In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Faculty of Mathematical Sciences‎, ‎Department of Applied Mathematics‎, ‎Ferdowsi University of Mashhad‎, ‎Mashhad‎, ‎Iran.

2 Mosaheb Institute of Mathematics‎, ‎Kharazmi University‎, ‎Tehran‎, ‎Iran‎.

10.30473/coam.2025.74009.1296

Abstract

In this study‎, ‎we proposed a novel graph partitioning problem where the edges are characterized by trapezoidal fuzzy numbers‎. ‎A linear ranking function is employed to establish an order among these fuzzy numbers‎. ‎We derive the necessary conditions for the existence of an optimal solution to this problem‎. ‎To address the fuzzy graph partitioning problem‎, ‎we implement and compare the performance of three algorithms: Genetic Algorithm‎, ‎Tabu Search, and Sequential Least Squares Programming‎. ‎ The algorithms are evaluated based on objective values‎, ‎computational time‎, ‎and the number of iterations across multiple numerical examples‎. ‎Utilizing Dolan-Moré performance profiles‎, ‎we demonstrate the superiority of our proposed approach relative to existing methods‎. ‎The findings highlight the robustness and computational efficiency of our methodology, making a meaningful contribution to the advancement of fuzzy graph algorithms and their practical applications.

Highlights

  • Formulated a novel graph partitioning problem where the edges are represented by trapezoidal fuzzy numbers.
  • Applied a linear ranking function to systematically and effectively order the trapezoidal fuzzy numbers, facilitating decision-making and optimization.
  • Established necessary conditions that must be satisfied for the existence of an optimal solution to the fuzzy GPP, providing theoretical insights into the problem's solvability.
  • Implemented and compared three distinct optimization techniques, Genetic Algorithm, Tabu Search, and Sequential Least Squares Programming, to solve the fuzzy GPP efficiently.
  • Conducted extensive numerical testing to evaluate each approach based on objective function value, computational time, and iteration number across multiple instances.
  • Employed Dolan-Moré performance profiles to visually demonstrate the efficiency and robustness, and reliability of the proposed approach.

Keywords

Main Subjects

[1] Abouyee Mehrizi, A., Ghanbari, R., Sadeghi, S., Ghorbani-Moghadam, Kh. (2024). “Solving continuous quadratic programming for the discrete balanced graph partitioning problem using simulated annealing algorithm, hybridized local search and multi-start algorithms”, Applied Soft Computing Journal, 165, 112109, doi: https://doi.org/10.1016/ j.asoc.2024.112109.
[2] Bäck, T. (1996). “Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms”, New York, 1996; Online Edn, Oxford Academic, doi: https://doi.org/10.1093/ oso/9780195099713.001.0001.
[3] Baeck, T., Fogel, D.B, Michalewicz, Z. (1997). “Handbook of evolutionary computation” (1st ed.). CRC Press. doi: https://doi.org/10.1201/9780367802486.
[4] Benlic, U., Hao, J.K. (2011). “An effective multilevel tabu search approach for balanced graph partitioning”, Computers & Operations Research, 38(7), 1066-1075, doi: https://doi.org/10.1016/j.cor.2010.10.007.
[5] Boulif, M. (2010). “Genetic algorithm encoding representations for graph partitioning problems”, International Conference on Machine and Web Intelligence, Algiers, Algeria, 2010, 288-291, doi: https://doi.org/10.1109/ICMWI.2010.5648133.
[6] Bruglieri, M., Cordone, R. (2021). “Metaheuristics for the minimum gap graph partitioning problem”, Computers & Operations Research, 132, 105301, doi: https://doi.org/10.1016/j.cor.2021.105301.
[7] Brunetta, L., Conforti, M., Rinaldi, G. (1997). “A branch-and-cut algorithm for the equicut problem”, Mathematical Programming, 78, 243-263, doi: https://doi.org/10.1007/BF02614373.
[8] Bui, T.N., Moon, B.R. (1996). “Genetic algorithm and graph partitioning”, IEEE Transactions on Computers, 45(7), 841-855, doi: https://doi.org/10.1109/12.508322.
[9] Chaouche, A., Boulif, M. (2019). “Solving the unsupervised graph partitioning problem with genetic algorithms: Classical and new encoding representations”, Computers & Industrial Engineering, 137, 106025, doi: https://doi.org/10.1016/j.cie.2019.106025.
[10] Delgado, M., Verdegay, H.K., Vila, A.A. (1990). “On valuation and optimization problems in fuzzy graphs: A general approach and some particular cases”, ORSA Journal on Computing, 2(1), 74-83, doi: https://doi.org/10.1287 /ijoc.2.1.74.
[11] Dolan, E., Moré, J. (2002). “Benchmarking optimization software with performance profiles”, Mathematical Programming, 91, 201-213, doi: https://doi.org/10.1007/s101070100263.
[12] Eiben, A.E., Smith, J.E. (2015). “Introduction to evolutionary computing”, Springer, doi: https://doi.org/10. 1007/978-3-662-44874-8.
[13] Farshbaf, M., Feizi-Derakhshi, M.R. (2009). “Multi-objective optimization of graph partitioning using genetic algorithms.”, Third International Conference on Advanced Engineering Computing and Applications in Sciences, Sliema, Malta, 1-6, doi: https://doi.org/10.1109/ADVCOMP.2009.8.
[14] Firouzian, S., Adabitabar Firozja, M. (2016). “Fuzzy number-valued fuzzy graph”, Control and Optimization in Applied Mathematics, 1(2), 77-86.
[15] Firouzian, S., Sedghi, S., Shobe, N. (2021). “On edge fuzzy line graphs and their fuzzy congraphs”, Control and Optimization in Applied Mathematics, 6(1), 81-89, doi: https://doi.org/10.30473/coam.2021.44084.1102.
[16] Gill, P.E., Murray, W., Wright, M.H. (2021). “Numerical linear algebra and optimization”, Book Series Name: Classics in Applied Mathematics, SIAM, doi: https://doi.org/10.1137/1.9781611976571.
[17] Glover, F. (1986). “Future paths for integer programming and links to artificial intelligence”, Computers & Operations Research, 13(5), 533-549, doi: https://doi.org/10.1016/0305-0548(86)90048-1.
[18] Goldberg, D.E. (1989). “Genetic algorithms in search, optimization, and machine learning”, Addison-Wesley Longman Publishing Co., Inc., doi: https://doi.org/10.5555/534133.
[19] Hager, W.W., Krylyuk, Y. (1999). “Graph partitioning and continuous quadratic programming”, SIAM Journal on Discrete Mathematics, 12(4), 500-523, doi: https://doi.org/10.1137/S0895480199335829.
[20] Hager, W.W., Phan, D.T., Zhang, H. (2013). “An exact algorithm for graph partitioning”, Mathematical Programming, 137(1), 531-556, doi: https://doi.org/10.1007/s10107-011-0503-x.
[21] Holland, J.H. (1975). “Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence”, Complex Adaptive Systems, University of Michigan Press, doi: https://doi.org/10.7551/mitpress/1090.001.0001.
[22] Johnson, E.L., Mehrotra, A., Nemhauser, G.L. (1993). “Min-cut clustering”, Mathematical Programming, 62, 133-151, doi: https://doi.org/10.1007/BF01585164.
[23] Kadluczka, P., Wala, K. (1995). “Tabu search and genetic algorithms for the generalized graph partitioning problem”, Control and Cybernetics, 24, 459-476.
[24] Kaufman, W.E., Krambeck, F.J., Prater, C.D., Weekman, V.W. (1977). “Automation and databases in an industrial laboratory”, IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications, New Orleans, LA, 494-497, doi: https://doi.org/10.1109/CDC.1977.271623.
[25] Kernighan, B.W., Lin, S. (1970). “An efficient heuristic procedure for partitioning graphs”, The Bell System Technical Journal, 49(2), 291-307, doi: https://doi.org/10.1002/j.1538-7305.1970.tb01770.x.
[26] Kóczy, László T. (1992). “Fuzzy graphs in the evaluation and optimization of networks”, Fuzzy Sets and Systems, 46(3), 307-319, doi: https://doi.org/10.1016/0165-0114(92)90369-F.
[27] Kohmoto, K., Katayama, K., Narihisa, H. (2003). “Performance of a genetic algorithm for the graph partitioning problem”, Mathematical and Computer Modelling, 38(11-13), 1325-1332, doi: http://dx.doi.org/10.1016/S0895-7177(03)90134-8.
[28] Lawson, C.L., Hanson. R.J. (1995). “Solving least squares problems”, Society for Industrial and Applied Mathematics, SIAM, doi: https://doi.org/10.1137/1.9781611971217.
[29] Li, M., Chi, H., Zhou, C., Xu, S. (2020). “GAP: Genetic algorithm based large-scale graph partition in heterogeneous cluster”, IEEE Access, 8, 144197-144204, doi: https://doi.org/10.1109/ACCESS.2020.3014351.
[30] Lim, A., Chee, Y-M. (1991). “Graph partitioning using tabu search”, 1991 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, 2, 1164-1167, doi: https://doi.org/10.1109/ISCAS.1991.176574.
[31] Mahdavi-Amiri, N., Nasseri, S.H. (2007). “Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables”, Fuzzy Sets and Systems, 158(17), 1961-1978, doi: https://doi.org/10.1016/j.fss.2007.05.005.
[32] Pieter, M., Mouton, S. (2012). “Francis Guthrie: A colourful life”, The Mathematical Intelligencer, 34, 67-75, doi: https://doi.org/10.1007/s00283-012-9307-y.
[33] Michalewicz, Z. (2013). “Genetic algorithms + Data structures = Evolution programs”, SpringerVerlag Berlin Heidelberg, doi: https://doi.org/10.1007/978-3-662-03315-9.
[34] Panos, P., Birce B.B., Feyza, G., Ozgur, D., Birce, B. (2013). “Fuzzy combinatorial optimization problems”, Handbook of Combinatorial Optimization, 1357-1413, doi: http://dx.doi.org/10.1007/978-1-4419-7997-1_68.
[35] Pillai, S.U. Suel, T., Cha, S. (2005). “The Perron-Frobenius theorem: Some of its applications”, IEEE Signal Processing Magazine, 22(2), 62-75, doi: https://doi.org/10.1109/MSP.2005.1406483.
[36] Rosenfeld, A. (1975). “Fuzzy graphs”, Fuzzy Sets and their Applications to Cognitive and Decision Processes, Academic Press, 77-95, doi: https://doi.org/10.1016/B978-0-12-775260-0.50008-6.
[37] Sharma, P.D., Rallapalli, S., Lakkaniga, N.R. (2023). “An innovative approach for predicting pandemic hotspots in complex wastewater networks using graph theory coupled with fuzzy logic”, Stochastic Environmental Research and Risk Assessment, 37, 3639–3656, doi: https://doi.org/10.1007/s00477-023-02468-3.
[38] Shazely, S., Baraka, H., Abdel-Wahab, A. (1998). “Solving graph partitioning problem using genetic algorithms”, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268), Notre Dame, IN, USA, 302-305, doi: https://doi.org/10.1109/MWSCAS.1998.759492.
[39] Yager, R.R. (1981). “A procedure for ordering fuzzy subsets of the unit interval”, Information Sciences, 24(2), 143-161, doi: https://doi.org/10.1016/0020-0255(81)90017-7.
[40] Zadeh, L.A. (1976). “A fuzzy-algorithmic approach to the definition of complex or imprecise concepts”, International Journal of Man-Machine Studies, 8(3), 249-291, doi: https://doi.org/10.1016/S0020-7373(76)80001-6.