P., Read, A.F., Thomas, M.B., Bjørnstad, O.N. (2013). “The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission”, PLOS One, 8(11), 79276, doi: 10.1371/journal.pone.0079276.
[7] Birkhoff, G., Carlo-Rota, G. (1989). “Ordinary differential equations”, John Wiley & Sons Inc John Wiley and Sons Inc., New York, USA.
[8] Blanford, J.I., Blanford, S., Crane, R.G., Mann, M.E., Paaijmans, K.P., Schreiber, K.V., Thomas, M.B. (2013). “Implications of temperature variation for malaria parasite development across Africa”, Scientific Reports, 3(1) 1-11, doi: 10.1038/srep01300.
[9] Chitnis, N., Smith, T., Steketee, R. (2008). “A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population”, Journal of Biological Dynamics, 2(3), 259-285, doi: 10.1080/17513750701769857.
[10] Cobremesk, A.A., Krogstad, H.E. (2015). “Mathematical modeling of endemic transmission”, American Journal of Applied Mathematics, 3(2), 36-46, doi: 10.11648/j.ajam.20150302.12.
[11] Coetzee, M., Horne, D.W.K., Brooke, B.D., Hunt, R.H. (1999). “DDT, dieldrin and pyrethroid insecticide resistance in African malaria vector mosquitoes: An historical review and implications for future malaria control in southern Africa”, South African Journal of Science, 95(5), 215-218.
[12] Craig, M.H., Sueur, D.L., Snow, B. (1999). “A climate-based distribution model of malaria transmission in sub-Saharan Africa”, Parasitology Today, 15(3), 05-111, doi: 10.1016/S0169-4758(99)01396-4.
[13] Dafallah, E.S., El-Agib, F.H., Bushra, G.O. (2003). “Maternal mortality in a teaching hospital in Sudan”, Saudi Medical Journal, 24(4), 369-372.
[14] Dastjerdi, R.H., Ahmadi, G., Dadkhah, M., Ayatillah, Y. (2023). “Optimal control of infectious disease using the artificial neural networks”, Control and Optimization in Applied Mathematics, 8(2), 17-32, doi: 10.30473/coam.2023.64776.1208.
[15] Driessche, P.V.d., Watmough, J. (2002). “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Mathematical Biosciences, 180(1-2), 29-48, doi: 10.1016/S0025-5564(02)00108-6.
[16] Gashaw, K.W., Kassa, S.M., Ouifki, R. (2019). “Climate-dependent malaria disease transmission model and its analysis“, International Journal of Biomathematics, 12(8), 1950087, doi: 10.1142/S1793524519500876.
[17] Hoshen, M.B., Morse, A.P. (2004). “A weather-driven model of malaria transmission”, Malaria Journal, 3(1), 1-14, doi: 10.1186/1475-2875-3-32.
[18] Joe, K., Ogana, W., Nyandwi, S., Kwizera, J.D.D., Niyukuri, D. (2024). “A mathematical model exploring the impact of climatic factors on malaria transmission dynamics in Burundi”, Journal of Applied Mathematics and Physics, 12(11), 3728-3757, doi: 10.4236/jamp.2024.1211224.
[19] Kuehn, A., Pradel, G. (2010). “The coming-out of malaria gametocytes”, Journal of Biomedicine and Biotechnology, 2010(1), doi: 10.1155/2010/976827.
[20] Lindsay, S.W., Birley, M.H. (1996). “Climate change and malaria transmission”, Annals of Tropical Medicine & Parasitology, 90(5), 573-588, doi: 10.1080/00034983.1996.11813087.
[21] Martens, W.J., Louis, W.N., Rotmans, J., Jetten, T.H., McMichael, J.A. (1995). “Potential impact of global climate change on malaria risk”, Environmental Health Perspectives, 103(5), 458-464, doi: 10.1289/ehp.95103458.
[22] Mordecai, E.M., Ryan, S.J., Caldwell, J.M., Shah, M.M., LaBeaud, A.D. (2020). “Climate change could shift disease burden from malaria to arboviruses in Africa”, The Lancet Planetary Health, 4(9), doi: 10.1016/S2542-5196(20)30178-9.
[23] Mukhtar, A.Y.A., Munyakazi, J.B. Ouifki, R. (2019). “Assessing the role of climate factors on malaria transmission dynamics in South Sudan”, Mathematical Biosciences, 310, 13-23, doi: 10.1016/j.mbs.2019.01.002.
[24] National malaria control programme (NMCP), Sudan (2024), https://mesamalaria.org/institution/national-malaria-control-programme-nmcp-sudan.
[25] Ngarakana-Gwasira, E.T., Bhunu, C.P., Masocha, M., Mashonjowa, E. (2016). “Assessing the role of climate change in malaria transmission in Africa”, Malaria Research and Treatment, 2016(1), doi: 10.1155/2016/7104291.
[26] Osman, A.A., Osman, Y.E., Ibrahim, Y., Mussa, A., Mohamed, Z., Suppain, R., Hajissa, K. (2022). “Prevalence of malaria among clinically suspected patients and pregnant women in Sudan: A systematic review and meta-analysis”, SN Comprehensive Clinical Medicine, 4(1), 1-12, doi: 10.1007/s42399-022-01160-x.
[27] Paaijmans, K.P., Cator, L.J., Thomas, M.B. (2013). “Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity”, PLOS One, 8(1), e55777, doi: 10.1371/journal.pone.0055777.
[28] Paaijmans, K.P., Blanford, S., Bell, A.S., Blanford, J.I., Read, A.F., Thomas, M.B. (2010). “Influence of climate on malaria transmission depends on daily temperature variation”, Proceedings of the National Academy of Sciences, 107(34), 15135-15139, doi: 10.1073/pnas.1006422107.
[29] Tran, A., L’Ambert, G., Lacour, G., It, R.B., Demarchi, M., Cros, M., Cailly, P., AubryKientz, M., Balenghien, T., Ezanno, P. (2013). “A rainfall-and temperature-driven abundance model for Aedes albopictus populations”, International Journal of Environmental Research and Public Health, 10(5), 1698-1719, doi: 10.3390/ijerph10051698.
[30] World health organization (WHO) and global malaria programme (2022).
[31] Yang, H.M. (2000). “Malaria transmission model for different levels of acquired immunity and temperature dependent parameters vector”, Revista de Saude Publica, 34, 223-231, doi: 10.1590/S0034-89102000000300008.